Definitions and General Concepts in Organic Chemistry #### Introduction Organic chemistry is an important component of chemistry that is interested in the study of carbon compounds. Carbon is a fundamental element in life on our planet. It is present in all organisms, food, fuels,..... etc. There are a very considerable number of organic compounds compared to non-organic ones which are defined as compounds which contain everything else except carbon. #### **Example:** CH₄ (Methane) : is an organic compound. $Fe(C_5H_5)_2$ (Ferocene): is an organometallic compound. NaCl (sodium chloride): is a non-organic compound. #### **Noticed:** Organic compounds can be differentiated from non-organic compounds by the type of bonds: the bonds between atoms in organic compounds are generally covalent, whereas in non-organic compounds they are ionic, metallic,..... etc. ### I/ Characterization of an organic compound An organic compound is characterized by a chemical formula which can be crude, compact, semi-developed or developed. ## 1. Rough formula of an organic compound The crude formula of any organic compound is always written as: $C_x H_y O_z$ such that x represents the number of carbon atoms, y the number of hydrogen atoms and z the number of oxygen atoms . #### **Example:** C₃H₈: propane, composed of 3 carbon atoms and 8 hydrogen atoms. C₃H₇OH: propanol, composed of 3 carbon atoms and 8 hydrogen atoms and 1 oxygen atom. #### **Noticed:** The same crude formula can correspond to several organic compounds which are called isomers. #### 2. Structural formula of an organic compound It allows us to give the relative positions of the atoms in the molecule. ### Example: Butane is an organic compound with the chemical formula: C_4H_{10} Has a develloped formula as it is shown bellow: #### **Noticed**: - The structural formula is only a projection of the molecule in the plan which is imprecise compared to that in space. - The structural formula of the molecule can be simplified by the presentation of the skeleton. ### 3. Semi-developed formula of an organic compound It is used when the developed formula becomes cumbersome ### Example: Structural formula butane: Has the following semi-structural formula: CH_3 $\xrightarrow{}$ CH_2 CH_3 # 4. Compact formula of an organic compound It simplifies the writing of expanded formulas. Bonds are not present and identical groups are not repeated. # Example: The following semi-developed formula: CH₃ CH₂ CH₂ CH₃, corresponds to the compact formula: CH₃(CH₂)₂CH₃. ## 5. Geometric presentation of an organic compound To simplify the structural formulas of organic compounds, they can be presented in a way where the carbon and hydrogen atoms that they can carry are not presented. # Example: a/ $$CH_2$$ CH CH_2 CH CH_2 CH_2 CH_3 CH_3 CH_2 CH_3 CH_2 CH_2 CH_3 CH_2 #### 6. Classification of carbon atoms A carbon atom is said to be: Nular, primary, secondary, tertiary or quaternary. - The carbon atom is said to be quaternary if it is bonded to four carbon atoms. - The carbon atom is said to be tertiary if it is bonded to three carbon atoms. - The carbon atom is said to be secondary if it is linked to two carbon atoms. - The carbon atom is said to be primary if it is linked to a carbon atom. - The carbon atom is said to be zero if it is not bonded to any carbon atom. (a.1): primary carbon ; (a.2): secondary carbon (a.3): tertiary carbon ; (a.4): quaternary carbon ## II/ Functions and functional groups #### 1. Definitions Some organic compounds have common chemical properties due to the existence of a group of identical atoms called a functional group. ### **Example:** Organic compounds: $C_3H_6O_2$ and $C_5H_{10}O_2$. having successively the following semi-developed formulas: CH₃ CH₂ COOH and CH₃ CH₂ CH₂ CH₂ COOH have common chemical properties due to the presence of the COOH functional group which is called carboxylic function. # 2. Main organic functions Hydrocarbons are organic compounds that contain only carbon and hydrogen (generally denoted HC). They are taken as a reference to define the main functions by replacing one or more hydrogen atoms with functional groups. - The function is said to be monovalent when on the same carbon atom only one carbon is replaced. - The function is said to be bivalent when on the same carbon atom two hydrogen atoms are replaced. ### Example: : $$R \longrightarrow C$$; $R \longrightarrow C \longrightarrow R'$; $R \longrightarrow C \longrightarrow R'$; $R \longrightarrow R'$ Imine - The function is said to be trivalent when on the same carbon atom three hydrogen atoms are replaced. #### **Example:** - The function is said to be tetravalent when on the same carbon atom four carbon atoms are substituted. ## Example: Hydrocarbons are classified into three categories: - Aliphatic or acyclic Hydrocarbons - Cyclic Hydrocarbons - Aromatic Hydrocarbons ### a/ Aliphatic Hydrocarbons These are open-chain Hydrocarbons which are divided into three groups: • Saturated HC or alkanes with the general formula C_nH_{2n+2} They are made up of carbon all hybridized in sp^3 and can be linear or branched (containing only single bonds). ## Example: The organic compound with the crude formula C_4H_{10} which is an alkane can be presented in two forms: saturated branched HC • Ethylene HC or alkenes $\,$ with the general formula C_nH_{2n} They include a double bond in their formulas and can be linear or branched. ### **Example:** The organic compound of chemical formula C_5H_{10} which is an alkene can be presented in two forms: $$CH_3$$ — CH_2 — CH = CH — CH_3 CH_3 — C = CH — CH_3 Linear alkene Branched alkene • Acetylenic HC or Alkynes with the general formula C_nH_{2n-2} They include a triple bond in their formulas and can be linear or branched. Example: $$CH_3$$ — $C \equiv C$ — CH_3 linear acetylenic HC CH_3 — CH — $C \equiv CH$ branched acetylenic HC CH_3 # b/ Cyclic Hydrocarbons: These are closed chain Hydrocarbons and are divided into three groups: \bullet Cyclanes with the general formula $C_nH_{2n}\text{:}$ Organic compounds which have the same crude formula as alkenes: they are isomers of alkenes. ## Example: $$CH_2$$ CH_2 cyclobutane: C₄H₈ C₆H₁₂: cyclohexane • Cyclenes with the general formula C_nH_{2n-2} : Organic compounds which have the same crude formula as alkynes. The molecule contains a double bond. # Example: Cyclobutene: C_4H_6 • Cyclyns with the general formula C_nH_{2n-4}: Cyclic organic compounds that contain a triple bond. # Example: $$C$$ CH_2 CH_2 CH_2 Cyclopentyne: C₅H₆ # c/ Aromatic Hydrocarbons :: These are compounds that contain one or more benzene ring(s). Benzene is the compound of formula C_6H_6 bearing three delocalized double bonds. Naphthalene Benzene Anthracene