Chapter II : Sets, Relation, and Applications

Dr. Boucetta Ikram
University of Biskra
Faculty of Science and
Technologie
Department of Electrical
Engineering
e- mail : ikram.
boucetta@univ-biskra.dz

Table of contents

I - Chapter II : Sets, Relation, and Applications 3

1. Set Theory 3
1.1. Operations on sets 3
1.2. Cardinality 4
1.3. Venn diagram 4
2. Equivalence Relation and Order Relation 5
2.1. Equivalence Relation 5
2.2. Order Relation 5
2.3. Equivalence class 5
3. Application 6
3.1. Direct and Reciprocal image 6
4. Exercice : Test 6
5. Exercice : Test 7
Exercises solution 8
Glossary 9
References 10

I Chapter II: Sets,

Relation, and

Applications

1. Set Theory

Definition: A set is a collection of mathematical objects brought together according to one or more common properties

O Example

*We designate by IN the set of natural numbers $N=0,1,2,3, \ldots n$.
*The empty set is denoted: \varnothing which does not contain any element.

1.1. Operations on sets

The following section presents the most important set operations, as well as their symbolic notation.

- Inclusion: $E \subset F$ if every element of E is also an element of F . In other words: $\forall x \in E(x \in F)$ We say then that E is a subset of F or a part of F .
- Union: for $A \cup B=E\{x \in E, x \in A$ or $x \in B\}$
- Intersection: $A \cap B=\{x \operatorname{lin} \mathrm{E}, x \in A$ and $x \in B\}$
- Complementary: Complement of A or A^{c}, the set of all elements that are not in A.

Note

- Equality of two sets: $\mathrm{E}=\mathrm{F}$ if and only if $E \subset F$ and $F \subset E$
- Difference of two sets: The difference of two sets A, B is the set of elements of A which are not in B, denoted A B
- Symmetrical difference: Let E be a non-empty set and $\mathrm{A}, B \subset E$,the symmetric difference between two sets A , B is the set of elements which belong to $\mathrm{A}-\mathrm{B}$ or $\mathrm{B}-\mathrm{A}$ note $A \triangle B$.
$A \Delta B=(A-B) \cup(B-A)=(A \cup B)-(A \cap B$

1.2. Cardinality

Definition: when the set E is finite, the number of elements it contains is called its cardinal. we note it card(E) .
A Warning

```
when E is infinite, we set Card E=+\infty
```


1.3. Venn diagram

we can represent a set graphically using a Venn diagram.consider for example the set A defined in extension by $A=0,1,2,3,4,5,6,7,8,9$, the Venn diagram of set A is presented by the following figure:

2. Equivalence Relation and Order Relation

2.1. Equivalence Relation

Definition: Let R be an equivalence relation ${ }^{*}$ in the set E and $x, y, z \in E$ if only if it is reflexive, symmetric, and transitive (4) ${ }^{*}$.

- Reflexive: $(\forall x \in E),(x R x)$
- Symmetric. $(\forall x \in E),(\forall y \in E),(x R y \Rightarrow y R x)$
- Transitive: $(\forall x, y, z \in E),((x R y) \wedge(y R z)) \Rightarrow(x R z))$

2.2. Order Relation

Definition: A relation is called an order relation if it is reflexive, anti symmetric, and transitive.

- Reflexive: $(\forall x \in E),(x R x)$
- Anti-symmetric : $(\forall x \in E),(\forall y \in E),(x R y) \wedge(y R z) \Rightarrow(x=y)$.
- Transitive: $(\forall x, y, z \in E),((x R y) \wedge(y R z)) \Rightarrow(x R z))$

2.3. Equivalence class

Let R be an equivalence relation; we call the equivalence class of an element $x \in E$ the set of elements $y \in E$ which are in relation R with x we denote C_{x}, where: $C_{x}=y \in E / x R y$

3. Application

3.1. Direct and Reciprocal image

3.1.1. The direct image

Let $\mathrm{f} E \longrightarrow F$ and $A \subset F$ we call image of A by f a subset of F , denoted $f(A)$ such that: $f(A)=f(x) \in F / x \in A$

3.1.2. The reciprocal image

Let $\mathrm{f} E \longrightarrow F$ and $B \subset F$ we call the reciprocal image ${ }^{*}$ of B by f , the part of E denoted $f^{-1}(5)^{*}$.

4. Exercice : Test

Let A, B be two parts of a set E . We note C_{A}^{E} as the complement of A in E . What is the correct answer?
○ $\overline{A \cup B}=\bar{A} \cup \bar{B}$ (False)
○ $\overline{A \cup B}=\bar{A} \cap \bar{B}$ (True)
○ $\overline{A \cup B}=A \cap B$ (False)

5. Exercice: Test

[solution $n^{\circ} 2 \mathrm{p} .8$]
*Let E and F be two non-empty sets and f be a map from E to F. Let A, B be two subsets of E. What are the correct answers?

- $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$ (True)
- $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ (True)
$\square f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$ (False)
$\square f^{-1}(A \cup B)=f^{-1}(A) \cap f^{-1}(B)$ (False)

Exercises solution

$>$ Solution $\mathrm{n}^{\circ} 1$

Let A, B be two parts of a set E . We note C_{A}^{E} as the complement of A in E . What is the correct answer?
○ $\overline{A \cup B}=\bar{A} \cup \bar{B}$ (False)
© $\overline{A \cup B}=\bar{A} \cap \bar{B}$ (True)

○ $\overline{A \cup B}=A \cap B$ (False)

$>$ Solution $\mathrm{n}^{\circ} 2$

*Let E and F be two non-empty sets and f be a map from E to F. Let A, B be two subsets of E. What are the correct answers?

『 $\quad A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$ (True)
区 $\quad f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ (True)
$\square f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$ (False)
$\square f^{-1}(A \cup B)=f^{-1}(A) \cap f^{-1}(B)$ (False)

Glossary

Equivalence relation

We say that a relation is an equivalence relation if it isreflexive, symmetric, and transitive.)

Set

is well-determined collections that are completely characterized by their elements.

the reciprocal image

the reciprocal image is the map whose definition set is the set of parts of F and whose arrival set is the set of parts of E.

References

Alain Louveau, Christian Rosendal (2001)

5
J. Franchini et J. C. Jacquens (1996)

