

Ministry of Higher Education and Scientific Research

Mohamed KHIDER University of Biskra

Faculty of Science and Technology

Department of Electrical Engineering

Course material

 Simulation software

(Logiciels de simulation)

For: 3rd year Electrotechnics Degree

Prepared by:

Dr. SAADI Ramzi

Table of Contents
Chapter 1 Getting started with MATLAB

1.1 Introduction .. 1

1.2 MATLAB Environment ... 1

1.3 Presentation and generalities .. 2

1.3.1 Getting Help ... 2

1.3.2 First interaction with MATLAB .. 3

1.3.3 The main opérations, constants, functions, and commands: 4

1.3.4 Example ... 7

Chapter 2 Data Types and Variables

2.1 Data types ... 10

2.2 Variables types ... 11

2.2.1 Complex numbers in Matlab .. 11

2.2.2 Boolean variables in MATLAB ... 13

2.2.3 String of characters .. 14

2.2.4 The Arrays ... 15

2.2.5 Matrix in MATLAB ... 20

 Chapter 3 The Graphics

3.1 Management of graphic windows... 28

3.2 2D graphical representation .. 28

3.2.1 Improve the readability of a figure .. 30

3.2.2 The diagrams in Matlab ... 33

3.2.3 3D Plots .. 35

Chapter 4 Programming in MATLAB

4.1 Arithmetic, logical operators and special characters .. 38

4.2 The M-files ... 39

4.3 Scripts and functions .. 40

4.3.1 Scripts: ... 40

4.3.2 Functions: ... 41

4.4 Control instructions .. 41

Chapter 5 Getting started with SIMULINK

5.1 The libraries of SIMULINK ... 50

5.2 Fast Getting started ... 53

5.3 ExemplesOf Simulation With Simulink ... 57

Chapter 6 Power System Blockset

6.1 Presentation of the Power System Blockset simulink .. 63

6.1.1 Applications libraries ... 64

6.1.2 Electrical sources library .. 65

6.1.3 Element library ... 66

6.1.4 Extra Library .. 67

6.1.5 The Power GUI block .. 69

6.1.6 Exemple boost converter .. 70

Chapter 7 Simulation and Co-simulation with Other software

7.1 Simulation using PSim and co-simulation Simulink-PSim .. 78

7.1.1 Exemple of simulation with PSIM ... 82

7.1.2 Co-Simulation with Matlab/Simulink .. 87

7.2 Simulation with other software... 94

7.2.1 Proteus .. 94

7.2.2 PSpice .. 102

7.2.3 Scilab .. 103

Chapter 1

Getting started with MATLAB

 Getting started with MATLAB

1

1. Généralités sur les capteurs

1.1 Introduction

Created by MathWorks, MATLAB is an interactive system for scientific programming,

for numerical computation and graphic visualization, based on the matrix representation of

data, whose name is derived from Matrix Laboratory. It is a multi-platform tool that is

available for Windows environments, Unix (and other).

MATLAB provides a slew of built-in commands and mathematical functions to help with

mathematical modeling and data analysis. Its diverse applications include machine learning,

signal and image processing, computer vision, and communications, as well as computational

finance, control design, and robotics.

Users of MATLAB can create graphical user interfaces using its own functions in

addition to these. Simulink, a tool for model-based design and simulation of systems spanning

several dynamic and embedded domains, is also included.

1.2 MATLAB Environment

When you start MATLAB, the desktop environment is displayed with a default interface

layout.

Figure 1-1 MATLAB Environment version 2018

The desktop environment provides the following panels:

The menu groups together basic Matlab commands such as save, display, etc

Menu

Current folder Command window
Workspace

 Getting started with MATLAB

2

Current Folder – Access your files.

Command Window – Enter command line commands, indicated by the prompt (>>).

Workspace – Explore data you create or import from files.

1.3 Presentation and generalities

1.3.1 Getting Help

The Matlab help is well adapted to self-learning due to the various functions and methods

available (particularly thanks to its toolboxes). Typing 'help' displays all of Matlab's contents,

i.e. the families of functions it includes. Typing 'help family' reveals all of the functions in the

selected family, whereas 'help function' displays the function's definition, options, and syntax.

The command 'help' lists all primary help topics in the Command Window. The format 'help

name' displays the help text for the functionality specified by name, such as a function,

method, class, or variable.

Figure 1-2 Help window

 Getting started with MATLAB

3

1.3.2 First interaction with MATLAB

To start Matlab, double-click on the Matlab icon. A window opens in which you then receive

the "prompt" >>. Every command given to Matlab is interpreted, the result is displayed, and

the user receives the prompt >> again for the next command: this is interactive mode.

You can execute commands here. Try typing disp ('Hello, World!') and press Enter. This

command will display the text "Hello, World!" in the Command Window.

A line of instructions in Matlab is often constructed as follows:

>> [output_variables] = function_name(input_variables);

Here is a breakdown:

1. output_variables: These are the variables where you will store the output from the

function. If the function outputs more than one value, the output variables should be

enclosed in square brackets.

For example: [output1, output2] = function_name(input_variables);. If the function

only outputs one value, you don't need the square brackets. For example: output =

function_name(input_variables);.

2. function_name: This is the name of the function you want to call. Matlab has a vast

library of built-in functions, but you can also create your own custom functions.

3. input_variables: These are the variables that you pass into the function as input.

Depending on the function, you may need to pass one or more inputs, and they should

be separated by commas. For example: output = function_name(input1, input2);.

4. ; (semicolon): At the end of the line, you use a semicolon. The semicolon suppresses

the output from being displayed in the command window. If you want to see the

output, you can omit the semicolon.

To calculate a mathematical expression, simply write it as follows:

>> 5 + 2

ans=

 7

To create a variable, use the simple structure: 'variable = definition', without worrying about

the type of the variable.

Here is an example of simple arithmetic operations in Matlab with variable :

>> a = 5;

>>b = 10;

>>c = a + b; % This will add a and b and store the result in c.

 Getting started with MATLAB

4

 The same example without ; (semicolon):

>> a = 5

a=

 5

>>b = 10

a=

 10

>>c = a + b % This will add a and b and store the result in c.

c =

 15

In defining variable names in Matlab, only alphanumeric characters and the underscore

symbol '_' should be used, and the name must start with a letter. It's important to note that

Matlab is case-sensitive, meaning it treats 'A' in uppercase and 'a' in lowercase letters as

separate identifiers.

1.3.3 The main opérations, constants, functions, and commands:

Opérations

here are some basic operations you can perform in MATLAB:

1. Arithmetic Operations:

 Addition: a + b

 Subtraction: a - b

 Multiplication: a * b

 Division: a / b

 Exponentiation: a^b

 Modulus: mod(a, b)

2. Matrix Operations:

 Transpose: A'

 Matrix multiplication: A * B

 Element-wise multiplication: A .* B

 Inverse: inv(A)

 Determinant: det(A)

3. Relational Operations:

 Equality: a == b

 Inequality: a ~= b

 Getting started with MATLAB

5

 Less than: a < b

 Greater than: a > b

 Less than or equal to: a <= b

 Greater than or equal to: a >= b

4. Logical Operations:

 AND: a & b

 OR: a | b

 NOT: ~a

5. Trigonometric Operations:

 Sine: sin(a)

 Cosine: cos(a)

 Tangent: tan(a)

Remember, MATLAB uses a vectorized system, so many operations can be performed on

arrays or matrices directly.

Constants

Some of the most common constants or special values that you might use in MATLAB are:

 pi: The mathematical constant (pi) that represents the circumference to diameter ratio

of a circle. You may simply type pi in MATLAB.

 Inf: This stands for positive infinity. You can make it in MATLAB using Inf.

 -Inf: This stands for negative infinity. You can make it in MATLAB by using the -Inf

command.

 NaN: This stands for 'Not a Number' and is used to represent undefined or

unrepresentable values such as the result of 0/0. You may make it in MATLAB using

NaN.

 i or j: The imaginary unit is represented by both i and j. In MATLAB, you can

generate imaginary numbers such as 1 + 2i or 1 + 2j.

 eps: This is the smallest difference between two distinct real numbers that the

computer can represent. In MATLAB, you can get this value with eps.

 realmax: This is the largest positive floating-point number that the computer can

represent. In MATLAB, you can get this value with realmax.

 realmin: This is the smallest positive floating-point number that the computer can

represent. In MATLAB, you can get this value with realmin.

 Getting started with MATLAB

6

Functions

While working in MATLAB, you issue commands that create variables and call functions.

For an introduction, see Enter Statements in Command Window.

 sin, cos, tan - Trigonometric functions.

 asin, acos, atan - Inverse trigonometric functions.

 exp - Exponential function.

 log, log10, log2 - Logarithmic functions.

 sqrt - Square root function.

 abs - Absolute value function.

 round, ceil, floor - Rounding functions.

 max, min - Functions to find maximum and minimum values.

 sum, prod - Functions for summation and product.

 mean, median, std, var - Statistical functions.

Commands

Some of the most common commands that you might use in MATLAB are:

ans
Most recent answer

clc
Clear Command Window

clear clear - Removes variables from memory.

diary
Log Command Window text to file

format
Set output display format

whos Lists current variables.

home
Send cursor home

load/save Loads/saves workspace variables from/to .mat files.

iskeyword
Determine whether input is MATLAB keyword

more
Control paged output in Command Window

commandwindow
Select the Command Window

commandhistory
Open Command History window

Objects

DisplayFormatOptions
Output display format in Command Window

https://ch.mathworks.com/help/matlab/ref/ans.html
https://ch.mathworks.com/help/matlab/ref/clc.html
https://ch.mathworks.com/help/matlab/ref/diary.html
https://ch.mathworks.com/help/matlab/ref/format.html
https://ch.mathworks.com/help/matlab/ref/home.html
https://ch.mathworks.com/help/matlab/ref/iskeyword.html
https://ch.mathworks.com/help/matlab/ref/more.html
https://ch.mathworks.com/help/matlab/ref/commandwindow.html
https://ch.mathworks.com/help/matlab/ref/commandhistory.html
https://ch.mathworks.com/help/matlab/ref/matlab.display.displayformatoptions.html

 Getting started with MATLAB

7

These are just some of the basic and common constants, functions, and commands in

MATLAB. There are many more that serve different purposes depending on the specific

needs of your computation tasks.

1.3.4 Example

Here are some sample examples relating to the previously defined elementary functions.

a = 2;

b = 3;

c = a^b; % This will raise a to the power b and store the result in c.

a =

 2

b =

 3

c =

 8

a = pi/4

val_sin = sin(a) % Sine of a

val_cos = cos(a) % Cosine of a

val_tan = tan(a) % Tangent of a

a =

 0.7854

val_sin =

 0.7071

val_cos =

 0.7071

val_tan =

 1.0000

a = 2;

val_exp = exp(a) % e raised to the power a

val_log = log(a) % Natural Logarithm (base e) of a

 Getting started with MATLAB

8

val_log10 = log10(a) % Logarithm (base 10) of a

val_exp =

 7.3891

val_log =

 0.6931

val_log10 =

 0.3010

To calculate y = e
−a

 cos(x) + 4√y, for a = 2, x = 4, and y = 6, we enter the following

commands in MATLAB,

>> a = 2; x = 4; y = 6;

>> y = exp(-a)*cos(x)+4*sqrt(y)

y =

 9.7095

9

Chapter 2

Data Types and Variables

 Data Types and Variables

10

Similar to all programming languages, MATLAB provides the functionality to define variable

data. A variable is indicated by an identifier composed of a blend of letters and numbers. In

MATLAB, there is no need to declare the type or size of a variable. The type and size are

automatically discerned based on the mathematical expression or the value allocated to the

variable.

2.1 Data types

In MATLAB, variables can hold diverse types of data, and they are dynamically typed, which

implies that there's no requirement to predefine their type or dimension. Here are several

standard types of data that can be managed in MATLAB:

Figure 0-1 MATLAB Data types

 Numeric Types: Numeric data is the most frequently encountered data type in

MATLAB. By default, MATLAB stores all numeric values as double-precision

floating-point numbers. The primary numeric types, double and single, are used to

store double-precision and single-precision numbers, respectively.

 Integer Types: MATLAB allows for data storage as integers of various sizes.

These types include int8, int16, int32, int64 for signed integers, and uint8,

uint16, uint32, uint64 for unsigned (non-negative) integers.

Matlab data
type

Table &
Timetable

Structures
Numeric
Arrays

 integers

floating

String
Arrays &

Character
Arrays

Functions Logic arrays

 Data Types and Variables

11

 Logical Type: The logical data type is used for storing boolean values, which can

either be true (1) or false (0).

 Character and String Types: Character arrays or char are sequences of

characters, and string arrays are a newer addition to MATLAB (introduced in

R2016b) specifically tailored to handle text.

 Cell Arrays: These are arrays where each element can hold any type of data. Cell

arrays can be created using the cell function or by using curly braces {}.

 Structures: Structures are unique data types that bundle related data of varying

types and sizes using containers known as fields. Structures can be created using

the struct function.

 Tables: Table data types hold heterogeneous data in a tabular format, where each

column can represent a different data type.

 Functions: Function handles are a type of variable that can be passed to other

functions. These handles can reference both built-in and user-defined functions.

2.2 Variables types

2.2.1 Complex numbers in Matlab

In MATLAB, complex numbers are numbers with a real and an imaginary part. They are

represented as "a + bi", where "a" is the real part and "b" is the imaginary part. a + bi and

rexp(it) or rexp(it) with a, b, r, and t as real type variables are other forms to represent

complex numbers in Matlab. In this context, it means that the complex number can be

represented in either Cartesian form as "a + bi" or in Polar form as "rexp(it)", where "a", "b",

"r", and "t" are variables of real number type.

Matlab contains several predefined functions for manipulating complex numbers.

We can write:

z = 4+i*8

z = 4+8i

z =4*exp(i*8)

z =

 4.0000 + 8.0000i

z =

 4.0000 + 8.0000i

 Data Types and Variables

12

z =

 -0.5820 + 3.9574i

Or

a = 3; % real part

b = 4; % imaginary part

z = complex(a, b) % Cartesian form

z =

 3.0000 + 4.0000i

The abs() function gives the magnitude (or modulus) of the complex number, and the angle()

function provides the phase (or argument). The phase is in radians. For example:

m = abs(z); % returns the magnitude of z

p = angle(z); % returns the phase of z

To convert Cartesian form (a + bi) to Polar form (rexp(it)):

a = 3; % real part

b = 4; % imaginary part

z = complex(a, b) % Cartesian form

r = abs(z); % magnitude

t = angle(z); % angle in radians

z_polar = r * exp(1i * t) % Polar form

z =

 3.0000 + 4.0000i

z_polar =

 3.0000 + 4.0000i

MATLAB additionally contains multiple commands for dealing with complex numbers like :

abs Returns the magnitude of z.

angle Returns the phase angle of z in the interval [-π, π] in

radians.

complex Create complex array

conj Returns the complex conjugate of z.

cplxpair Sort complex numbers into complex conjugate pairs

i Imaginary unit

https://ch.mathworks.com/help/matlab/ref/abs.html
https://ch.mathworks.com/help/matlab/ref/angle.html
https://ch.mathworks.com/help/matlab/ref/complex.html
https://ch.mathworks.com/help/matlab/ref/conj.html
https://ch.mathworks.com/help/matlab/ref/cplxpair.html
https://ch.mathworks.com/help/matlab/ref/i.html

 Data Types and Variables

13

imag Extracts the imaginary part of the complex number z.

isreal Returns 1 (true) if z has no imaginary part, and 0 (false)

otherwise.

j Imaginary unit

real Extracts the real part of the complex number z.

sign Sign function (signum function)

unwrap Unwraps radian phases by changing absolute jumps greater

than π to their 2π complement.

2.2.2 Boolean variables in MATLAB

In MATLAB Boolean data is represented by the logical data type . This data type uses the

numbers 1 and 0, accordingly, to represent the true and false states. Some MATLAB

operations and functions return logical values to signify the occurrence of a condition. These

logical values can be used as indexes for arrays or to run conditional code.

Here an exemple of Boolean function in matlab

a = true

b = false

f = a && b % Logical AND

g = a || b % Logical OR

h = ~a % Logical NOT
a =

 logical

 1

b =

 logical

 0

f =

 logical

 0
g =

 logical

 1

h = 0

https://ch.mathworks.com/help/matlab/ref/imag.html
https://ch.mathworks.com/help/matlab/ref/isreal.html
https://ch.mathworks.com/help/matlab/ref/j.html
https://ch.mathworks.com/help/matlab/ref/real.html
https://ch.mathworks.com/help/matlab/ref/sign.html
https://ch.mathworks.com/help/matlab/ref/unwrap.html
matlab:helpPopup%20logical
matlab:helpPopup%20logical
matlab:helpPopup%20logical
matlab:helpPopup%20logical

 Data Types and Variables

14

the most used commands for dealing with boolean numbers are :

& Find logical AND

Short-Circuit && Logical AND with short-circuiting

~ Find logical NOT

| Find logical OR

Short-Circuit || Logical OR with short-circuiting

xor Find logical exclusive-OR

all Determine if all array elements are nonzero

or true

any Determine if any array elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero elements

islogical Determine if input is logical array

logical Convert numeric values to logicals

true Logical 1 (true)

2.2.3 String of characters

A string of characters is an array of characters .If you want to enter a string of characters, you

need to type it in quotes

>>S = "Your string here";

Here is an example:

>>S = "Hello, Welcom";

In this case, S is a string containing the text "Hello, Welcom".

A variable of string type being interpreted as an array of characters, it is possible to

manipulate each letter of the string by referring to its position in the string

>>S1='nice'

S2='day'

S = [S1,S2]

S(1), S(4), S(1:5)

S1 =

https://ch.mathworks.com/help/matlab/ref/and.html
https://ch.mathworks.com/help/matlab/ref/shortcircuitand.html
https://ch.mathworks.com/help/matlab/ref/not.html
https://ch.mathworks.com/help/matlab/ref/or.html
https://ch.mathworks.com/help/matlab/ref/shortcircuitor.html
https://ch.mathworks.com/help/matlab/ref/xor.html
https://ch.mathworks.com/help/matlab/ref/all.html
https://ch.mathworks.com/help/matlab/ref/any.html
https://ch.mathworks.com/help/matlab/ref/false.html
https://ch.mathworks.com/help/matlab/ref/find.html
https://ch.mathworks.com/help/matlab/ref/islogical.html
https://ch.mathworks.com/help/matlab/ref/logical.html
https://ch.mathworks.com/help/matlab/ref/true.html

 Data Types and Variables

15

 'nice'

S2 =

 'day'
S =

 'niceday'

ans =

 'n'
ans =

 'e'

ans =

 'niced'

If a string needs to include an apostrophe character ('), this character has to be duplicated

within the string (for instance, to assign an apostrophe character to a variable, we'll need to

write ''''

This statement refers to the common programming practice of escaping certain characters

(like the apostrophe) that have special meanings in code. By doubling the apostrophe, the

Matlab understands that you want to include an actual apostrophe in the string, and not use it

to indicate the end of the string.

>>s = 'It's a nice day today'

 s = 'It's a nice day today'
 ↑
Invalid expression. Check for missing multiplication operator, missing or
unbalanced delimiters, or other syntax error. To construct
matrices, use brackets instead of parentheses.

>> S = 'It''s a nice day today'

s =
 'It's a nice day today'

To create a string with an apostrophe, you can use double quotes:

>>S = "It's a nice day today."; % This creates a string

2.2.4 The Arrays

An array is a fundamental data structure, which can store a fixed-size collection of elements

of the same data type. If the elements are arranged horizontally, we say that the vector is a

row array. On the other hand, if the elements are arranged vertically, we say it's a column

array

 Data Types and Variables

16

One can generate an array in MATLAB by surrounding a set of elements in square brackets

[]. Following are a few illustrations of arrays of various types:

Row Vector (1D array) A row vector represents a one-dimensional array with horizontally

aligned entries. Commas or spaces are utilized to differentiate between elements.

>>RV = [1 2 3 4 5]; % This function generates a row vector with entries. 1, 2, 3, 4, and 5

RV =

 1 2 3 4 5
Or

>>RV = [1, 2, 3, 4, 5]

Column Vector (1D array): A column vector is a one-dimensional array with vertically

organized items. The semicolon characters are used to differentiate between items.

>>CV= [1; 2; 3; 4; 5]; % This function generates a coumn vector with entries 1, 2, 3, 4, and 5

CV =

 1
 2
 3
 4
 5

Or

CV= [1

 2

 3

 4

 5]

We can transpose the row array to a column array by

RV = [1, 2, 3, 4, 5]'

RV =

 1
 2
 3
 4
 5

To create a vector with consecutive numbers, you can use the colon (:) operator. The syntax is

first element : last element .

 Data Types and Variables

17

>>A=[1:10]

A =

 1 2 3 4 5 6 7 8 9 10

One can create an array with a defined step using the colon (:) operator. The standard syntax

is first element : step : last element .

>>A=[1:2:10]

A =

 1 3 5 7 9

>>A=[1:0.5:10]

A =

 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000
5.0000 5.5000 6.0000 6.5000 7.0000 7.5000 8.0000 8.5000
9.0000 9.5000 10.0000

To access elements of an array we can use indexing. The index of the first element of an array

in MATLAB is 1.

Array name (position) for this instruction we use the parenthesis () because the square

brackets used only for array creation.

>>A = [5, 8, 3, 9, 5] % Array

 A(1) % Accesses the first element of the array, 1

 A(3) % Accesses the third element of the array, 3

A =

 5 8 3 9 5

ans =

 5

ans =

 3

>>A(3:5) % from the tird element of the fifth elemnt of the array

 Data Types and Variables

18

ans =

 3 9 5

>> A(2:end)% from the second element of the last elemnt of the array

ans =

 8 3 9 5

>>A([2,4,1]) % only the second and the forth and the first elemnt

ans =

 8 9 5

>>A(2)=0 % Give the element 2 the number 0

A =

 5 0 3 9 5

>>A(6)=17 % add an element 6 and give it the number 17

A =

 5 0 3 9 5 17

>>A(6)=[] % delete the element number 6

A =

 5 0 3 9 5

>>A(3:5)=[] % delete element number 2 to number 5

A =

 5 0

There are various operations that can be performed on arrays in MATLAB, including:

Arithmetic operations: you can perform multiply, divide, add, and subtract arrays. Be aware

that these actions are carried out element-by-element. Here are a few instances:

>>A = [2 4 6 8]

B = [1 2 3 4]

C = A + B % Addition between A and B

 Data Types and Variables

19

D = A - B % Subtraction between A and B

E = A .* B % Element by element multiplication between A and B
F = A ./ B % Element by element division between A and B

A =

 2 4 6 8

B =

 1 2 3 4

C =

 3 6 9 12

D =

 1 2 3 4

E =

 2 8 18 32

F =

 2 2 2 2

To create array with components arranged at regular intervals and with a well-determined

number of elements, a Matlab function called linspace can be used.

The syntax is linspace (fisrt element, last element, n), where fisrt element is the starting value,

last element is the ending value, and n is the number of points to generate between the start

and end.

The linspace(a, b, n) function generates a vector of n elements ranging from a to b

Example: To create a vector with 6 uniformly spaced points between 1 and 12, use the

following formula:

>>A = linspace(1, 12, 6)

A =

 1.0000 3.2000 5.4000 7.6000 9.8000 12.0000

 Data Types and Variables

20

When n is not specified, the value 100 is assumed. As a result, linspace(1, 10) produces an

array of 100 linearly separated points that ranges from 1 to 10.

The logspace(a, b, n) function generates an array of n elements ranging from 10
^a

 to 10
^b

>>logspace(0, 4, 6)

ans =

 1.0e+04 *

 0.0001 0.0006 0.0040 0.0251 0.1585 1.0000

2.2.5 Matrix in MATLAB

In MATLAB, a matrix is a two-dimensional numeric array containing an assortment of

numbers organized as rows and columns. There are several ways to construct a matrix with

Matlab .

The first way is to use square brackets []. Here is an example of how to create a 3x3 matrix:

>>A = [1 2 3; 4 5 6;7 8 9] % This creates a 3x3 matrix

A =

 1 2 3
 4 5 6
 7 8 9

The second, and perhaps the simplest, is to declare the matrix as

>>A=[1 2 3

4 5 6

7 8 9]

A =

 1 2 3
 4 5 6
 7 8 9

The third is to declare the matrix as

>>A = [1 ,2, 3; 4, 5, 6;7, 8, 9] % This creates a 3x3 matrix

A =

 1 2 3
 4 5 6
 7 8 9

 Data Types and Variables

21

The number of elements in each row (number of columns) must be the same in all rows of the

matrix, otherwise an error will be signaled by MATLAB

An element of a matrix is referenced by its row and column numbers. A(i,j) denotes the i-th

element of the j-th row of the matrix A. Thus, A(3 ,2) refers to the first element of the second

row of A.

>>A(3,2)

ans =

 8

A matrix can be generated from vectors as shown in the following examples:

>>B=1:0.5:2.5

C=1:4

D=[2 4 6 8]

A=[D;C;B]

B =

 1.0000 1.5000 2.0000 2.5000

C =

 1 2 3 4

D =

 2 4 6 8

A =

 2.0000 4.0000 6.0000 8.0000
 1.0000 2.0000 3.0000 4.0000
 1.0000 1.5000 2.0000 2.5000

some examples of how to extract a sub-matrix in MATLAB

Example

No.

Original Matrix A Command to Extract Sub-

matrix

results

1 A = [1 2 3; 4 5 6; 7 8 9]; B= A(1:2, 1:2); B = [1 2; 4 5];

2 A = [1 2 3 4; 5 6 7 8; 9 10 11 12]; B = A(1:2, 3:4); B = [3 4; 7 8];

3 A = [1 2 3; 4 5 6; 7 8 9]; B = A(3, 1:2); B = [7 8];

4 A = [1 2 3 4 5; 6 7 8 9 10; 11 12

13 14 15];

B= A(:, 4:5); B = [4 5; 9 10; 14

15];

 Data Types and Variables

22

5 A = [1 2 3; 4 5 6; 7 8 9]; B = A(2,:); B [4 5 6]

The special character (') is used to denote the transpose of a matrix. The command B= A'

produces the transpose matrix.

>>B=A'

B =

 2.0000 1.0000 1.0000
 4.0000 2.0000 1.5000
 6.0000 3.0000 2.0000
 8.0000 4.0000 2.5000

2.2.5.1 Arithmetic operations

Addition +, subtraction -, multiplication *, powers ^ are used with the usual matrix syntax

Example

No.

Matrix A Matrix B Operation Command in

MATLAB

Result

1 A = [1 2; 3 4]; B = [5 6; 7

8];

Addition C = A + B; C = [6 8; 10 12];

2 A = [1 2; 3 4]; B = [5 6; 7

8];

Subtraction C = A - B; C = [-4 -4; -4 -

4];

3 A = [1 2; 3 4]; B = [5 6; 7

8];

Multiplication C = A * B; C = [19 22; 43

50];

4 A = [2 3; 4 5]; Power C = A^2; C = [16 21; 28

37];

2.2.5.2 tomatic generation of matrices in MATLAB,

Here are some examples of the most common instructions for automatic generation of

matrices in MATLAB

No. Command Description Example Result

1 zeros(n, m) Generates an n-by-m matrix filled

with zeros.

A = zeros(2, 3); A = [0 0 0; 0 0 0];

 Data Types and Variables

23

2 ones(n, m) Generates an n-by-m matrix filled

with ones.

A = ones(3, 2); A = [1 1; 1 1; 1 1];

3 eye(n) Generates an n-by-n identity

matrix.

A = eye(3); A = [1 0 0; 0 1 0; 0

0 1];

4 rand(n, m) Generates an n-by-m matrix with

random numbers between 0 and 1.

A = rand(2, 2); A = [0.8147 0.9134;

0.9058 0.6324];*

5 linspace(a,

b, n)

Generates a row vector with n

linearly spaced elements between

a and b.

v = linspace(1, 10,

10);

v = [1 2 3 4 5 6 7 8

9 10];

6 diag(v) Creates a square diagonal matrix

from the vector v.

A = diag([1 2 3]); A = [1 0 0; 0 2 0; 0

0 3];

7 reshape(A,

m, n)

Reshapes the matrix A into an m-

by-n matrix, maintaining the

elements.

B = reshape([1 2 3

4 5 6], 2, 3);

B = [1 3 5; 2 4 6];

2.2.5.3 Handling matrices in MATLAB

The most commonly used instructions for handling matrices in MATLAB are

Example

No.

Command Description

1 size(A) Returns the size of matrix A.

2 length(A) Returns the length of matrix A (the largest

dimension).

3 A' or transpose(A) Transposes matrix A.

4 A(i, j) Accesses the element at the i-th row and j-th

column of matrix A.

5 A(i, :) or A(:, j) Accesses the i-th row or j-th column of matrix A.

6 A(i:j, k:l) Extracts a sub-matrix from A starting from the i-th

row and k-th column to the j-th row and l-th

column.

7 det(A) Computes the determinant of matrix A.

8 inv(A) Computes the inverse of matrix A.

9 eig(A) Computes the eigenvalues of matrix A.

 Data Types and Variables

24

10 rank(A) Computes the rank of matrix A.

Here some example

 >>A = [1 2 3; 4 5 6; 7 8 9]

size(A)

A =

 1 2 3
 4 5 6
 7 8 9

ans =

 3 3

>>length(A)

ans =

 3

>>A'

ans =

 1 4 7
 2 5 8
 3 6 9

>>det(A)

ans =

 6.6613e-16

>>inv(A)

ans =

 1.0e+16 *

 -0.4504 0.9007 -0.4504
 0.9007 -1.8014 0.9007
 -0.4504 0.9007 -0.4504

>>eig(A)

ans =

 16.1168
 -1.1168
 -0.0000

 Data Types and Variables

25

>>rank(A)

ans =

 2

Exemple 2

Determinant, Inverse, and Rank of a 4x4 Matrix:

M = [3 , 5, 10, 12;

 4, 6, 7, 5;

 1, 2, 8, 1;

 2, 8, 3, 9];

% Compute the determinant of matrix M

determinant = det(M);

% Check if the matrix is invertible

if determinant ~= 0

 inverseofM = inv(M);

else

 inverseofM = 'Matrix is singular and cannot be inverted.';

end

% Compute the rank of matrix M

rank = rank(M);

% Display the results

disp(['Determinant of matrix M: ', num2str(determinant)]);

disp('Inverse of matrix M:');

disp(inverseofM);

disp(['Rank of matrix M: ', num2str(rank)]);

Determinant of matrix M: 1044

Inverse of matrix M:

 0.0517 0.4320 -0.3410 -0.2711

 -0.1552 -0.0182 0.1341 0.2021

 0.0172 -0.0412 0.1456 -0.0163

 0.1207 -0.0661 -0.0920 -0.0029

Rank of matrix M: 4

 Data Types and Variables

26

The values of the coefficients of polynomials appear as arrays. In descending powers, the

values of the coefficients are listed .

The polyval command allows evaluating the polynomial p (the polynomial function) at given

points. The syntax is polyval(p,x) where x is a numeric value or a array. In the second case,

you get a array containing the values of the polynomial function at the different points

specified in the x array.

Here are some common operations and functions in MATLAB for dealing with polynomials:

Defining a Polynomial: As mentioned, you can define a polynomial by creating a vector of

its coefficients.

P = [4 3 2]; % Represents the polynomial 4x^2 + 3x + 2

P =

 4 3 2

You can evaluate a polynomial at specific points using the polyval function.

>>x = 2;

c= polyval(P, x) % Evaluates the polynomial at x = 2

c =

 24

The roots function can be used to find the roots of a polynomial.

>>r = roots(P) % Finds the roots of the polynomial

r =

 -0.3750 + 0.5995i
 -0.3750 - 0.5995i

 The graphics

27

Chapter 3

The Graphics

 The graphics

28

Graphics in MATLAB are a crucial component of the software since they allow you to

visually comprehend data. Your results can be shown in the form of static or animated 2D or

3D graphs. These visualizations can be used to analyze data as well as convey your findings

to others.
3.1 Management of graphic windows

Creating, arranging, and customizing figure windows are frequently involved in managing

visual windows in MATLAB. Here are a few typical commands and actions for controlling

graphic windows:

Creating New Figures: The figure function is used to create a new figure window.

Figure

Numbering Figures: You can also number your figures, which is useful when creating

multiple figure windows.

figure(1)

figure(2)

Closing Figures: You can close a specific figure using the close command with the figure

number, or close all figures using close all.

close(1) % Closes figure 1

close all % Closes all figures

Setting the Figure Size and Position: You can specify the size and position of the figure

window using the set command and the 'Position' property.

set(gcf, 'Position', [x y width height])

Saving Figures: Figures can be saved for later use or for inclusion in publications using the

saveas function.

saveas(gcf,'filename.png')

Where gcf (get current figure) returns the current figure handle

3.2 2D graphical representation

The most basic function for creating a graph in MATLAB is the plot function, which

generates a 2D line plot . You can draw a series of points using the coordinates (xi, yi), where

i=1,..., N using the plot command.

The syntax is plot(x,y) where x is the vector containing the xi values on the x-axis and y is the

vector containing the yi values on the y-axis.

Here is example of draw with plot function

 The graphics

29

>> x = 0:0.01:2*pi;

y = sin(x);

plot(x,y)

Figure 0-1 plot of exemple 1

The second exmaple here we have only a single array as an argument: it considers the values

of the array as the elements of the Y-axis (ordinates), and their relative positions will define

the X-axis (abscissae).

>>A=[1 3 5 8 4 2 10 7 1]

plot(A)
A =

 1 3 5 8 4 2 10 7 1

Figure 0-2 plot of exemple 2

The third exmaple here we have only a matrix as an argument. Since A contains three

columns, plot(A) in this example generates three distinct line plots. A column in the matrix

 The graphics

30

corresponds to each line plot. The y-axis displays the values of the components in each

column, while the x-axis displays the index of each row in the matrix.
>>A=[2 4 6;8 9 11;3 6 8]

plot(A)

A =

 2 4 6
 8 9 11
 3 6 8

Figure 0-3 plot of exemple 3

3.2.1 Improve the readability of a figure

Improving the visibility of a figure in MATLAB entails applying a number of elements that

aid in the understanding of the figure. Colors, line styles, labels, titles, legends, and axis scales

may all need to be tweaked.

For this, a new argument is added (which we can call a feature) of string type to the plot

function like this:

plot(x, y, ' feature')

Here is a table summarizing some common functions used to improve the readability of a

figure in MATLAB:

Function Description Example Usage Example Effect

xlabel('...') Labels the x-axis xlabel('Time (s)') Labels the x-axis as

"Time (s)"

ylabel('...') Labels the y-axis ylabel('Voltage (V)') Labels the y-axis as

"Voltage (V)"

title('...') Adds a title to the plot title('Time vs Voltage') Adds the title "Time vs

Voltage" to the plot

legend('...','...') Adds a legend to the

plot

legend('Experiment','Model') Adds a legend with

"Experiment" and

 The graphics

31

"Model"

grid on Turns on the grid lines grid on Turns the grid lines on

the plot

xlim([xmin

xmax])

Sets the limits of the

x-axis

xlim([0 10]) Sets the x-axis limits

from 0 to 10

ylim([ymin

ymax])

Sets the limits of the

y-axis

ylim([-1 1]) Sets the y-axis limits

from -1 to 1

plot(...,

'LineStyle')

Changes the line style plot(x, y, '--') Plots y vs x with a

dashed line

plot(..., 'Color') Changes the line color plot(x, y, 'r') Plots y vs x with a red

line

plot(...,

'Marker')

Adds markers to the

line

plot(x, y, 'o') Plots y vs x with circle

markers at each data

point

subplot(m,n,p) Creates a grid of m by

n subplots and makes

the p-th subplot active

subplot(2,1,1) Divides the figure

window into 2 subplots

and makes the first

subplot active

figure Creates a new figure

window

figure Opens a new figure

window

Exemple :

Here is an example of how to plot a figure with a specific color using MATLAB. Let's plot a

sine wave with a red line color:

>>x = linspace(0,2*pi,100); % Create an array of x values from 0 to 2pi

y = sin(x); % Compute the corresponding y values

plot(x, y, 'r') % Plot y vs x with a red line

Figure 0-4 plot a figure with a specific color

 The graphics

32

In the plot function, the 'r' specifies the color of the line. For other color options include 'b' for

blue, 'g' for green, 'k' for black, 'm' for magenta, 'c' for cyan, 'y' for yellow, and 'w' for white.

It is preferable to provide a textual description in a figure to help the user comprehend the

meaning of the axes and the aim or interest of the concerned visualization.

- To give a title to a figure containing a curve, we use the title function like this:

title('Figure title ');

- To give a labels the x-axis, we use the xlabel function like this

xlabel('...')

- To give a labels the y-axis, we use the ylabel function like this

ylabel('...')

- to toggle the visibility of grid lines in your plot, we can use the grid function

grid on

- To make the line of the graph bolder in MATLAB, you can adjust the 'LineWidth'

property of the plot

% Generate an array of 100 values evenly spaced from 0 to 2pi

x = linspace(0, 2*pi, 100);

% Calculate the sine of each value in x

y = sin(x);

% Plot y vs x

figure; % create a new figure

plot(x, y, 'LineWidth', 3);

grid on

% Label the plot

title('Sine Wave');

xlabel('x');

ylabel('sin(x)');

 The graphics

33

Figure 3-6 Anotate figure in matlab

3.2.2 The diagrams in Matlab

The MATLAB language does not only allow the display of points for plotting curves, but it

also offers the possibility to draw bar graphs and histograms

Here's a general overview of creating bar graphs and histograms in MATLAB:

Bar Graphs:

MATLAB’s bar() function allows you to create bar graphs. It can be used for both simple and

grouped data.

% Simple bar graph

data = [5 15 25 35];

bar(data);

title('Simple Bar Graph');

xlabel('Categories');

ylabel('Values');

Figure 3-7 simple bar graph in matlab.

 The graphics

34

% Grouped bar graph

data = [5 10 40; 2 20 60; 12 24 36];

bar(data);

title('Grouped Bar Graph');

xlabel('Categories');

ylabel('Values');

legend('section 1', 'section 2', 'section 3');

Figure 3-8 simple bar graph in matlab.

Histograms:

Histograms are used to represent frequency distributions. MATLAB’s histogram() function

makes it easy to generate histograms.

 data = randn(1, 2000); % Random data from a standard normal distribution

histogram(data, 60); % 60 bins

title('Histogram');

xlabel('Data Values');

ylabel('Frequency');

 The graphics

35

Figure 3-9 simple bar graph in matlab.

3.2.3 3D Plots

Three-dimensional plots typically display a surface defined by a function in two

variables, z=f(x,y)

Surface plots, mesh plots, and contour plots can be created for 3D data visualization.

[X,Y] = meshgrid(-5:0.25:5);

Z = X.^2 + Y.^2;

surf(X,Y,Z); % for surface plot

Figure 3-19 3D plot in matlab.

 The graphics

36

Exemple :

Create a 3D plot for the function √

[x, y] = meshgrid(linspace(-4, 4, 100), linspace(-4, 4, 100)); % Generate x, y data

z = sin(sqrt(x.^2 + y.^2));

figure;

surf(x, y, z); % Create a 3D surface plot

% Add labels, title, and colorbar

xlabel('X-axis');

ylabel('Y-axis');

zlabel('Z-axis');

title('3D Plot of z = sin(sqrt(x^2 + y^2))');

colorbar;

Figure 3-20 3D plot of the exemple.

37

Chapter 4

Programming in MATLAB

 Programming in MATLAB

38

Programming in MATLAB is the process of creating scripts or functions that use the

MATLAB language and resources to tackle a variety of issues. MATLAB (short for "Matrix

Laboratory") is primarily intended for numerical computation, although it is also used for

symbolic computation, data analysis, method creation, and modeling.

4.1 Arithmetic, logical operators and special characters

There are numerous operators and special characters in MATLAB that can be used to

perform arithmetic operations, logical comparisons, and other specific tasks. Here's a quick

rundown:

1. Arithmetic Operators:

 + : Addition

 - : Subtraction

 * : Matrix multiplication

 .* : Element-wise multiplication

 / : Right division (similar to matrix division A/B)

 ./ : Element-wise right division

 \ : Left division (similar to matrix division B\A)

 .\ : Element-wise left division

 ^ : Matrix power

 .^ : Element-wise power

 ' : Complex conjugate transpose (Hermitian transpose)

 .' : Non-conjugate transpose

2. Logical Operators:

 & : Element-wise AND

 | : Element-wise OR

 ~ : NOT

 && : Short-circuit AND (typically used in if statements and loops)

 || : Short-circuit OR (typically used in if statements and loops)

 == : Equal to

 ~= : Not equal to

 < : Less than

 > : Greater than

 <= : Less than or equal to

 Programming in MATLAB

39

 >= : Greater than or equal to

3. Special Characters:

 : : Colon operator (used for creating vectors, array indexing, and loops)

 ; : Semicolon (used to suppress the output or to indicate the end of a row in a

matrix)

 , : Comma (used to separate matrix elements in a row or function arguments)

 () : Parentheses (used for function calls, grouping expressions, and matrix

indexing)

 [] : Square brackets (used for matrix construction and concatenation)

 % : Comment indicator (everything after this character on the same line is

considered a comment)

 ... : Line continuation (used to continue a command on the next line)

 ' : Quote (used for creating character arrays and string transposition)

 . : Decimal point and structure field access, as well as indicating element-wise

operations.

4. Other Special Characters:

 @ : Handle to a function

 {} : Curly braces (used for cell array indexing and creation)

 ! : System command indicator (allows you to run a system command from the

MATLAB command prompt)

 = : Assignment operator

4.2 The M-files

Scripts or functions with the.m extension are known as M-files. They are the main method for

saving, sharing, and running MATLAB applications since they include MATLAB code.

MATLAB employs.m files (also known as "M-files") as both script and function files. A

MATLAB script (.m) is a text file containing a program, which is a series of commands

written in the MATLAB programming language. MATLAB can execute it simply inputting

the file name.

The MATLAB function file (.m) is identical to the script file, with the exception that it

defines a system-level function rather than holding a script.

 Programming in MATLAB

40

MATLAB scripts and functions must be stored in directories that are part of the PATH

variable. Any text editor can be used to generate and edit these.m files.

Creating M-files:

1. Use the MATLAB Editor or any other text editor to create an M-file.

2. Save the file with a .m extension.

Running M-files:

1. Navigate to the directory containing your M-file using MATLAB's Current Folder

browser or the cd command.

2. Type the name of the M-file (without the .m extension) in the Command Window.

4.3 Scripts and functions

You may utilize sets of commands by placing them in code files that contain scripts and

functions. Scripts are the most basic form of code file since they save commands in their exact

form as they would appear on the command line. Functions, on the other hand, are more

adaptable and expandable.

4.3.1 Scripts:

 Definition: A script is a.m extension file that includes a series of MATLAB

instructions. A script runs inside the current workspace when it is executed.

 Usage:

• Scripts are helpful for command sets you want to use frequently.

• They use or alter the variables in the primary workspace and have no predefined inputs or

outputs.

• Usually used to aggregate a collection of MATLAB instructions or for simple jobs.

Exemple

Create a script in a file named exemple1.m that computes the area of a triangle:

b = 7;

h = 9;

a = 0.5*(b.*h)

You can run the script using the command line once saving the file:

exemple1

a =

 31.5000

 Programming in MATLAB

41

4.3.2 Functions:

 Definition: An function is an M-file with the.m extension that begins with the

function expression. Its is capable of accepting arguments for input and output.

 Usage:

• Functions have their own local workspace, independent from the principal

workspace, and are employed for activities that must be repeated with varied

inputs.

 Contains a piece of code to execute a specified purpose, enhancing reusability

and adaptability..

 Execution: A function, similar to a script, is called by writing the function's title,

however you may additionally provide appropriate input arguments and record output

data.

Exemple

Create a Function in a file named area.m that computes the area of a triangle like the last

exemple :

function A = area(c,d)

A = 0.5*(c.*d);

end

Without any changing the script, you may use the command prompt to execute the function

once saving the file with varied c and d values:

Test1= area (1,5)

Test2= area (2,10)

Test3= area (3,6)

Test1 =

 2.5000

Test2 =

 10

Test3 =

 9

4.4 Control instructions

The control structures define the order of execution of the instructions for a Program .This

order can become non-linear. Control structures offer ways to select which blocks of code to

execute based on conditions, repeat blocks of code numerous times, and more, as opposed to

programs running code from top to bottom in a sequential manner

 Programming in MATLAB

42

Matlab has eight flow control structures, namely:

- If, else, else if

- switch

- for

- while

- continue

- break

- try - catch

 if:

The if statement evaluates a logical condition and executes a block of code if the condition is

true.

if condition

% Code to execute if condition is true

End

 else:

The else statement can be used with an if statement to specify a block of code to be executed

if the if condition is false.

if condition

 % Code to execute if condition is true

else

 % Code to execute if condition is false

end

 elseif:

The elseif statement allows you to test multiple conditions in an if statement. If the initial if

condition is false, MATLAB checks the conditions of the elseif statements in order. If one of

these conditions is true, MATLAB executes the corresponding block of code.

if condition1

% Code to execute if condition1 is true

elseif condition2

% Code to execute if condition1 is false but condition2 is true

else

% Code to execute if both condition1 and condition2 are false

End

 Programming in MATLAB

43

Exemple

x = 3;

if x > 5

 disp('x is greater than 5');

elseif x < 5

 disp('x is less than 5');

else

 disp('x is equal to 5');

end

 switch

Syntax:

switch switch_expression

 case case_expression1

 % Code to execute if switch_expression matches case_expression1

 case case_expression2

 % Code to execute if switch_expression matches case_expression2

 ...

 otherwise

 % Code to execute if none of the case expressions match

End

The switch function examines an expression and decides one of multiple groups of statements

to run. Every choice is a case.The switch block evaluates each case statement as long as one

of them is true. A case exists when:

 Case_expression == switch_expression for numbers.

 strcmp(case_expression,switch_expression) == 1 for character vectors.

 Case_expression == switch_expression for objects that support the eq function. The

extended eq function's output should be having a logical value or converted to a

logical value.

 A cell array case_expression has a minimum of one member that satisfies

switch_expression, as specified above for numbers, character vectors, and objects.

 Programming in MATLAB

44

MATLAB runs the necessary statements and exits the switch block when a case expression is

true.

Example

Studentname = 3; % Example value

switch Studentname

 case 1

 disp('Mohamed');

 case 2

 disp('Yacine');

 case 3

 disp('Farouk');

 case 4

 disp('Walid');

 case 5

 disp('Okba');

 case 6

 disp('Messaoud');

 case 7

 disp('Wahid');

 otherwise

 disp('Invalid Studentname. Please enter a number between 1 and 7.');

end

 for:

The for loop is an important control structure in MATLAB that is employed to iterate over a

sequence of numbers or array elements. It enables you to run a block of code a set number of

times.

Syntax:

for variable = start: step : end

 % Code to be executed in each iteration

end

 Programming in MATLAB

45

Exemple

sum = 0;

for i = 2:2:10

 sum = sum + i;

end

sum = 0;

for i = 2:2:10

 sum = sum + i;

end

sum

sum =

 30

Another Exemple

matrix = zeros(7, 7) % create a matrix 7x7

for i = 1:7

 for j = 1:7

 matrix(i, j) = i * j;

 end

end

disp(matrix);

 matrix =

1 2 3 4 5 6 7

 2 4 6 8 10 12 14
 3 6 9 12 15 18 21
 4 8 12 16 20 24 28
 5 10 15 20 25 30 35
 6 12 18 24 30 36 42
 7 14 21 28 35 42 49

 while

In MATLAB, a while loop is a control structure that is used for repetitive operation

determined by a condition. The while loop, opposite the for loop, maintains execution while

as the stated condition stays valid.

Syntax:

 Programming in MATLAB

46

while condition

 % Code to be executed while the condition is true

end

Exemple

value = 1;

while value <= 1000

 value = value * 2;

end

disp(value);

disp(value)
 1024

Another exemple

Doubling value of number

M = 1;

while M <= 50

 disp(M); % Display current number

 M = M* 2; % Double the number

End

M= 1

 2

 4

 8

 16

 32

 continue

The continue statement in MATLAB is used within loop structures (for and while) to skip

the remaining portion of the current iteration and proceed directly to the next iteration of the

loop.

Usage:

The continue statement is usually used in conjunction with a conditional statement (if) to skip

specific iterations based on a condition.

Examples:

 Programming in MATLAB

47

Using continue to skip even numbers and print odd numbers between 1 to 10:

for i = 1:10

 if mod(i, 2) == 0 % Checks if the number is even

 continue; % Skips the rest of the loop for this iteration

 end

 disp(i);

end

 Break

The break statement allows users to quit a loop (for or while) early if particular circumstances

or requirements are met.

Usage:

The break expression is commonly used alongside with an if statement to leave a loop once a

certain condition is fulfilled.

Examples:

Using break to stop a loop once a number greater than 5 is encountered:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9];

for i = 1:length(numbers)

 if numbers(i) > 5

 break; % Exits the loop

 end

 disp(numbers(i));

end

 try - catch

The try-catch technique in MATLAB allows users to elegantly manage failures and

exceptions in your code. Instead of ending the application suddenly when an error occurs, the

try-catch structure allows you to catch the issue and determine how to manage or report it.

The possibly problem-causing code is placed within the try block, and the error handling or

recovery code is placed within the accompanying catch block.

Syntax:

 Programming in MATLAB

48

try

 % Code that might cause an error

catch exception

 % Code to handle the error or display a message

end

Examples:

Assume that you would like to access the fifth element in an array but are unsure whether the

array is long enough.

A = [1, 2, 3, 4]; % Array with 4 elements

try

 value = A(5); % Attempt to access the fifth element

catch

 disp('The fifth element does not exist!');

end

Getting started with SIMULINK

49

Chapter 5

Getting started with SIMULINK

Getting started with SIMULINK

50

Simulink is an interface to graphical programming for modeling, simulating, and evaluating

dynamic systems (such as control systems or signal processing systems). It is included with

MATLAB.

Opening Simulink:

In MATLAB, you can open Simulink by typing simulink in the command window. Or clique

the icon depicted ih the following figure :

 Figure 5-1 Opening Simulink.

5.1 The libraries of SIMULINK

Simulink offers a large number of block libraries which include a range of prebuilt blocks that

you may use to build your models. Each of these building blocks has been created for a

certain set of functions, ranging from simple arithmetic and logical calculations to large

system-level simulations.

Here's an overview of some key libraries in Simulink:

1. Frequently Used Blocks: This section contains commonly used blocks such as Gain,

Scope, Constant, and Mux.

2. Sources: the fundamental blocks that generate signals, such as Sine Wave, Pulse

Generator, Step, and so on.

3. Sinks: Signal display or storage blocks such as Scope, Display, and To Workspace.

Opening Simulink

Getting started with SIMULINK

51

4. Continuous and Discrete: These types of libraries include blocks for modeling both

continuous-time and discrete-time dynamic systems. Integrator, Derivative, and Filter

designs can be found here.

5. Math Operations: This section contains building blocks for basic arithmetic

operations, mathematical functions, and other computational activities.

6. Logical and Bit Operations: This section includes blocks for logical operations such

as AND, OR, and NOT, as well as bitwise operations.

7. Lookup Tables: Used to create functions that map specified input values to specific

output values without the need for computation.

8. Signal Routing: Blocks like Selector, Switch, and Multiport Switch that route signals

based on certain conditions or selections.

9. Model Verification: Blocks that verify, claim, or ensure that certain requirements in

your model are met.

10. Function and Subsystem Blocks: Enables programmers to wrap a model segment

into a separate block or build MATLAB functions.

11. Ports & Subsystems: Contains blocks for defining input and output ports as well as

creating subsystems.

12. Bus Signals: These are blocks that allow you to group many signals together as a bus.

13. Domain-specific libraries: Simulink provides specialized libraries for different uses

or industries. • Simulink Control Design for systems of control, for example.

14. Communications System Toolbox, which allows you to create and simulate

communication systems.

15. Signal Processing Toolbox for processes in signal processing.

Below, we present the library continous

Getting started with SIMULINK

52

 Figure 5-2 the library continous.

These are a few interesting blocks in Simulink's Continuous library:

1. Integrator: This block integrates the input signal over time. In differential equations

or control systems, it is frequently used to indicate the integration action.

2. Derivative : This block computes the derivative of the input signal, as the name

implies.

3. Transfer Fcn: A linear transfer function is represented by this block. The transfer

function's numerator and denominator can be specified.

4. State-Space: A state-space representation of a system. You supply the system's

matrices (A, B, C, D).

5. PID Controller: A device that is used to implement proportional-integral-derivative

control techniques.

6. Gain: A constant factor multiplies the input signal.

7. Saturation: Sets the upper and lower saturation levels for the input signal.

Getting started with SIMULINK

53

5.2 Fast Getting started

Simulink launches a single window called Simulink Start Page, which might be viewed

below.

Figure 5-3 the Simulink Start Page.

A new window will emerge when ones select on Blank Model, as seen above.

Figure 5-4 Blank Model.

Getting started with SIMULINK

54

A model in Simulink is an assembly of blocks that, in general, describes a system. Besides

from starting from scratch, previously saved model files can be loaded using the File menu or

the MATLAB command prompt.

We'll create a basic model with a sine wave as an input that feeds into a scope to visualize the

waveform.

Step 1: Create a New Model

In the Simulink Start Page, click on the Blank Model option. This will open a new, empty

Simulink model.

Step 2: Add a Sine Wave Source

Navigate to the Library Browser in the Simulink model window by click on the library icon or

hitting Ctrl+Shift+L.

Navigate to the Simulink category in the Library Browser and then to Sources.

Drag the Sine Wave block across the empty model.

Figure 5-5 Add sin wave Block.

Getting started with SIMULINK

55

Step 3: Add a Scope to Visualize the Output

1. Still in the Library Browser, navigate to Sinks under the Simulink category.

2. Drag and drop the Scope block onto your model.

Figure 5-6 Add scope Block.

Step 4: Connect the Blocks

Select the Sine Wave block's output port (the arrow).

Establish a connection both of them by dragging a line to the Scope block's input port.

Figure 5-7 connect the two Blocks.

Getting started with SIMULINK

56

Step 5: Change Sine Wave Properties

1. Select the Sine Wave block by double-clicking it.

2. You can modify parameters such as as amplitude, frequency, phase, and so on.

3. After applying modifications, rerun the simulation to see the revised waveform in the

scope.

Figure 5-8 Change Sine Wave Properties.

Step 6: Simulate the Model and observe the Sine Wave

Click the Run icon in the simulation window.

The simulation will run, and although you may not notice much, the sine wave data will be

supplied into the scoping.

In the model you are using, double-click the Scope block.

A window will appear that displays the sine wave over time.

Figure 5-8 Simulate the Model and observe the Sine Wave

Run icon

SCOPE WAVEFORM

Getting started with SIMULINK

57

5.3 ExemplesOf Simulation With Simulink

The First Exemple

We will utilize Simulink to resolve the first order differential equation (ODE) as an

illustration.

Additional initial conditions of the form x(t0) = x0 at t = t0 are required. To solve this issue,

we'll set x(0) to 0.

The previous equation can be formally solved by integrating dx/ dt.

 ∫

At this point, using Simulink blocks, we can build the model in Simulink for simulating

Equation.

To model an equation (or system) using simulink, follow the following steps:

 The selection of inputs and outputs of the equation (or system).

 Block Determination Required

 Simulation execution

After examination the equation we can found that we need the following blocks

– Sine Wave block from the Math Operations library

– Sum block from the Math Operations library,

– Integrator block from the Continuous library;

– Gain block from the Math Operations library,

– Scope block from the Sink library.

The first step is to oppen a new model and drags the necessary blocks

Getting started with SIMULINK

58

Figure 5-9 exmple step1

The sconde step is to connect the blocks According to the equation

Figure 5-10 exmple step2

 The last step is to save the simulink file and star the simulation and observe the waveform

with the scope block

Figure 5-11 exmple step3

Getting started with SIMULINK

59

The Seconde exemple

In this exemple we use simuink to resolve sconde ordre ssystem RLC circuit

Figure 5-12 RLC circuit

Once powered by a voltage source, the differential equation for a series RLC circuit is

Avec

The state equation of this system is

Now Launch MATLAB.

In the MATLAB command opening, type simulink and hit Enter. The Simulink start page will

then be displayed.

Click "Create Model" after selecting "Blank Model."

Applying differential equations to the RLC Circuit construction:

 Block Integrators: Drag two "Integrator" blocks from the Simulink library to the

"Continuous" section. These will be utilized in order to integrate and distinguish the

voltage Vc(t).

 Blocks of Gain: Use "Gain" blocks for the resistance and inductance.

 Block Product: Use "Product" block for the multiplication operation

 Block Sums: To tally the outcomes of the aforementioned procedures

Getting started with SIMULINK

60

 Voltage Source: Use "Step" block or constant from the "Sources" library to simulate

the input voltage

Figure 5-13 RLC circuit in simulink

 Figure 5-14 RLC circuit in simulink (equation description)

Running the Simulation:

Once everything is set up, click on the "Run" button in the Simulink window. After the

simulation finishes, open the scope to view the results.

Save Your Work:

Save your model. Click on File > Save or press Ctrl + S.

V(t)

Vc(t)

Getting started with SIMULINK

61

Figure 5-15 RLC circuit after simulation

62

Chapter 6

Power System Blockset

 Power System Blockset

63

For modeling and simulating electrical power systems in the MATLAB/Simulink

environment, MathWorks provided the Power System Blockset toolbox. With an emphasis on

power electronic and drive systems, it provides the ability to design, evaluate, and simulate

electrical power systems.

6.1 Presentation of the Power System Blockset simulink

A collection of tools and libraries called "Power System Blockset" in MATLAB/Simulink are

used for modeling, simulating, and analyzing electrical power systems.

Scientists and engineers are able to model and examine the functioning of electrical power

systems using the systems and components provided by the Power System Blockset.

It is appropriate for a range of uses, including the generation, conversion, transmission, and

consumption of electricity.

To open the main library of SimPowerSystems from Matlab, execute the following command:

powerlib

Figure 0-1 Library powerlib

One can also access SimPowerSystems from Simulink:

 Power System Blockset

64

Figure 0-2 brows Library powerlib

SimPowerSystems contains various models grouped under several categories

 Electrical Sources: AC and DC voltage sources, current sources, and more.

 Lines and Transformers: Represents transmission lines, transformers with multiple

winding configurations, etc.

 Machines: Synchronous machines, induction machines, and other electrical

machinery.

 Loads: Different types of electrical loads, both dynamic and static.

 Protection & Control: Circuit breakers, relays, and controllers to protect and control

the system.

6.1.1 Applications libraries

In the toolbox of SimPowerSystems, "Applications libraries" certainly corresponds to specific

sets of components or preset systems customized for certain power system applications or

research.

Th next figure represent the applications libraries

 Power System Blockset

65

Figure 0-3 applications Library

6.1.2 Electrical sources library

Electrical sources are commonly encountered in toolboxes developed for power system and

electrical engineering simulations. SimPowerSystems (later versions may refer to it as

Simscape Electrical) is one such toolkit

The "Electrical Sources" library in SimPowerSystems (or Simscape Electrical) provides a

variety of source components for generating electrical power in simulations. These elements

are as follows:

 AC Voltage Source: Represents an ideal AC voltage source.

 DC Voltage Source: Represents an ideal DC voltage source.

 Controlled Voltage and Current Sources: Sources whose output can be controlled by

external signals.

 Three-Phase Sources: For simulating three-phase electrical systems.

 Specialized Sources: These might include things like pulse generators, signal

generators, or other specialized electrical sources.

 Power System Blockset

66

Figure 0-4 Electrical source Library

6.1.3 Element library

A collection of blocks or components that may be utilized for modeling and simulation could

be referred to as a "element library." These might be included with the main Simulink

program or extra toolboxes like SimPowerSystems (Simscape Electrical), SimMechanics, and

others. These libraries are made up of pre-defined blocks that represent mathematical

operations, system components, control elements, and so on.

Figure 0-5 Element library

 Power System Blockset

67

6.1.4 Extra Library

This library offers a variety of components and blocks that do not exactly fall into the basic

categories of electrical sources, machines, power electronics, and so on, but are nonetheless

valuable for a variety of modeling tasks.

Here's a quick rundown of some of the blocks you could find in the "Extra Library."

 Transformations are blocks that may be used to transform between different reference

frames, which is very important for machine modeling.

 Measurement Blocks: These are specialized blocks that are used to measure certain

parameters or circumstances in your model.

 User-defined functions or blocks: The library may include blocks that allow users to

specify their own actions or equations in some cases.

 Utilities: These are blocks or systems that are meant to help in simulation, debugging,

or analysis but are not components of a power system.

Figure 0-6 Extra Library

 Power System Blockset

68

Figure 0-7 Mesurments Library

Figure 0-8 Power electronics Library

 Power System Blockset

69

6.1.5 The Power GUI block

The "powergui" object is a powerful tool, usable with the acausal modeling of the specific

library Simscape > SimPowerSystem. This block provides a graphical user interface for

setting the simulation approach and accessing power system analysis tools.

Figure 0-9 Power GUI block

The powergui block provides to resolve your circuit using one of the following methods:

 Continuous, which employs a Simulink variable-step solution

 Discretization of the electrical system to provide a solution in discrete time

 The phasor mode simulation (steady-state phasor solution).

This block offers also analysis tools :

 FFT Analysis: This tool assists users in analyzing the frequency components of

signals in their models. This is useful for harmonic analysis.

 Scopes & Visualization: Provides specialized scopes for visualizing three-phase

signals, voltage/current phasors, and other parameters.

 Load Flow: Calculate the system's steady-state solution, including voltages, currents,

active and reactive powers.

 Impedance Measurement: This analysis helps users to measure and visualize system

impedance as a function of frequency.

By double-clicking on the powergui block present in the model, a window similar to the

figure below opens, which includes the following sections:

1. Configure parameters

2. Steady-State Voltages and Currents

3. Initial States Setting

4. Load Flow and Machine Initialization

5. Use LTI Viewer

6. Impedance vs Frequency Measurement

7. FFT Analysis

8. Generate Report

 Power System Blockset

70

Figure 0-10 Power GUI window

6.1.6 Exemple boost converter

Boost converters have applications in electronics to provide a DC output voltage larger

compared with the DC input voltage, thus increasing the supply voltage. Boost converters are

frequently found in power supply for white LEDs, rechargeable batteries for electric vehicles,

and a variety of different functions.

The theoretical step up equation of the boost converter is:

Where D represents the duty cycle.

The converter is coupled with resistive load from a 50 V source in this example, and the

PWM frequency is fixed to 10 kHz.

In this exemple assignment, you will build a boost converter circuit in SimPowerSystems.

Figure bellow depicts the circuit. A input DC source, a diode, inductor,transistor,capacitor

and a resistive (R) load comprise the circuit. The source's input voltage is 50v, and the

output volatge is 100 V.

Open the SimPowerSystems libraries, chose the component and drag it to simulink window

 Power System Blockset

71

Figure 0-10 Exemple

Before the circuit can be simulated, the operational settings for the various blocks must be

established.

1. The input volateg block : provide the subsequent settings in the dialog window that

appears after clicking on the component: Ampitude (v)=50 v.

Figure 0-11 DC block edit

 Power System Blockset

72

2. Inductor, Diode, capacitor and resistive load . Enter the subsequent settings in the dialog

box which displays when clicking on the component : inductor L= 1mH, , Capacitance =

200e-6 and Resistance = 2 Ohms.

Figure 0-12 RL block Edit

Figure 0-13 RLC block Edit

3. PWM block. Double-click on this block to determine the switching frequancy.

 Power System Blockset

73

Figure 0-14 PWM block Edit

4. Set the simulation parameter. Setting the simulation parameters in Simulink is essential

for controlling various aspects of the simulation, such as its duration, solver type, and step

size.

- Click the "Simulation" menu at the top of the Simulink model window.

- Dropdown menu: "Model Configuration Parameters" This will open a new window with a

list of simulation settings to which you may make changes.

Set the following basic parameters:

 Solver: In the "Solver" pane, you may choose the appropriate solver (e.g., 'ode45',

'ode23', etc.) for your model.

 Start and Stop Time: Set the beginning and ending times of your simulation.

 Optional solvers: You can choose between "Fixed-step" and "Variable-step"

depending on your needs. Variable-step solvers vary the time step based on model

dynamics, whereas fixed-step solutions employ a constant time step.

 Power System Blockset

74

Figure 6. 15 simulation parameter

5. Star the simulation. Set the time of simulation to 1 seconde and clique the star button.

After the simulation is finished, the results are available by 1.) Reading the results provided

by the Scopes components and 2.) Using the GUI output tools. To view the output, click on

the Scope blocks.

The first scope on can show the output voltage in blue and the input voltage in yelow by

analysing this figure we observe that the output voltage is boosted twice comparing with the

input voltage becaus D=0.5

Figure 6. 16 Scope 1

 Power System Blockset

75

The seconde scope the represent the PWM signal

Figure 6. 16 Scope 2

6. Printing and storing the result of the simulation. There are numerous ways to save

simulation findings and include them as part of a written document. The immediate printing

of waveform traces and plots from the Multimeter and Scope blocks is possible. Result can

also be saved using to workspace Block and trace them using the plot instruction.

76

Chapter 7

Simulation and co-simulation with

other software

 Simulation and co-simulation with other software

77

There is a range of simulators that can simulate different types of electrical circuits. This

offering mainly covers the simulation of electronic circuits, both analog and digital or mixed.

There are also software whose purpose is more educational, easy to use, but not of obvious

scientific interest

Here are some of the most commonly used electrical circuit simulators:

 PSIM is a simulation program created primarily for power electronics and motor

control. Power electronics experts and academics like it because of its powerful

performance and simple to use layout.

 Linear Technology's LTSpice is a high-performance SPICE simulator software. It is

open source and extensively adopted by academics and industry.

 PSpice: Among the most widely utilized electrical simulation tools, PSpice is provided

by Cadence Design Systems. It offers several circuit simulation possibilities.

 Multisim: Multisim is a complete circuit design and evaluation program developed by

National Instruments that combines an intuitive GUI with SPICE simulation.

 HOMER stands for Hybrid Optimization of Multiple Energy Resources in the

framework of renewable energy. It is a computer-based tool for optimizing microgrid

design in various industries, ranging from local power systems to bigger, multi-

megawatt industrial power systems.

 Electronic Workbench: Also known as Electronics Workbench or simply Workbench,

it served as a popular software tool for designing and evaluating electronic circuits. Its

capabilities have grown through time, and it is now known as Multisim, a component

of the NI (National Instruments) suite.

 OrCAD: It is a powerful program that can do whatever from schematic drafting to

circuit analysis and PCB design.

 HSPICE: One of the industry standards for SPICE simulation, it is mostly used for

semiconductor device simulations.

 Simulation and co-simulation with other software

78

 ISIS Proteus is a software application used for the simulation of microcontrollers,

microprocessors, and various other electronic components. The software is a product

of Labcenter Electronics.

7.1 Simulation using PSim and co-simulation Simulink-PSim

PSIM (Power Simulation) is an application for simulation which is widely used in the

disciplines of power electronics, motor control, and renewable energy. PSIM offers various

benefits such :

- Efficiency: PSIM has the ability of quick simulation. Power electronics systems might

be complicated, but PSIM ensures that simulations are completed on time.

- PSIM provides a wide range of modules to meet specific demands, including the

Motor Drive Module for motor control applications, the Digital Control Module for

digital control design, the Renewable Energy Module for solar and wind energy

systems, and many more.

- PSIM can additionally be used in combination with well-known control design tools

such as MATLAB/Simulink. This implies that designers may incorporate their

MATLAB/Simulink control algorithms into PSIM for a more comprehensive

simulation.

- Extensive Component Library: The program has a vast component library that

includes a variety of power electronic devices, magnetic components, control blocks,

sources, and loads.

- PSIM is often employed for real-time simulation and hardware-in-the-loop (HIL)

validation with the necessary modules and tools, making it useful for practical

implementation of control techniques without putting actual hardware at risk.

 Simulation and co-simulation with other software

79

The nexet figure represent the PSIM interface

Figure 7. 1 PSIM interface

To oppen new schematic select file / New

Figure 7. 2 PSIM new schematic

 Simulation and co-simulation with other software

80

The PSIM menu bar may have categories such as:

- File: This menu has options for creating a new project, opening an existing one,

saving, saving as, printing, and exiting the software.

- Undo, redo, cut, copy, paste, and preferences/settings are examples of common

operations.

- Zooming in/out, revealing the grid, toggling toolbars, and other visualization settings

are examples of view options.

- Insert: This function in design software may allow you to add certain features or

components to your workspace.

- Tools: Software-provided tools or utilities for simulation, analysis, or other specialized

functions.

- Simulation: This includes instructions for starting, pausing, and stopping simulations,

as well as accessing simulation settings and parameters.

- Toolbars: menus with the main shortcuts for a specific activity.

- Workspace: area for the user to insert the project circuits.

- Status Bar: project status bar.

- Scroll Bar: vertical/horizontal scroll bar of the workspace.

 Simulation and co-simulation with other software

81

Figure 7. 3 PSIM principale workspace

The elements menu contains all of the components. Investigate it for yourself.

Figure 7. 4 PSIM element menu

Workspace

Toolbars

Library browser

 Simulation and co-simulation with other software

82

A toolbar at the bottom of the PSIM screen displays an array of the majority of frequently

utilized components in circuit schematics, making it easier to add them to the workspace.

Figure bellow shows a list of the components.

Figure 7. 5 PSIM component toolbar

7.1.1 Exemple of simulation with PSIM

Figure depicts a two-phase interleaved boost converter. The structure contains two parallel

converter circuits. The first leg is made up of inductor L, Transistor T, and diode D, whereas

the second leg is made up of the same configuration as the fisrt leg. The two converter circuits

are practically in parallel, however they function in an interleaved method. At the output, they

shared a common output capacitor C. The specifications of the two legs are considered to be

identical. In an interleaving arrangement, the gating signals T1 and T2 for the two transistor

identical but shifted by 360°/2=180°, where 2 is the leg number coupled in parallel.

 Simulation and co-simulation with other software

83

Figure 7. 6 interleaved boost

In this exemple assignment, you will build a two phases interleaved boost converter circuit in

PSIM software. Figure bellow depicts the circuit. A input DC source, a diode, inductor,

transistor, capacitor and a resistive (R) load comprise the circuit. The source's input voltage

is 24v, and the output volatge is 40V (this model is available in the exemples directory in

PSIM).

The step-by-step process for simulating a circuit can be briefly described as:

- Create the schematic in a program;

- Conduct the simulation;

- Visulate and analyze the results.

We now consider the simulation of a circuit.

Create the schematic in a program

The schematic circuit of the intereaved boost in PSIM is as follow :

 Simulation and co-simulation with other software

84

Figure 7. 7 interleaved boost in PSIM

It is important to provide the simulation settings once the file has been saved. The simulation

control, which can be accessed via the Simulate Simulation Control menu, must be used in

this situation.

Figure 7. 8 Exemple simulation control

 Simulation and co-simulation with other software

85

Conduct the simulation

You can begin the model simulation after configuring the simulation settings. Chose run

PSIM simulation in the simulate menu at the top toolbar or press F8 Button on the keyboard.

When the Auto-run option is chosen, the Simview application will launch directly after the

simulation finishing.

Figure 7. 9 Run simulation

Figure 7. 10 PSIM Simview

Visulate the simulation results

 Simulation and co-simulation with other software

86

After finishing the simulation, the Simview program will appear which depicts all the

waveform measurements that can be performed. We can select the measurements to be

plotted.

Figure 7. 11 PSIM Simview properties

Figure 7. 12 Current plot

 Simulation and co-simulation with other software

87

Figure 7. 13 Voltage plot

To improve the visualization of the obtained results, there is the option toolbar in the up to

modify the waveform.

Figure 7. 14 option toolbar

7.1.2 Co-Simulation with Matlab/Simulink

Co-simulation is the concurrent simulation of multiple tools in order to take use of each tool's

advantages. This implies that although one component of a complex system may be simulated

in one piece of software (such as PSIM), another component may be simulated in a different

piece of software (such as Simulink).

 Simulation and co-simulation with other software

88

Using co-simulation, one may create a control algorithm in Simulink and then examine how it

impacts a power circuit in PSIM, or vice versa. This close connection guarantees that design

are comprehensive and take into account interactions between system components.

PSIM can co-simulate with Matlab/Simulink. If the SimCoupler Module is activated in the

licensing when PSIM is installed, the installer will automatically configure co-simulation

between PSIM and Matlab/Simulink. If you wish to modify the PSIM folder name after

installing PSIM, you must re-enable co-simulation by executing Utilities >> SimCoupler

Setup. If you are running various versions of PSIM or Matlab/Simulink, you may associate a

specific version of PSIM with a specific version of Matlab/Simulink by executing Utilities >>

SimCoupler Setup from that PSIM version and selecting the relevant Matlab/Simulink

version.

Figure 7. 15 simcoupler setup

 Simulation and co-simulation with other software

89

Figure 7. 16 simcoupler setup 2

To illustrate how co-simulation works, as follows:

1. Create a simple circuit model.

Figure 7. 17 simcoupler setup 3

2. Run Utilities >> SimCoupler Setup from PSIM. The following will set up PSIM for

co-simulation. It should be noted that this only has to be done once.

3. Navigate into the "Elements/Control/SimCoupler Module/" menu.

 Simulation and co-simulation with other software

90

Figure 7. 18 simcoupler node menu

4. Then connect OUT SLINK and IN SLINK node to the circuit model. Each In Link

Node gets a value coming from Simulink, as well as an Out Link Node transmits the

value to Simulink.

Figure 7. 19 simcoupler node placement

5. To organize the arrangement of the connecting nodes. Choose Arrange SLINK Nodes

from the Simulate Menu.

OUT SLINK

IN SLINK

 Simulation and co-simulation with other software

91

Figure 7. 20 simcoupler node placement 2

6. Choose Generate Netlist File from the Simulate Menu. A netlist file that contains the

extension.cct is going to be created and archived in the same location folder that holds

the circuit file.

Figure 7. 21 Generate Netlist file

 Simulation and co-simulation with other software

92

7. Go to matlab and select the working directory the same location folder that holds the

circuit file.

8. Go to Simulink and create a new file and build the control schematic that will coupled

with PSIM

Figure 7. 22 Simulink new file

9. In Simulink, search the block "SimCoupler " in the HDL coder directory, containing

the SimCoupler model block. And copier paste the SimCoupler model block into the

control schematic.

Figure 7. 23 Simulink simcoupler block browser

 Simulation and co-simulation with other software

93

Figure 7. 24 Simulink simcoupler block

10. In the SimCoupler block, type the name and location of the PSIM netlist (file

name.cct), and then select Ok.

Figure 7. 25 Simulink simcoupler settings

11. The cosimulation configuration in Simulink is currently finished. Begin the simulation

by going to Run in Simulink menu.

 Simulation and co-simulation with other software

94

7.2 Simulation with other software

7.2.1 Proteus

Figure 7. 26 Proteus interface

The PROTEUS software is composed of three modules:

• The ISIS schematic editor

• The LISA simulator

• The ARES printed circuit board design tool.

ISIS produces, on one hand, a list of equipotentials that can be used by the LISA simulator

and the ARES printed circuit board design tool. On the other hand, it produces a materials list

and reports for checking electrical rules.

LISA is a set of simulation modules linked to ISIS. The PROSPICE simulation core is based

on version 3F5 of the SPICE engine released by the University of Berkeley.

ARES is a Windows-compatible printed circuit board design module. It allows for the

placement of components in automatic, manual, or semi-automatic modes and the routing of

connections across multiple layers in automatic, manual, or semi-automatic modes.

 Simulation and co-simulation with other software

95

7.2.1.1 The ISIS schematic editor

Isis is a schematic editor that integrates an analog, logic, or mixed simulator. All operations

take place within this environment, from configuring the various sources to placing probes

and plotting curves.

Figure 7. 27 ISIS Proteus interface

Overview window

The workspace is shown by the blue frame thanks to the 'Define sheet size' command from

the'system' menu.

The working area, or the portion of the schematic that is displayed in the main window, is

defined by the green frame.

 You can move this working area by pointing the mouse to the desired area of the

overview window and clicking the left button.

 You can redefine the working area in the overview window by pressing the 'shift' key

on the keyboard, combined with moving the mouse while holding down the left button

Editing window

Menu

Toolbox

Editing window

object selector

Run simulation

overview window

 Simulation and co-simulation with other software

96

Your circuit will be edited in this window. Only the portion of the circuit shown by the green

frame in the overview window is represented by it. Using the overview window or the 'Zoom'

command from the 'Display' menu, you may modify the work area.

Toolbox

It is composed of a set of icons whose functions will be detailed later and an object selector

used to choose packages, pad styles, traces, vias, etc.

Cursor coordinates

The cursor's location in relation to the origin, which is by default at the middle of the editing

window, is determined by the coordinates.

The unit of measurement for coordinates is 1/1000 inch (th).

Organization of the toolbox isis proteus

Various tools are often included in ISIS's toolbox to help users design and simulate electrical

circuits.

The general structure of toolboxes in such software is presented as follow:

 Drawing tools help users to position components, trace wires and add labels or text

annotations.

 Component Library: the location where users are able to search for and select

electronic components to add to their personal schematic.

 Simulation Controls: Tools for starting, pausing and finishing simulations,

additionally to establishing simulation parameters.

 Measurement Tools: it is used for measuring voltages, currents, and other parameters

during simulations

 Editing Tools: To move, remove, rotate, and copy existing components or wires.

 Options for showing or hiding particular levels or categories of elements in the

schematic are called "layers" and "views."

 Simulation and co-simulation with other software

97

Figure 7. 28 ISIS Proteus Toolbars

7.2.1.2 Steps for entering a schematic

In the next basic outline for the steps in entering a schematic in ISIS Proteus, presented in an

organizational or flowchart-like structure:

 Simulation and co-simulation with other software

98

Figure 7. 29 flowchart of step by step simulation with ISIS Proteus Toolbars

Open the software.
Create a new project or open an

existing one.

Set Workspace Parameters
Define sheet size.

Set up grid spacing and visibility.

Component Selection and
Placement

Component Selection and
Placement

Component Configuration

(Edit component values)

)

Drawing and Connection

Add Annotations and Labels

Simulation

Save and Backup

 Simulation and co-simulation with other software

99

7.2.1.3 The ARES printed circuit board design tool

ARES is an element of software that enables for the automated or manual routing of

electronic cards.

It is feasible to utilize ARES without first creating an ISIS graphic. This functionality enables

you to easily design low-complexity circuits by simply putting components and sketching

traces in ARES.

After the connections are made, the rails may be routed automatically.

You may also create new packages and save them in a library using this program. When

combined with ISIS, you have a full solution that allows you to do all card design phases with

a single schematic.

Figure 7. 30 ARES Proteus interface

The general appearance of ARES is very similar to that of ISIS.

 A menu bar.

 A main window in which you will create your routing but also your new components.

 A preview window in the top right corner.

 A palette below and a package selector.

 An active area selector, at the bottom left

The other functions are done identically to ISIS

 Simulation and co-simulation with other software

100

Figure 7. 31 ARES Proteus interface description

Creating board and placement the component

The first step before beginning routing is to create a board with design dimensions. If feasible,

it is strongly encouraged to complete the project in standard formats. Go to graphical mode

and choose "Board Edge" via the surface choice. Select the rectangle icon and create a

rectangle that corresponds to the board's border. You've defined the surface of your electrical

board once you've created the contour.

You may arrange the components in automated mode after designing an electronic board.

The above window displays when you employ the 'Automatic Placement' function. One may

select which components you want to employ. The components are placed on the board once

they have been validated.

Editing window

Menu

palette

preview window

 Simulation and co-simulation with other software

101

Figure 7. 32 ARES Proteus auto placer window

Manually putting components in ARES PCB design tools necessitate precise and deliberate

judgments to achieve optimal circuit functioning, low noise, and efficient routing.

The routing of components

There are two kinds also for components routing in ARES software: the automatic and

manual routing.

"Auto-routing" is a powerful function featured in ARES PCB design, that allow the paths

linking components to be routed up automatically based on a set of established criteria. The

goal is to reduce time over hand routing, particularly for complicated boards.

You can find this function in configuration menu by choose Shape based auto router.

Figure 7. 33 ARES Proteus auto router window

 Simulation and co-simulation with other software

102

It is quite unusual for an automated routing to be adequate without adjustment. As a result,

being able to manually change or create tracks is really beneficial.

In ARES, choose the mode for manual routing. This might be represented by an icon that

looks like a trace or wire. Select on a pin or pad where you want to begin tracing. A trace will

show up while you drag the mouse.

7.2.2 PSpice

PSpice is a useful software application for the simulation and evaluation of electrical circuits.

It enables the development of a schematic of any assembly in which the components are

defined in a way that as closely as possible replicates genuine components. Following that, it

mimics the operation of this assembly in order to study it from all sides, employing tools as

diverse as they are complex.

Figure 7. 34 PSpice interface

PSpice is capable of running a variety of analyses, including:

 DC Analysis: The process of determining the behavior of a circuit at a certain point.

 Simulation and co-simulation with other software

103

 AC Analysis: The examination of a circuit's frequency response.

 Transient Analysis: To examine the temporal response of the circuit to diverse inputs.

 Parametric analysis is used to determine how altering

Users can develop and build circuits through a visual interface, which can subsequently be

simulated using software.

PSpice includes a large library of components that you can take advantage of to design an

electrical circuit. These components vary from simple resistors and capacitors to complicated

circuits with integrated circuits.

Figure 7. 35 PSpice component interface

7.2.3 Scilab

Scila is a cross-platform numerical computing program that is free to use and provides a

computer environment for scientific purposes. It has a high-level programming language that

is focused on numerical calculation. Its applications include signal processing, statistical

analysis, image processing, fluid dynamics simulations, numerical optimization, and modeling

and simulation of both explicit and implicit dynamic systems.

 Simulation and co-simulation with other software

104

Figure 7. 36 Scilab interface

Following are some interesting facts concerning Scilab

 One of the Scilab's primary benefits is that it is open source, which signifies that

anyone can access to it. This renders it an appealing alternative for low-budget

academics and industrial developers.

 Scilab provides its own programming language designed for numerical calculation.It is

similar to matlab syntax.

 Scilab can handle a variety of rang of application.

 Scilab can co-simulate with other popular software such as MATLAB and C….

 Can Plot 2D and 3D graphics, which are mendatory for data analysis and result

presentation.

105

 Bibliographic references

 Bibliographic references

106

Bibliographic references

[1] Course materials, « Logiciels de simulation, » by Dr. AFIF BENAMEUR, University

of MASCARA.

[2] Course materials, « Applied Scientific Computing in Civil Engineering Using

MATLAB, » by BABA HAMED FATIMA ZOHRA, USTO.

[3] « Control Tutorials for MATLAB and Simulink - Simulink Basics Tutorial » by Dawn

Tilbury and Bill Messner.

[4] « Introduction à Matlab, » by Dr. F. Mudry, Higher School of Engineering of the

Canton of Vaud

[5] « Matlab : Flow Control » by F. Nicol

[6] " Introduction à Matlab," by John Chaussard, University of Paris 13.

[7] " INTRODUCTION TO MATLAB FOR ENGINEERING STUDENTS," by David

Houcque, Northwestern University.

[8] Course materials, « Logiciels de simulation, » by Dr. Kiyyour Ibrahim, University of

BISKRA.

[9] Course materials, « Outils de Programmation pour les Mathématiques» by Dr.

MOHAMMED OMARI, University of Adrar.

[10] « MATLAB : une introduction, »by François Langot, MAINE University.

[11] « MATLAB : LOGICIEL DE CALCUL SCIENTIFIQUE ET LANGAGE DE

PROGRAMMATION, » by M.Y. BOUROUBI - UdeM.

[12] " Outils Mathematiques et utilisation de Matlab," by Quentin Glorieux, Pierre et Marie

Curie - Paris VI University.

[13] « MATLAB : LOGICIEL DE CALCUL SCIENTIFIQUE ET LANGAGE DE

PROGRAMMATION, » by M.Y. BOUROUBI - UdeM.

[14] « solving differential equations using simulink » by Russell Herman

[15] « MATLAB : prise en main » by F. Delebecque et J.C. Pesquet

[16] « Débuter avec MATLAB » by Stéphane Balac INSA of Lyon

[17] « 'MATLAB Manual' version 0.1 », by Yassine Ariba and Jérome Cadieux ,

Departments of GEI & Mechanics, Icam - Toulouse

[18] « Bases de la programmation » by Łukasz Starzak

[19] « : Introduction à la programmation avec Matlab » by Z.Mansouri, University of

SKIKDA

[20] « LE LOGICIEL DE SIMULATION PSIM » by ELIPSE EDITION

[21] « PSIM User’s Guide » by Powersim Inc

[22] « Simulation - sous ISIS » by Carlos Valente

[23] « Quick Guide for PSIM » by Powersim Inc

[24] « PSIM A Beginner’s Guide » by Melvin Koshy

[25] « TUTORIAL How to use the Simcoupler » by Powersys SARL

[26] Training offer L.M.D 'Academic License' National Program 2018-2019.

WEBSITE

[1] https://matlab.mathworks.com/

https://matlab.mathworks.com/

 Bibliographic references

107

[2] http://outilsrecherche.over-blog.com/

[3] http://www-syscom.univ-mlv.fr/~pesquet/optim/tpinit.pdf

[4] http://www.ordinateur.cc/Logiciel/Software-Engineering/128680.html

[5] https://www.filetypeadvisor.com/fr/extension/m

[6] https://www.javapoint.com/matlab-data-types

[7] https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink

[8] http://fabrice.sincere.pagesperso-orange.fr/cm_electronique/pspice_accueil.htm

[9] https://www.scilab.org/scilab-pour-debutants-tutoriel-french

[10] https://www.labcenter.com/

http://outilsrecherche.over-blog.com/
http://www-syscom.univ-mlv.fr/~pesquet/optim/tpinit.pdf
http://www.ordinateur.cc/Logiciel/Software-Engineering/128680.html
https://www.filetypeadvisor.com/fr/extension/m
https://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Simulink
http://fabrice.sincere.pagesperso-orange.fr/cm_electronique/pspice_accueil.htm
https://www.scilab.org/scilab-pour-debutants-tutoriel-french
https://www.labcenter.com/

