Semester2: THERMODYNAMICS AND CHEMISTRY OF MINERAL SOLUTIONS

CHAPTER I

Part 2
Level: $1^{\text {st }}$ year LMD

Dr: Ismail DAOUD

Academic year: 2023/2024

3. The pH of saline solutions:

We call salt any neutral species which, in solution. They are always trained in neutralization by reaction between acid and base.
Acid: (na, $\mathrm{Ca}, \mathrm{Va})+$ base : $(\mathrm{nb}, \mathrm{Cb}, \mathrm{Vb}) \rightarrow$ Salt $+\mathrm{H}_{2} \mathrm{O}$
Examples: $\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$.

3.1. The $\mathbf{p H}$ of a solution of strong acid and strong base:

Consider the following neutralization reaction:
$\underset{(\text { S.A })}{\mathrm{HCl}}+\underset{(\text { S.B })}{\mathrm{NaOH}} \rightarrow \underset{\text { Salt }}{\mathrm{NaCl}_{(\mathrm{s})}}+\mathrm{H}_{2} \mathrm{O}$
In aqueous solution, there is total dissolution of the salt: $\mathrm{NaCl}(\mathrm{s})$ (Sodium chloride)
$\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
Cl^{-}: Conjugate base (very weak) of a strong acid (HCl), Cl^{-}: does not modify the pH of the solution: Cl^{-}: is inactive (indifferent or spectator ion), it does not participate in any acidequilibrium basic.
Na^{+}: Conjugated acid (very weak) of a strong base $(\mathrm{NaOH}), \mathrm{Na}^{+}$: does not modify the pH of the solution: Na^{+}: is inactive (indifferent or spectator ion), it does not participate in any acidbase equilibrium.

$$
\mathrm{pH}(\mathrm{NaCl})=\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O}\right)=1 / 2 \mathrm{pke}=7 \quad \text { at } \mathrm{t}=25 \mathrm{C}^{\circ}
$$

Conclusion: Salts of strong acids and strong bases dissociate in water without changing the pH , the solution remains neutral.

3.2. The pH of a solution of strong acid and weak base:

Consider the following neutralization reaction:
$\underset{(\text { S.A })}{\mathrm{HCl}}+\underset{(\text { W.B })}{\mathrm{NH}_{3}} \rightarrow \underset{\text { Salt }}{\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}}+\mathrm{H}_{2} \mathrm{O}$
In aqueous solution, there is total dissolution of the salt: $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ (Ammonium chloride)
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
Cl^{-}: Conjugate base (very weak) of a strong acid (HCl), Cl^{-}: does not modify the pH of the solution: Cl^{-}: is inactive (indifferent or spectator ion), it does not participate in any acidequilibrium basic.
$\mathrm{NH}_{4}{ }^{+}$: Conjugated acid (very weak) of a weak base $\left(\mathrm{NH}_{3}\right)$, it participates in acid-base equilibrium.
If : $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{NH}_{4}{ }^{+}\right] \gg\left[\mathrm{NH}_{3}\right] \Rightarrow$ the acid is weakly dissociated.
$\mathrm{pH}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=\mathrm{pH}\left(\mathrm{NH}_{4}{ }^{+}\right)=\mathrm{pH}($ Conjugate w. acid $)=1 / 2\left(\mathrm{pka}-\log \left[\mathrm{NH}_{4}{ }^{+}\right]\right) \quad$ at $\mathrm{t}=25 \mathrm{C}^{\circ}$

3.3. The pH of a solution of weak acid and strong base:

Consider the following neutralization reaction:

$$
\underset{(\text { W.A })}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { (S.B) }}{\mathrm{NaOH}} \rightarrow \underset{\text { Salt }}{\mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{s})}}+\mathrm{H}_{2} \mathrm{O}
$$

In aqueous solution, there is total dissolution of the salt: $\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{s})$ (Sodium acetate)
$\mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}$: Conjugate base (very weak) of a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, it participates in acidbase equilibrium.
Na^{+}: Conjugated acid (very weak) of a strong base (NaOH), Na^{+}: does not modify the pH of the solution: Na^{+}: is inactive (indifferent or spectator ion), it does not participate in any acidbase equilibrium.
If : $\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \gg\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \Rightarrow$ the base is weakly protonated. $\mathrm{pH}\left(\mathrm{CH}_{3} \mathrm{COONa}\right)=\mathrm{pH}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=\mathrm{pH}($ Conjugate w. base $)=1 / 2\left(\mathrm{pke}+\mathrm{pka}+\log \left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\right)$ at $\mathrm{t}=25 \mathrm{C}^{\circ}$

3.4. The pH of a weak acid and weak base solution:

Consider the following neutralization reaction:

In aqueous solution, there is total dissolution of the salt: $\mathrm{CH}_{3} \mathrm{COONH}_{4(\mathrm{~s})}$ (Ammonium acetate) of concentration $=\mathrm{C}$
$\mathrm{CH}_{3} \mathrm{COONH}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}{ }^{+}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}$: Conjugate base (very weak) of a weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, it participates in acidbase equilibrium.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \ldots \ldots \ldots . . \mathrm{Ka} 1$
$\mathrm{NH}_{4}{ }^{+}$: Conjugated acid (very weak) of a weak base $\left(\mathrm{NH}_{3}\right)$, it participates in acid-base equilibrium.
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ Ka2

However, the mixture between a w. A and a w. B gives a weakly acidic or weakly basic solution $\Rightarrow \mathrm{pH}$ is close to 7 .
If : $\mathrm{C} \gg\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\mathrm{C} \gg\left[\mathrm{OH}^{-}\right] \Rightarrow$ by making the product $\mathrm{Ka} 1 . \mathrm{Ka} 2$
$\mathrm{pH}\left(\mathrm{CH}_{3} \mathrm{COONH}_{4}\right)=1 / 2(\mathrm{pka1}+\mathrm{pka} 2)$, the pH is independent of the initial concentration C.

3.5. The pH of a buffer solution:

A buffer solution is defined as a mixture of a weak acid AH and their conjugates base A^{-}in equal or similar proportions.
The expression for the acidity constant Ka of the HA/A couple is:
$K_{a}=\frac{\left[A^{-}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[A H]} \Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{a} \cdot[\mathrm{AH}]}{\left[A^{-}\right]}$
$p H=p k_{a}-\log \frac{[A H]}{\left[A^{-}\right]} \Leftrightarrow p H=p k_{a}-\log \frac{[\text { Acid }]}{[\text { Base }]}$

Noticed:

A buffer solution can be obtained from:
$>$ Weak acid AH + a weak base A.
$>$ Weak acid HA + strong base.
$>$ Weak base $\mathrm{A}^{-}(\mathrm{NaA}$ salt $)+$ strong acid.
Buffer solutions have the property of minimizing pH variations caused by:
An addition of acid or base.
$>$ An addition of solvent (dilution).

