
56

Chapter 6: Custom types

In addition to predefined types (standard), the programmer can define new types. In this
course we are mainly interested in types: Enumeration and Records.

1. Enumerations

An enumeration is a type whose area of values is defined by the programmer.

 The months of the year (January, February ...);
 Playing cards names (AS, King...);
 Car marks (Peugeot, Renault, Fiat, ...);
 Civil status indications (single, married, divorced ...).

Syntax of declaration of a listed type:

Type Type_name = (Val1, Val2, ……., Valn);

Declaration of a variable of an enumerated type:

Var

 variable_name : name_ type ;

Examples:

Type
 day = (Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday);
 month = (January, February, March, April, May, June, July, August, September, October,
November, December) ;

Var
 D1, D2: Day;
 M: month;

• Variables D1 and D2 can only take one of the values:
 Saturday... Friday.
• The variable M can only take one of the values: January... December

57

Constants of an enumeration are linked by an order-relation defined by the position of
values in an enumeration. Then, the order in which identifiers are listed is significant.
Examples: Saturday<Monday and December> January.

The names attributed to the various constants of an enumeration cannot be reused.

Var
 Saturday: integer; // error !!!

Some functions can be used to manipulate enumerated types:

 Ord (x): This function returns a positive integer corresponding to the rank of x
element in the enumeration.

 Succ (x): This function provides the constant which immediately follows the value of
X in the enumeration. The successor of the last value is not defined.

 Pred (x): This function provides the constant which immediately precedes the value
of X in the list. The first value predecessor is not defined.

Examples:

 • Ord (Saturday) = 1, ord (Sunday) = 2, .. ord (Friday) = 7.

 • Succ(Saturday) = Sunday, Succ (Sunday) = Monday,…, Succ (Friday) =? (is not defined).

 • Pred (Friday) = Thursday, pred (Thursday) = Wednesday,…, pred (Saturday) =? (is not
defined).

Syntax of enumeration in C language:

To declare such a type, we start with the Enum keyword. As following:

Enum Name_ Type {Val1, Val2, …, Valn};

Example:

Enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

Declaration of a variable of an enumerated type:

Enum Name_ type Name_variable;

58

Note:

The C language considers the values of the types enumerated as integer constants,
converting them in the order in which they were listed during the declaration from 0.

Example :

#include <stdio.h>

Enum day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

int main()
{
 enum day date;
 date = Tuesday;
 Printf ("The %d day of the week is : ", date+1);
 return 0;
}

59

2. The records

1.1. Definition

A record is a data structure allowing a set of data of different types to be grouped with the
same and single object.

A record (also called a structure) is made up of components called fields.

Each field is identified by a type and a name which allows direct access to it.

1.2. Declaration

Type id_record = Record

 Id_Field1: Type1 ;

 Id_Field2: Type2 ;

 …

 Id_FieldN: TypeN ;

 End;

 Id_Field1, Id_Field2 … Id_FieldN: Are the identifiers of the fields of the record.
 Type1, Type2, …, TypeN : Are the types associated with the fields.
 Once the record type is defined, you can declare variables of this type.

Syntax :

 Var
 Id_variable : id_record ;

Example :

Consider the information concerning a student: name, age, email, baccalaureate note, can be
represented using a record as follows:

Type student = Record
 name: string [N];
 age: int ;
 email: string [N];
 bac: Real;
 end;
var
 S1, S2, S3: Student;

60

A record can be represented by a set of boxes. These boxes can be different sizes, because the
types of a record are not necessarily the same as for a table.

 Name age email bac
‘’Biskri Ali’’ 19 Biskri.ali@gmail.com 14.25

1.3. Access to a field of a record

The fields of a record are accessible using the variable identifier and the field name separated
by a dot (.)

Syntax:
 Id_Variable.id_field

Example 1:
 S1.age
 S2.email

Since the fields of a record correspond to a consecutive space of bytes, therefore they play the
role of variables. They can thus be used in assignment, reading, writing, etc. actions.

Example 2:

S1.age ← 21 ;
read (S1.name) ;
write (S1.email) ;

1.4. Records in C language

Syntaxe :

Typedef struct {
 Type1 Id_Field1;
 Type2 Id_Field2;
 ...
 TypeN Id_FieldN;
 }id_record;

S1

61

Example :

Typedef struct {
 Char name [10] ;
 Int age;
 Char email [10] ;
 Float bac ;
 } Student ;

Example :

#include <stdio.h>

typedef struct {
 char name[20];
 int age;
 } person;

int main()
{
 person p;
 gets(p.name);
 scanf("%d",& p.age);
 printf("\n The name is : ");
 puts(p.name);
 printf("\n The age is : %d ", p.age);

 return 0;
}

1.5. Case of nested structures

A record can be nested in a table or record types. The notation used to select fields remains
the same (Use of point).

Array of records:
It is possible to declare an array whose elements are of record type.

Type id_record = Record
 Id_Field1: Type1 ;
 Id_Field2: Type2 ;
 …
 Id_FieldN: TypeN ;
 End;
 Var
 id_array : array [1 .. N] of id_record ;

62

1.6. Access to elements

We first access the table box, using the brackets [], then we access the field using the dot
symbol (.)

Example:

 Id_array [i] . id_Field;

1.7. Manipulating arrays with record type

 Read(Tab[2].age); // save the value in the age field of the 2nd element in the array.
 Tab[3]. bac ← 13.50; // assign a value 13.50 to the field bac in the 3rd box of the table.
 Write(Tab[1].name); // display the name in the 1st box of the table.

Exercise:

Using records and arrays structures, write an algorithm which allows:

1- Creates and fill a data base for students (name, age, email, phone number).

2- Calculate the number of students with age superior of 28

