
Big Data
&

NoSQL DataBase

• NoSQL (Not Only SQL)

• Refers to databases that do not follow the
traditional relational model based on SQL.

• They are designed to handle large volumes of
unstructured or semi-structured data.

Big Data & NoSQL DataBase

With the growth of the internet and the explosion of
data, traditional databases showed limitations in
managing massive volumes of data, leading to the
rise of NoSQL databases.

Big Data & NoSQL DataBase

Types of NoSQL Databases

1. Document-Oriented DataBase
 JSON ou XML documents

• Exemples : MongoDB, Couchbase.

2. Key-Value DataBase

• Exemples : Redis, DynamoDB.

Types of NoSQL Databases

3. Column-Oriented Databases

• Store data in columns rather than rows,

• Examples : HBase, Apache Cassandra.

4. Graph Databases

Stores and queries relationships between data in the form of graphs.

• Examples : Neo4j, Amazon Neptune

Document-Oriented Databases: JSON
Format

• JSON (JavaScript Object Notation)

• is a lightweight, human-readable data format

• used for exchanging data between a server
and a client.

Document-Oriented Databases: JSON Format

{

 "nom": "John Doe",

 "age": 30,

 "estEtudiant": false,

 "adresse": {

 "rue": "123 rue Principale",

 "ville": "Ville",

 "codePostal": "12345"

 },

 "numerosDeTelephone": [

 "555-1234",

 "555-5678"

]

}

Document-Oriented Databases: JSON Format

JavaScript :

// Sérialisation
var objet = { nom: "John", age: 30 };
var jsonTexte = JSON.stringify(objet);

// Désérialisation
var objetDeserialise = JSON.parse(jsonTexte);

In Python :

import json

Sérialisation

objet = {"nom": "John", "age": 30}

json_texte = json.dumps(objet)

Désérialisation

objet_deserialise = json.loads(json_texte)

Document-Oriented Databases: JSON Format

Document-Oriented Databases

MongoDB Overview

• MongoDB is designed for speed using BSON (Binary JSON)
documents.

• It encourages denormalization: instead of foreign keys across tables
like SQL, data is duplicated where needed.

MongoDB is built for distributed cloud environments with features like :
• data replication,
• high availability,
• and horizontal scalability.
• It is schemaless by design, unlike SQL databases.

• MongoDB: Schemaless Flexibility

• Schemaless can be a drawback in analytics, but schema rules can be imposed on

collections.

MongoDB allows easier schema changes compared to large SQL systems.

La base de Données « MongoDB »

MongoDB Advantages: Performance

• 1. Read speed: Avoids slow SQL joins by embedding
data.

• 2. Flexibility: Easy to add fields without modifying a
global schema.

• 3. Aggregation: Transform and group data for
analysis.

MongoDB Advantages: Text & Geo
Search

• 4. Text search: Indexes support keyword
search across documents (e.g. blog posts).

• 5. GPS data: Geospatial indexes for location-
based queries.

Practice: Blog Site Example

• Develop a blog site with user comments.

• Use both SQL and MongoDB:

• - SQL: 3 tables (user, article, comment)

• - MongoDB: 3 collections

• Compare text search performance.

Key-Value Stores

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Consumer Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

 least complex. attractive
 It uses very simple functions to store (PUT), obtain (GET), and delete data.

Use Case: Web Session
• Sessions can include information about:

 user
 profile,
 recommendations,
 targeted promotions,
 And discounts.

• Each user session has a unique identifier.
• Session data is only queried by a primary key.
• Fast key-value sessions are ideal in this context.

Key-Value Stores

• Calculate total sales per store for the current
year

Key-Value Stores

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Consumer Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

• In traditional programming, we would create
hash tables in the form <key-value>.

• For each entry, enter the city and the sale
price. If we find an entry with a city already
entered, we group them together by summing
the sales.

San Jose 214.05
Fort Worth 153.57
San Diego 66.08
New York 55.60
San Jose 100.00

San Jose 31400.05
Fort Worth 15300.57
San Diego 66000.08
New York 55000.60

Key-Value Stores

Millions of rows of records

Memory size issues

Sequential processing

Problem?

Solution : Map-Reduce of Hadoop

San Jose 214.05
Fort Worth 153.57
San Diego 66.08
New York 55.60
San Jose 100.00

San Jose 31400.05
Fort Worth 15300.57
San Diego 66000.08
New York 55000.60

Key-Value Stores

• Hadoop Map-ReduceA programming technique with
two main functions:

• Map: transforms the input into KEY/VALUE pairs

• REDUCE: aggregates the values ​​for each key

• OPEN SOURCE (Apache Foundation) written in JAVA

• Inspired by Google publications (2004):

1. Google Map Reduce

2. Google Filesystem

Key-Value Stores

Key-Value Stores

Key-Value Stores

• MapReduce is a programming model
available in Hadoop environments

• Used to access big data stored in the Hadoop
File System (HDFS)

Key-Value Stores

• MapReduce aggregates data from multiple
servers and returns a result to the application.

• With MapReduce, rather than sending the
data to the application or algorithms,

• The algorithms are executed on the server
where the data already resides, which speeds
up processing.

Key-Value Stores

• A Hadoop cluster of 20,000 servers (standard and
inexpensive servers) with 256 MB data blocks can
process approximately 5 TB of data.

• With MapReduce, you can therefore reduce
processing time compared to sequential processing
of such a large dataset.

• Google's cluster contains 10,000,000 servers.

Key-Value Stores

Key-Value Stores
MapReduce – (ex: WORD COUNT)
Map transforms disk entries into <key,value> pairs
Reduce transforms the inputs into <key,value> pairs and generates one of the
<key,value> pairs as output

Welcome to hadoop
class hadoop is good
Hadoop is bad

Welcome, 1
 to, 1
 hadoop, 1

Class, 1
Hadoop, 1
Is, 1
Good, 1

Hadoop, 1
Is, 1
Bad, 1

Map

Welcome, 1

to, 1

hadoop, 3

is, 2

good, 1

bad, 1

Class, 1

Welcome, 1
To,1
 hadoop, 3
class , 1
is , 2
Good, 1
Bad, 1

Reduce

Key-Value Stores

MapReduce :WORD COUNT

• MapReduce :WORD COUNT

• programme: MAP

public class WordCountMapper extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {

private final IntWritable one = new IntWritable(1); private Text word = new Text();

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>

output, Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer itr = new StringTokenizer(line.toLowerCase());

while(itr.hasMoreTokens())

 { word.set(itr.nextToken()); output.collect(word, one); } } }

Key-Value Stores

REDUCER Code
public class WordCountReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector
<Text, IntWritable> output, Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 // replace ValueType with the real type of your value

 IntWritable value = (IntWritable) values.next();

 sum += value.get(); // process value

 }

 output.collect(key, new IntWritable(sum));

 }}

Key-Value Stores

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

Key-Value Stores

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

Calculer le total des ventes par magasin pour l’année en cours ?

Distributed storage

• Hadoop Distributed File System (HDFS),

• Amazon S3,

• Google Cloud Storage

Hadoop Distributed File System (HDFS)

• is a distributed file system that manages large
datasets.

• HDFS is one of the core components of Apache
Hadoop (along with MapReduce and YARN).

• Running on commodity hardware

objectives of HDFS

1. Fast recovery from hardware failures

• HDFS can include thousands of servers, so the failure
of at least one server is inevitable

• HDFS was designed to detect faults and recover
automatically quickly

objectives of HDFS

2. Access to streaming data

3. Hosting of large data sets.

4. Portability

HDFS Architecture

• A cluster of multiple machines

• Master/slave technique

• Data is stored on datanodes (slaves)

• Metadata on data blocks is managed by the namenode
(master)

HDFS Architecture

• Each data file is broken down into blocks.

• 64 MB by default.

• With replication principle.

Column-oriented database
• Are designed to optimize queries that analyze data across

multiple rows.

• Ex: Calculate the total sales for the San Diego store? Then for
the Cameras category?

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 San Diego Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 San Diego Music 156.68 Cash

Column-oriented database
• The most expensive operations involving hard drives are search functions.

• Data is stored as follows: bytes on the hard drive (or RAM).

• A byte can contain one line (or several lines).

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 San Diego Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 San Diego Music 156.68 Cash

Column-oriented database
• The most expensive operations involving hard drives are search functions
 requires indexing

• Data is stored as follows: bytes on the hard drive (or RAM)

• A byte can contain one line (or several)

ID, Date, Time, State, Category, amount, card
AAA1, 2012-01-01, 09:00, San Jose, Music, 214.05, Visa
AAA2, 2012-01-01, 09:00, Fort Worth, Women's Clothing, 153.57, Visa
AAA3, 2012-01-01, 09:00, San Diego, Music, 66.08, Cash
AAA4 2012-01-01 09:00, San Jose, Pet Supplies, 493.51, Visa

AAA1: 0001, AAA2:0002, AAA3 :0003, AAA4:0004
2012-01-01: 0001, 2012-01-01: 0002, 2012-01-01: 0003, 2012-01-01: 0004

09:00 : 0001, 09:00 : 0002, 09:00 : 0003, 09:00 : 0004
San Jose: 0001, , Fort Worth :0002, San Diego :0003, San Jose :0004

Music : 0001, Women's Clothing :0002, Music :0003, Pet Supplies :0004
214.05 : 0001, 153.57 :0002, 66.08 :0003, 493.51 :0004

Visa : 0001, Visa :0002, Cash :0003, Visa :0004

Column-oriented database
• The most expensive operations involving hard drives are search functions
 requires indexing

• Data is stored as follows: bytes on the hard drive (or RAM)

• A byte can contain one line (or several)

AAA1: 0001, AAA2:0002, AAA3 :0003, AAA4:0004
2012-01-01: 0001, 2012-01-01: 0002, 2012-01-01: 0003, 2012-01-01: 0004

09:00 : 0001, 09:00 : 0002, 09:00 : 0003, 09:00 : 0004
San Jose: 0001, Fort Worth :0002, San Diego :0003, San Jose :0004

Music : 0001, Women's Clothing :0002, Music :0003, Pet Supplies :0004
214.05 : 0001, 153.57 :0002, 66.08 :0003, 493.51 :0004

Visa : 0001, Visa :0002, Cash :0003, Visa :0004

AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;

09:00 : 0001, 0002, 0003, 0004;
San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;

Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 : 0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;

Visa : 0001, 0002, 0004; Cash :0003;

Column-oriented database

1. Efficient storage
stores column values ​​together, enabling efficient compression and indexing of
similar data, thus reducing disk space requirements.

• Improved performance for analytical queries
– Data analysis

– Aggregations

Calculate the total sales for the San Jose store?

Calculate the total Music sales for the San Jose store?

 AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;

09:00 : 0001, 0002, 0003, 0004;
San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;

Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 : 0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;

Visa : 0001, 0002, 0004; Cash :0003;

Column-oriented database

• Data compression

• Less suitable for online transactions

– For frequent real-time read-write operations (such as
DBMS)

AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;

09:00 : 0001, 0002, 0003, 0004;
San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;

Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 : 0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;

Visa : 0001, 0002, 0004; Cash :0003;

Column-oriented database

• Example of a column-oriented DB system:

1. Google BigTable

2. Apache Hbase (used by Facebook)

3. Apache Cassandra (used by Facebook)

4. Amazon Redshift

5. IBM Informix

6. Oracle Database 12c

7. Microsoft SQL Server (columnstore)

Column-oriented database

Graph-Oriented Database
optimized for Complex relationships between data

Graph-Oriented Database
• Optimized for path or neighborhood type queries

Graph-Oriented Database

Use cases such as:

1. social networks,

2. recommendations,

3. fraud detection,

4. network management (IT, transportation,
etc.)

Graph-Oriented Database

• Main Elements:

• Nodes: Objects or entities (e.g., person, product,
etc.)

• Edges or Relationships: Relationships between
nodes (e.g., "likes," "works_with")

• Properties: Attributes attached to nodes or edges

Example: (Alice)-[aime]->(Chocolat)

Graph-Oriented Database

Tool

Description

Neo4j The most well-known and used, with Cypher

OrientDB graphe/document

ArangoDB Multi-model (document + graph)

Amazon Neptune AWS cloud solution

JanusGraph

IBM DB2
Oracle
AllegroGraph
MarkLogic

Distributed graph database, integrable with Big
Data

RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language,, XQuery

Graph-Oriented Database

• RDF is a standard data model for the Semantic
Web, defined by the W3C.

• It is designed to describe resources
(documents, people, concepts, etc.) and their
relationships in a structured and machine-
readable manner.

• RDF allows data to be automatically linked and
interpreted by computer systems.

Graph-Oriented Database

• RDF is based on a simple structure:

• Subject: the resource being discussed

• Predicate: the property or relationship

• Object: the value or other related resource

This is called an RDF triplet:

(Subject) -- (Predicate) --> (Object)

(Alice) -- (hasAFriend) --> (Bob)

Graph-Oriented Database

• RDF

• Example : (Alice) -- (hasAFriend) --> (Bob)

• En Format RDF :
<http://example.org/Alice> <http://example.org/ hasAFriend > <http://example.org/Bob>

• There are several formats for writing RDF data:

• Turtle (.ttl): human-readable

• RDF/XML: XML-based

• JSON-LD: JSON-based

Graph-Oriented Database

• @prefix foaf: <http://xmlns.com/foaf/0.1/> .

• @prefix ex: <http://example.org/> .

• ex:Alice a foaf:Person ;

• foaf:name "Alice" ;

• foaf:mbox "alice@example.org" .

Graph-Oriented Database

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

 xmlns:foaf="http://xmlns.com/foaf/0.1/"

 xmlns:ex="http://example.org/">

 <foaf:Person
rdf:about="http://example.org/Alice">
 <foaf:name>Alice</foaf:name>
 <foaf:mbox>alice@example.org</foaf:mbox>
 </foaf:Person>

</rdf:RDF>

• Cypher de Neo4j

CREATE (alice:Person {name: 'Alice'})

CREATE (bob:Person {name: 'Bob'})

CREATE (alice)-[:KNOWS]->(bob)

Requests: Find all of Alice's friends:
MATCH (alice:Person {name: 'Alice'})-[:KNOWS]->(friend)

RETURN friend.name

Graph-Oriented Database

Graph-Oriented Database

//Create Person

//Create Post

//Create Relation

//Create Relation Authored

Graph-Oriented Database

Base de données Orienté Graphes

SPARQL

