Mohamed Khider University of Biskra Faculty of Exact Sciences and Natural and Life Sciences

$1^{\text {st }}$ year LMD - SNV Biology
Academic year: 2023/2024
Subject: Chemistry 2

Applied exercises series No. 1

(Acid-base equilibrium)

Exercise 1:

1. Indicate among the following species, acids, bases and ampholytes: $\mathrm{CH}_{3} \mathrm{COOH}$, $\mathrm{NH}_{4}^{+}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{S}^{2-}, \mathrm{Al}^{3+}$.
2. Name the conjugated acid/base pairs corresponding to each case.

Exercise 2:

- Knowing that the ionic product of water at $100^{\circ} \mathrm{C}$ is equal to $6 \cdot 10^{-13}$.

1. Calculate the pH of the following solutions at this temperature:
a) Pure $\mathrm{H}_{2} \mathrm{O}$,
b) HCl at $0.1 \mathrm{~mol} / 1$,
c) NaOH at $0.2 \mathrm{~mol} / 1$.
2. Compare these pH values with those obtained at $25^{\circ} \mathrm{C}$.

Exercise 3:

- In an aqueous solution of formic acid $\mathrm{HCOOH}(0.2 \mathrm{M})$, the acid is dissociated to 3%.

1. Calculate the equilibrium concentrations of the species present in aqueous solution.
2. Deduce the pKa of this acid.

Exercise 4:

- Three solutions, sulfuric acid, hydrochloric acid and propanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (considered a weak acid) have the same $\mathrm{pH} .15 \mathrm{Cm}^{3}$ of a $10^{-2} \mathrm{M} \mathrm{NaOH}$ sodium hydroxide solution are needed to neutralize $200 \mathrm{Cm}^{3}$ of the hydrochloric acid solution, while $40 \mathrm{Cm}^{3}$ of the sodium hydroxide solution is required to neutralize $10 \mathrm{Cm}^{3}$ of the propanoic acid solution.

Calculate:

1. The pH common to the three solutions.
2. The molarity of each solution.
3. The acid constant of propanoic acid.

Mohamed Khider University of Biskra
 Faculty of Exact Sciences and Natural and Life Sciences

$1^{\text {st }}$ year LMD - SNV Biology

Academic year: 2023/2024
Subject: Chemistry 2

Applied exercises series No. 2

(Acid-base equilibrium)

Exercise 1:

26.75 g of ammonium chloride $\mathrm{NH}_{4} \mathrm{Cl}$ are dissolved in $1 l$ of water.

1. Calculate the pH of $\mathrm{NH}_{4} \mathrm{Cl}$ knowing that the Ka of the $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$ couple is equal to $5.6^{*} 10^{-10}$.
2. How many moles of NH_{3} must be added to the previous solution to obtain a buffer solution of $\mathrm{pH}=9.07$?

We give: the molar mass $(\mathrm{g} / \mathrm{mol})$ of the atoms: $\mathrm{H}(1), \mathrm{N}(14), \mathrm{Cl}(35.5)$.

Exercise 2:

The pH of a saturated solution of $\mathrm{H}_{2} \mathrm{~S}$ is maintained equal to 3.7.

- What are the concentrations of SH^{-}and S^{2-} species in this solution, knowing that in a solution saturated with $\mathrm{H}_{2} \mathrm{~S}$.

We have: $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1 \mathrm{~mol} / 1$
$\mathrm{H}_{2} \mathrm{~S} / \mathrm{HS}^{-}\left(\mathrm{Ka}_{1}=10^{-7}\right), \mathrm{HS}^{-} / \mathrm{S}^{2-}\left(\mathrm{Ka}_{2}=1.2 * 10^{-13}\right)$.

Exercise 3:

- We have the following solutions:

1. $\mathrm{CH}_{3} \mathrm{COOH}$ at $0.5 \mathrm{~mol} / 1$ and $\mathrm{CH}_{3} \mathrm{COONa}$ at $0.5 \mathrm{~mol} / 1(\mathrm{pKa}=4.75)$
2. How to prepare 1 liter of a buffer solution of $\mathrm{pH}=4.9$
