## PW 03 : Arrays

## Exercise 1 : filling

Write a Fortran program that declares an array $\mathbf{t}$ of 20 elements of real type, then 1.

- initialize these elements with 0 .
- initialize these elements with 1 to 20 in order.
- displays its contents.

2. fill $\mathbf{t}$ with n element given by the user such as $\mathbf{n}$ less than 20 .

## Exercise 2 : calculate

1. Write a Fortran program that declares an array $\mathbf{t}$ of 20 elements of integer type, then

- fill $\mathbf{t}$ with $\mathbf{n}$ element given by the user
- calculate and display the sum of the elements of $\mathbf{t}$
- calculate and display the product of the elements of $\mathbf{t}$

2. Write a FORTRAN constituting an array, from two previously entered arrays of the same length. The new array will be the sum of the elements of the two initial arrays.
example :
Array 1: $\quad 4 \quad 8791546$
Array 2: $\quad \begin{array}{llll}7 & 6 & 21374\end{array}$
Table to create: 11141211281110

## Exercise 3 : research

1. Write a fortran program allowing the user to enter $M$ integer values into an array A. Once the entry is complete, the program will display:

- The number of negative values (NEG)
- The number of even elements (Pair)
- the Greatest value ( max )
- Smallest value and its order in array A ( min and imin )

2. Finds if a number $\mathbf{x}$ exists or not in the array $A$ and then find the number of occurrences of $\mathbf{x}$ in an array $A$. witch $x$ is value given by the user.

## Exercise 4 : Matrix

1. Write a fortran program which allows you to fill a $5 * 4$ Array (matrix) with the numbers $0,1,2,3, \ldots \ldots, 19$ and display it on the screen.
2. allows you to enter a square matrix $(n * n)$ and display the elements of its main diagonal.
3. Write a Fortran program which allow to adds two matrix $\mathbf{A}$ and $\mathbf{B}$ of the same dimensions $\mathrm{N}^{*} \mathrm{M}$ and displays the result matrix.
4. Write a Fortran program which allow to product two matrix $\mathbf{A}$ and $\mathbf{B}$ of the dimensions $\mathbf{N} * \mathbf{K}$ and $\mathbf{K} * \mathbf{M}$ successively and displays the result matrix.
