Chapter II: Sets, Relation, and Applications

Dr. Boucetta Ikram

University of Biskra

Faculty of Science and

Technologie

Department of Electrical

Engineering

e- mail : ikram.

boucetta@univ-biskra.dz

Table of contents

I - Chapter II : Sets, Relation, and Applications	3
1. Set Theory	3
1.1. Operations on sets	3
1.2. Cardinality	4
1.3. Venn diagram	4
2. Equivalence Relation and Order Relation	5
2.1. Equivalence Relation	5
2.2. Order Relation	5
2.3. Equivalence class	5
3. Application	6
3.1. Direct and Reciprocal image	6
4. Exercice : Test	6
5. Exercice: Test	7
Exercises solution	8
Glossary	9
References	10

I Chapter II : Sets, Relation, and Applications

1. Set Theory

Definition: A set is a collection of mathematical objects brought together according to one or more common properties

Example

*We designate by IN the set of natural numbers N=0,1,2,3,...n.

1.1. Operations on sets

The following section presents the most important set operations, as well as their symbolic notation.

- *Inclusion:* $E \subset F$ if every element of E is also an element of F. In other words: $\forall x \in E(x \in F)$ We say then that E is a subset of F or a part of F.
- *Union:* for $A \cup B = E\{x \in E, x \in A \text{ or } x \in B\}$
- *Intersection:* $A \cap B = \{x \mid n \in A \text{ and } x \in B\}$
- **Complementary:** Complement of A or A^c , the set of all elements that are not in A.

^{*}The empty set is denoted: Ø which does not contain any element.

Note Note

- **Equality of two sets:** E = F if and only if $E \subset F$ and $F \subset E$
- **Difference of two sets:** The difference of two sets A, B is the set of elements of A which are not in B, denoted A B
- *Symmetrical difference:* Let E be a non-empty set and A, $B \subset E$, the symmetric difference between two sets A, B is the set of elements which belong to A B or B A note $A \triangle B$.

$$A \triangle B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

1.2. Cardinality

Definition: when the set E is finite, the number of elements it contains is called its cardinal. we note it card(E).

A Warning

when E is infinite, we set Card E = $+\infty$

1.3. Venn diagram

we can represent a set graphically using a Venn diagram.consider for example the set A defined in extension by A = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the Venn diagram of set A is presented by the following figure:

2. Equivalence Relation and Order Relation

2.1. Equivalence Relation

Definition: Let R be an equivalence relation in the set E and $x, y, z \in E$ if only if it is reflexive, symmetric, and transitive (4).

- Reflexive: $(\forall x \in E), (xRx)$
- Symmetric: $(\forall x \in E), (\forall y \in E), (xRy \Rightarrow yRx)$
- Transitive: $(\forall x, y, z \in E), ((xRy) \land (yRz)) \Rightarrow (xRz))$

2.2. Order Relation

Definition: A relation is called an order relation if it is reflexive, anti symmetric, and transitive.

- Reflexive: $(\forall x \in E)$, (xRx)
- Anti-symmetric : $(\forall x \in E), (\forall y \in E), (xRy) \land (yRz) \Rightarrow (x = y).$
- Transitive: $(\forall x, y, z \in E), ((xRy) \land (yRz)) \Rightarrow (xRz))$

2.3. Equivalence class

Let R be an equivalence relation; we call the equivalence class of an element $x \in E$ the set of elements $y \in E$ which are in relation R with x we denote C_x , where: $C_x = y \in E/xRy$

3. Application

3.1. Direct and Reciprocal image

3.1.1. The direct image

Let f $E \longrightarrow F$ and $A \subset F$ we call image of A by f a subset of F, denoted f(A) such that: $f(A) = f(x) \in F/x \in A$

3.1.2. The reciprocal image

Let f $E \longrightarrow F$ and $B \subset F$ we call the reciprocal image of B by f, the part of E denoted f^{-1} (5).

4. Exercice: Test

[solution n°1 p.8]

Let A, B be two parts of a set E. We note C_A^E as the complement of A in E. What is the correct answer?

$$O \quad \overline{A \cup B} = \overline{A} \cup \overline{B} \text{ (False)}$$

$$O \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$
 (True)

O
$$\overline{A \cup B} = A \cap B$$
 (False)

5. Exercice: Test [solution n°2 p.8]

*Let E and F be two non-empty sets and f be a map from E to F. Let A, B be two subsets of E. What are the correct answers?

$$\ \square \ A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B) \, (\mathsf{True})$$

$$\qquad \qquad \Box \quad f^{-1}(A\cap B) \subset f^{-1}(A)\cap f^{-1}(B) \text{ (False)}$$

$$\Box f^{-1}(A \cup B) = f^{-1}(A) \cap f^{-1}(B)$$
 (False)

Exercises solution

> Solution n°1 Exercice p. 6

Let A, B be two parts of a set E. We note ${\cal C}^E_A$ as the complement of A in E. What is the correct answer?

$$O \quad \overline{A \cup B} = \overline{A} \cup \overline{B} \text{ (False)}$$

$$O \overline{A \cup B} = A \cap B$$
 (False)

> **Solution** n°2 Exercice p. 7

*Let E and F be two non-empty sets and f be a map from E to F. Let A, B be two subsets of E. What are the correct answers?

$$\ \ \ \ \ \, f^{-1}(A\cap B)=f^{-1}(A)\cap f^{-1}(B)\, ({\sf True})$$

$$\ \, \square \quad f^{-1}(A\cap B)\subset f^{-1}(A)\cap f^{-1}(B) \text{ (False)}$$

$$\qquad \qquad \Box \quad f^{-1}(A \cup B) = f^{-1}(A) \cap f^{-1}(B) \text{ (False)}$$

Glossary

Equivalence relation

We say that a relation is an equivalence relation if it isreflexive, symmetric, and transitive.)

Set

is well-determined collections that are completely characterized by their elements.

the reciprocal image

the reciprocal image is the map whose definition set is the set of parts of F and whose arrival set is the set of parts of E.

9 Dr. Ikram Boucetta

References

4 Alain Louveau, Christian Rosendal (2001)

5 J. Franchini et J. C. Jacquens (1996)

Dr. Ikram Boucetta