Big Data

&
NoSQL DataBase

Big Data & NoSQL DataBase

* NoSQL (Not Only SQL)

e Refers to databases that do not follow the
traditional relational model based on SQL.

 They are designed to handle large volumes of
unstructured or semi-structured data.

Big Data & NoSQL DataBase

With the growth of the internet and the explosion of
data, traditional databases showed limitations in

managing massive volumes of data, leading to the
rise of NoSQL databases.

Types of NoSQL Databases

1. Document-Oriented DataBase

JSON ou XML documents
« Exemples : MongoDB, Couchbase.

2. Key-Value DataBase
« Exemples : Redis, DynamoDB.

Clé

Valeur

C1

XXXX,YYYYYY,b 22222

cz

123, 456, 789

Cc3

AA,L BB, CC

C4

123, AAA,DDDD

CS

X

Cc6

KKKK, LLLLL, MMMM

Types of NoSQL Databases

3. Column-Oriented Databases

« Store data in columns rather than rows,

« Examples : HBase, Apache Cassandra.

4. Graph Databases
Stores and queries relationships between data in the form of graphs.

« Examples : Neo4j, Amazon Neptune

Document-Oriented Databases: JSON
Format
* JSON (JavaScript Object Notation)

* is alightweight, human-readable data format

* used for exchanging data between a server
and a client.

Document-Oriented Databases: JSON Format

{

"nom": "John Doe",

"age": 30,

"estEtudiant": false,

"adresse": {
"rue": "123 rue Principale",
"ville": "Ville",
"codePostal™: "12345"

}

"numerosDeTelephone™: |
"555-1234",
"555-5678"

]

1

Document-Oriented Databases: JSON Format

JavaScript :

// Sérialisation
var objet = { nom: "John", age: 30 };
var jsonTexte = JSON.stringify(objet);

// Désérialisation
var objetDeserialise = JSON.parse(jsonTexte);

Document-Oriented Databases: JSON Format

In Python:

Import json

Sérialisation
objet = {"nom™": "John", "age": 30}
json_texte = json.dumps(objet)

Déserialisation
objet_deserialise = json.loads(json_texte)

Document-Oriented Databases

MongoDB Overview

* MongoDB is designed for speed using BSON (Binary JSON)
documents.

* |t encourages denormalization: instead of foreign keys across tables
like SQL, data is dunlicated where needed

Table Cinema

1 Jaws 1975 8.0
2 Star Wars 1977 8.6
3 Don't look up 2021 7.2
= Titanic 1997 7.8
5 Le dernier Samourai 2003 7.7

Table Acteurs

Nom_Acteur Date_de_naissance 1D_film
Roy Scheider 10/11/1932 1
Mark Hamill 25/09/1951 2
Meryl Streep 22/09/1949 3
Tom Cruise 03/07/1962 5
Tom Hanks 15/09/1977 MNULL
Timothée Chamalet 27/12/1995 3

a base de Données « MongoDB »

MongoDB is built for distributed cloud environments with features like :
* data replication,

* high availability,

* and horizontal scalability.

* |tis schemaless by design, unlike SQL databases.

* MongoDB: Schemaless Flexibility
e Schemaless can be a drawback in analytics, but schema rules can be imposed on

collections.
MongoDB allows easier schema changes compared to large SQL systems.

MongoDB Advantages: Performance

* 1. Read speed: Avoids slow SQL joins by embedding
data.

e 2. Flexibility: Easy to add fields without modifying a
global schema.

e 3. Aggregation: Transform and group data for
analysis.

Left Table Right Table
Date CountrylD Units 1D Country
1/1/2020 1 40 1 USA
1/2/2020 1 25 2 Canada
1/3/2020 3 30 3 Panama
1/4/2020 4

>

Merged Table

Date CountrylD Units Country
1/1/2020 1 40 LISa,
1/2/2020 1 25 Lsa

1/3/2020 3 30

MongoDB Advantages: Text & Geo
Search

e 4, Text search: Indexes support keyword
search across documents (e.g. blog posts).

* 5. GPS data: Geospatial indexes for location-
based queries.

NMongoDB

Practice: Blog Site Example

Develop a blog site with user comments.
Use both SQL and MongoDB:

- SQL: 3 tables (user, article, comment)

- MongoDB: 3 collections

Compare text search performance.

Key-Value Stores

» least complex.=> attractive
» It uses very simple functions to store (PUT), obtain (GET), and delete data.

2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02

09:00
09:00
09:00
09:00
09:00
09:00
09:00
09:00
15:20
15:20
15:20
15:20
15:20
15:21

San Jose
Fort Worth
San Diego
Pittsburgh
Omaha
Stockton
Austin
New York
Lincoln
Madison
Wichita
Irvine
Anaheim
Birmingham

Men's Clothing
Women's Clothing
Music

Pet Supplies
Children's Clothing
Men's Clothing
Cameras
Consumer Electronics
Cameras

Baby

Cameras
Computers
Cameras

Music

214.05
153.57
66.08
493.51
235.63
247.18
379.6
296.8
242.2
254.15
446.66
9.23
3.64
156.68

Amex
Visa
Cash
Discover
MasterC:
MasterC:
Visa
Cash
Discover
MasterC:
Amex
Discover
Visa
Cash

Key-Value Stores

Use Case: Web Session
e Sessions can include information about:
J user
 profile,
J recommendations,
 targeted promotions,
1 And discounts.
 Each user session has a unique identifier.
 Session data is only queried by a primary key.
* Fast key-value sessions are ideal in this context.

Key-Value Stores

e Calculate total sales per store for the current

year

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterC
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterC
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Consumer Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterC
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa
2012-01-02 15:21 Birmingham Music 156.68 Cash

Key-Value Stores

n traditional programming, we would create
nash tables in the form <key-value>.

~or each entry, enter the city and the sale
price. If we find an entry with a city already

entered, we group them together by summing

the sales.
San Jose 214.05

Fort Worth 153.57 SanJose 31400.05
. Fort Worth 15300.57

>an Diego 66.08 San Diego 66000.08

New York 55.60 & '

San Jose 100.00 New York 55000.60

Key-Value Stores

> Millions of rows of records
» Memory size issues

» Sequential processing
=>»Problem?

San Jose 214.05

Fort Worth 153.57

San Diego 66.08 ‘
New York 55.60

San Jose 100.00

SanlJose 31400.05
Fort Worth 15300.57
San Diego 66000.08
New York 55000.60

=>» Solution : Map-Reduce of Hadoop

Key-Value Stores

 Hadoop Map-ReduceA programming technique with
two main functions:

* Map: transforms the input into KEY/VALUE pairs
« REDUCE: aggregates the values for each key
e OPEN SOURCE (Apache Foundation) written in JAVA

* Inspired by Google publications (2004):
1. Google Map Reduce
2. Google Filesystem

Key-Value Stores

HADOOP 1.0 HADOOP 2.0

MapReduce Others
(data processing) (data processing)
MapReduce J -
(cluster resource management YARN
& data processing) (cluster resource management)

Key-Value Stores

D% (L. Hadoop Ecosystem

Mapreduce
(Data Processing)

Yarn
(Cluster Resource Management)

HDFS
(Hadoop Distributed File system)

Key-Value Stores

* MapReduce is a programming model
available in Hadoop environments

* Used to access big data stored in the Hadoop
File System (HDFS)

MapReduce Others
(data processing) (data processing)
MapReduce
{cluster resource management YARN
& data processing) {cluster resource management)
HDFS HDFS

(redundant, reliable storage) (redundant, reliable storage)

Key-Value Stores

* MapReduce aggregates data from multiple
servers and returns a result to the application.

 With MapReduce, rather than sending the
data to the application or algorithms,

* The algorithms are executed on the server
where the data already resides, which speeds
up processing.

Key-Value Stores

* A Hadoop cluster of 20,000 servers (standard and
inexpensive servers) with 256 MB data blocks can
process approximately 5 TB of data.

* With MapReduce, you can therefore reduce

processing time compared to sequential processing
of such a large dataset.

 Google's cluster contains 10,000,000 servers.

Key-Value Stores

MapReduce - (ex: WORD COUNT)
Map transforms disk entries into <key,value> pairs

Reduce transforms the inputs into <key,value> pairs and generates one of the
<key,value> pairs as output

Map Reduce
Welcome, 1 Welcome, 1
to, 1 to, 1
hadoop, 1
Welcome to hadoop hadoop, 3 Welcome, 1
class hadoop is good Class. 1 To,1
Hadoop is bad Hado’op 1 Class, 1 hadoop, 3
s 1 ’ class, 1
Good, 1 is, 2 s, 2
Good, 1
Hadoop, 1 good, 1 Bad, 1

Is, 1
Bad, 1 bad, 1

Key-Value Stores

MapReduce :WORD COUNT

Input

Input Splits

Welcome to Hadoop

Walcomea to Hadoop

Class Hadoop is

good Hadoop is bad

Class Hadoop is

(@guru99.com

good Hadoop is

N\

Shuffling Reducer
bad , 1 bad . 1
Class,1 Class.1
goeod, 1 good, 1
Hadoop . 1
Hadoop , 1 Hadoop , 3
Hadoop |
is, 1
is 1 i
to, 1 kol
Welcome 1 Wealcome .1

Final
Qutput

bad 1
Class 1
good 1
Hadoop 3

to 1
Welcome 1

Key-Value Stores

 MapReduce :WORD COUNT
* programme: MAP

public class WordCountMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

private final IntWritable one = new IntWritable(1); private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>
output, Reporter reporter) throws IOEXxception {

String line = value.toString();
StringTokenizer itr = new StringTokenizer(line.toLowerCase());

while(itr.hasMoreTokens())
{ word.set(itr.nextToken()); output.collect(word, one); } } }

Key-Value Stores

REDUCER Code

public class WordCountReducer extends MapReduceBase implements Reducer<Text,
IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector
<Text, IntWritable> output, Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {
// replace ValueType with the real type of your value
IntWritable value = (IntWritable) values.next();
sum += value.get(); // process value

}

output.collect(key, new IntWritable(sum));

1

Key-Value Stores

Import java.io.lOException;
Import java.util.lterator;

Import org.apache.hadoop.io.IntWritable;

Import org.apache.hadoop.io. Text;

import org.apache.hadoop.io.WritableComparable;
Import org.apache.hadoop.mapred.MapReduceBase;
Import org.apache.hadoop.mapred.OutputCollector;
iImport org.apache.hadoop.mapred.Reducer;

Import org.apache.hadoop.mapred.Reporter;

Input

Input Splits

Welcomea to Hadoop

Walcome o Hadoop
Class Hadoop is
good Hadoop s bad

Class Hadoop is

(@gurm99.com

good Hadoop is

N\

Shuffling Reducer
bad , 1 -l bad .1
Mapping
Welcoma .1 Class,1 = Class. 1
o, 1
Hadoop , 1
good, 1 o] Goed. 1
Class . 1
Hadoop , 1
[|
Hadoop , 1
Hadoop , 1 s Hadoop , 3
good | 1 Hadoop . 1
Hadoop , 1
s, 1
is, 1 | .
is . 1 ——
bad 1
to, 1 - koo, 1
Welcome 1 = ‘Welcome .1

Final
Output

bad 1
Class 1
good 1
Hadoop 3

to 1
Welcome 1

Calculer le total des ventes par magasin pour 'année en cours ?

2012-01-01 09:00 San Jose Men's Clothing 214.05 Amex
2012-01-01 09:00 Fort Worth Women's Clothing 153.57 Visa
2012-01-01 09:00 San Diego Music 66.08 Cash
2012-01-01 09:00 Pittsburgh Pet Supplies 493.51 Discover
2012-01-01 09:00 Omaha Children's Clothing 235.63 MasterCard
2012-01-01 09:00 Stockton Men's Clothing 247.18 MasterCard
2012-01-01 09:00 Austin Cameras 379.6 Visa
2012-01-01 09:00 New York Electronics 296.8 Cash
2012-01-02 15:20 Lincoln Cameras 242.2 Discover
2012-01-02 15:20 Madison Baby 254.15 MasterCard
2012-01-02 15:20 Wichita Cameras 446.66 Amex
2012-01-02 15:20 Irvine Computers 9.23 Discover
2012-01-02 15:20 Anaheim Cameras 3.64 Visa

2012-01-02 15:21 Birmingham Music 156.68 Cash

Distributed storage

 Hadoop Distributed File System (HDFS),
* Amazon S3,
* Google Cloud Storage

Hadoop Distributed File System (HDFS)

is a distributed file system that manages large
datasets.

HDFS is one of the core components of Apache
Hadoop (along with MapReduce and YARN).

Running on commodity hardware

objectives of HDFS

1. Fast recovery from hardware failures

e HDFS can include thousands of servers, so the failure
of at least one server is inevitable

 HDFS was designed to detect faults and recover
automatically quickly

objectives of HDFS

2. Access to streaming data
3. Hosting of large data sets.
4. Portability

HDFS Architecture

A cluster of multiple machines
Master/slave technique
Data is stored on datanodes (slaves)

Metadata on data blocks is managed by the namenode
(master)

HDFS Architecture

e Each data file is broken down into blocks.
* 64 MB by default.
e With replication principle.

o E
N | (e
64mo A Name node Secondary
DN1:A B Name node
. ° DN2:C,A ONL:A B
| DN2:C, A
BRI, ' '
\ e DN3:B,C
Monfichier.txt

S A

HADOOP CLUSTER ARCHITECTURE

Master node

NameNode ResourceManager JobTracker

Worker node 1 Worker node 2 Worker node N
DataNode DataNode DataNode
altexsoft NodeManager NodeManager NodeManager

software r&d engineerin g

Map Reduce Map Reduce Map Reduce

@"_I’}Ejgaap #™hadoop

Map Reduce

Storage layer Resource management layer Processing layer

_‘_nielﬁ

Requests for file location

XYZ.txt
NameNode = LT JobTracker
NameNode 100 MB
Gives the desired
l l file location 4
‘L - ¢ Blk_1 = 64 MB
Blk_2 = 36 MB

DataNode Ty DataNode2y DataNode3

TaskTracker

Blk_1

TaskTracker

Blk 2

TaskTracker

Column-oriented database

* Are designed to optimize queries that analyze data across

multiple rows.

* Ex: Calculate the total sales for the San Diego store? Then for
the Cameras category?

2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02

09:00
09:00
09:00
09:00
09:00
09:00
09:00
09:00
15:20
15:20
15:20
15:20
15:20
15:21

San Jose
Fort Worth
San Diego
Pittsburgh
Omaha
Stockton
Austin
New York
Lincoln
San Diego
Wichita
Irvine
Anaheim
San Diego

Men's Clothing 214.05
Women's Clothing 153.57
Music 66.08

Pet Supplies 493.51
Children's Clothing 235.63

Men's Clothing 247.18
Cameras 379.6
Electronics 296.8
Cameras 242.2
Baby 254.15
Cameras 446.66
Computers 9.23
Cameras 3.64
Music 156.68

Amex

Visa

Cash
Discover
MasterCard
MasterCard
Visa

Cash
Discover
MasterCard
Amex
Discover
Visa

Cash

Column-oriented database

 The most expensive operations involving hard drives are search functions.

 Data is stored as follows: bytes on the hard drive (or RAM).

* A byte can contain one line (or several lines).

2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02

09:00
09:00
09:00
09:00
09:00
09:00
09:00
09:00
15:20
15:20
15:20
15:20
15:20
15:21

San Jose
Fort Worth
San Diego
Pittsburgh
Omaha
Stockton
Austin
New York
Lincoln
San Diego
Wichita
Irvine
Anaheim
San Diego

Men's Clothing

214.05

Women's Clothing 153.57

Music

Pet Supplies

66.08
493.51

Children's Clothing 235.63

Men's Clothing

Cameras
Electronics
Cameras
Baby
Cameras
Computers
Cameras
Music

247.18
379.6
296.8
242.2
254.15
446.66
9.23
3.64
156.68

Amex

Visa

Cash
Discover
MasterCard
MasterCard
Visa

Cash
Discover
MasterCard
Amex
Discover
Visa

Cash

Column-oriented database

The most expensive operations involving hard drives are search functions
=» requires indexing

Data is stored as follows: bytes on the hard drive (or RAM)
A byte can contain one line (or several)

ID, Date, Time, State, Category, amount, card

AAA1, 2012-01-01, 09:00, San Jose, Music, 214.05, Visa

AAA2, 2012-01-01, 09:00, Fort Worth, Women's Clothing, 153.57, Visa
AAA3, 2012-01-01, 09:00, San Diego, Music, 66.08, Cash

AAA4 2012-01-01 09:00, San Jose, Pet Supplies, 493.51, Visa

v
AAA1: 0001, AAA2:0002, AAA3 :0003, AAA4:0004

2012-01-01: 0001, 2012-01-01: 0002, 2012-01-01: 0003, 2012-01-01: 0004
09:00 : 0001, 09:00 : 0002, 09:00 : 0003, 09:00 : 0004
San Jose: 0001, , Fort Worth :0002, San Diego :0003, San Jose :0004
Music : 0001, Women's Clothing :0002, Music :0003, Pet Supplies :0004
214.05 : 0001, 153.57 :0002, 66.08 :0003, 493.51 :0004
Visa : 0001, Visa :0002, Cash :0003, Visa :0004

Column-oriented database

The most expensive operations involving hard drives are search functions
=» requires indexing

Data is stored as follows: bytes on the hard drive (or RAM)
A byte can contain one line (or several)

AAA1: 0001, AAA2:0002, AAA3 :0003, AAA4:0004
2012-01-01: 0001, 2012-01-01: 0002, 2012-01-01: 0003, 2012-01-01: 0004
09:00 : 0001, 09:00 : 0002, 09:00 : 0003, 09:00 : 0004
San Jose: 0001, Fort Worth :0002, San Diego :0003, San Jose :0004
Music : 0001, Women's Clothing :0002, Music :0003, Pet Supplies :0004
214.05 : 0001, 153.57 :0002, 66.08 :0003, 493.51 :0004
Visa : 0001, Visa :0002, Cash :0003, Visa :0004

v

AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;
09:00 : 0001, 0002, 0003, 0004;

San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;
Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 : 0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;

Visa : 0001, 0002, 0004; Cash :0003;

1. Efficient storage

Column-oriented database

stores column values together, enabling efficient compression and indexing of

similar data, thus reducing disk space requirements.

2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-01
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02
2012-01-02

09:00
09:00
09:00
09:00
09:00
09:00
09:00
09:00
15:20
15:20
15:20
15:20
15:20
15:21

San Jose
Fort Worth
San Diego
Pittsburgh
Omaha
Stockton
Austin
New York
Lincoln
San Diego
Wichita
Irvine
Anaheim
San Diego

Men's Clothing

214.05

Women's Clothing 153.57

Music

Pet Supplies

66.08
493.51

Children's Clothing 235.63

Men's Clothing

Cameras
Electronics
Cameras
Baby
Cameras
Computers
Cameras
Music

247.18
379.6
296.8
242.2
254.15
446.66
9.23
3.64
156.68

Amex

Visa

Cash
Discover
MasterCard
MasterCard
Visa

Cash
Discover
MasterCard
Amex
Discover
Visa

Cash

Column-oriented database

* Improved performance for analytical queries
— Data analysis
— Aggregations

Calculate the total sales for the San Jose store?
Calculate the total Music sales for the San Jose store?

AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;
09:00 : 0001, 0002, 0003, 0004;

San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;
Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 :0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;
Visa : 0001, 0002, 0004; Cash :0003;

Column-oriented database

 Data compression

AAA1: 0001; AAA2:0002; AAA3 :0003; AAA4:0004;
2012-01-01: 0001, 0002, 0003, 0004;
09:00 : 0001, 0002, 0003, 0004;

San Jose: 0001, 0004 ; Fort Worth :0002; San Diego :0003;
Music : 0001, 0003 ; Women's Clothing :0002; Pet Supplies :0004;
214.05 : 0001; 153.57 :0002; 66.08 :0003; 493.51 :0004;
Visa : 0001, 0002, 0004; Cash :0003;

 Less suitable for online transactions

— For frequent real-time read-write operations (such as
DBMS)

Column-oriented database

 Example of a column-oriented DB system:
Google BigTable

. Apache Hbase (used by Facebook)

. Apache Cassandra (used by Facebook)
Amazon Redshift

IBM Informix

Oracle Database 12c

N o U AWwN e

Microsoft SQL Server (columnstore)

Graph-Oriented Database

optimized for Complex relationships between data

Graph-Oriented Database

* Optimized for path or neighborhood type queries

Id: 1
Mame: Alice

Age: 18

Graph-Oriented Database

Roger Federer <<

Joueur de tennis

Roger Federer est un joueur de tennis suisse ne le 8 aolt 1981 a Bale.
Joueur professionnel depuis 1998, il detient le record de 302 semaines
passees a la premiére place du classement mondial de tennis ATP World
Tour, ainsi que le record de 17 ... Wikipédia

Naissance : 8 aout 1981 (35 ans), Bale, Suisse

Tournois du Grand Chelem remportés (simple) : 17

Taille : 6 pi 1 po

Epouse : Miroslava VVavrinec (m. 2009)

Enfants : Lennart Federer, Myla Rose Federer, Charlene Riva Federer, Leo
Federer

Distinctions et recompenses : ESPY Award du meilleur joueur de tennis,
plus. ..

Recherches associées Voir d'autres €léments (plus de 15)

o
Rafael Nadal Novak Andy Murray Miroslava Stanislas
Djokovic Vavrinec Wawrinka

Epouse

Graph-Oriented Database

Use cases such as:

1.

2
3
A

social networks,
. recommendations,
. fraud detection,

. network management (IT, transportation,
etc.)

Graph-Oriented Database

e Main Elements:

* Nodes: Objects or entities (e.g., person, product,
etc.)

* Edges or Relationships: Relationships between
nodes (e.g., "likes," "works with")

* Properties: Attributes attached to nodes or edges
Example: (Alice)-[aime]->(Chocolat)

Graph-Oriented Database

Tool

Neodj
OrientDB
ArangoDB

Amazon Neptune

JanusGraph

IBM DB2
Oracle
AllegroGraph
MarkLogic

Description

The most well-known and used, with Cypher
graphe/document
Multi-model (document + graph)

AWS cloud solution

Distributed graph database, integrable with Big
Data

RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language
RDF triplestore, SPARQL Language,, XQuery

Graph-Oriented Database

e RDF is a standard data model for the Semantic
Web, defined by the W3C.

* |tis designed to describe resources
(documents, people, concepts, etc.) and their
relationships in a structured and machine-
readable manner.

* RDF allows data to be automatically linked and
interpreted by computer systemes.

Graph-Oriented Database

 RDF is based on a simple structure:
* Subject: the resource being discussed
* Predicate: the property or relationship

* Object: the value or other related resource

This is called an RDF triplet:
(Subject) -- (Predicate) --> (Object)
(Alice) -- (hasAFriend) --> (Bob)

Graph-Oriented Database

* RDF
 Example : (Alice) -- (hasAFriend) --> (Bob)
* En Format RDF:

<http://example.org/Alice> <http://example.org/ hasAFriend > <http://example.org/Bob>

* There are several formats for writing RDF data:
e Turtle (.ttl): human-readable

 RDF/XML: XML-based

* JSON-LD: JSON-based

@prefix foaf: <http://xmins.com/foaf/0.1/> .
@prefix schema: <https://schema.org/> .
@prefix ex: <http://example.org/> .

--- Utilisateurs ---
ex:Alice a foaf:Person ;
foaf:name "Alice" ;
foaf:age "25" ;
foaf:mbox "alice@example.org" ;
foaf:knows ex:Bob, ex:Charlie .

ex:Bob a foaf:Person ;
foaf:name "Bob" ;
foaf:age "28" ;
foaf:mbox "bob@example.org” ;
foaf:knows ex:Alice .

ex:Charlie a foaf:Person ;
foaf:name "Charlie" ;
foaf:age "24" ;
foaf:mbox "charlie@example.org” ;
foaf:knows ex:Alice .

--- Posts ---
ex:Post1 a schema:CreativeWork ;
schema:author ex:Alice ;
schema:text "Salut tout le monde ! C’est mon
premier post."” ;
schema:datePublished "2025-04-27" .

ex:Post2 a schema:CreativeWork ;

Graph-Oriented Database

@prefix foaf: <http://xmiIns.com/foaf/0.1/> .

@prefix ex: <http://example.org/> .

ex:Alice a foaf:Person ;
foaf:name "Alice" ;
foaf:mbox "alice@example.org" .

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#"

xmlins:foaf="http://xmlns.com/foaf/0.1/"
xmlns:ex="http://example.org/">

<foaf:Person
rdf:about="http://example.org/Alice">
<foaf:name>Alice</foaf:name>
<foaf:mbox>alice@example.org</foaf:mbox>
</foaf:Person>

</rdf:RDF>

Graph-Oriented Database

* Cypher de Neo4;

CREATE (alice:Person {name: 'Alice'})
CREATE (bob:Person {name: 'Bob'})
CREATE (alice)-[:KNOWS]->(bob)

=>»Requests: Find all of Alice's friends:

MATCH (alice:Person {name: 'Alice'})-[:KNOWS]->(friend)
RETURN friend.name

Graph-Oriented Database

//Create Person

CREATE (alice:Person {name: 'Alice’, age: 25})
CREATE (bob:Person {name: '‘Bob’, age: 28})
CREATE (charlie:Person {name: 'Charlie’, age: 24})

//Create Post

CREATE (post1:Post {title: 'Découverte du Web

Sémantique’, date: '2025-04-27"})

CREATE (post2:Post {title: 'Comment bien coder en

Python’, date: '2025-04-26"})
//Create Relation & KNows)

CREATE (alice)-[:KNOWS]->(bob)

CREATE (alice)-[:KNOWS]->(charlie)

//Create Relation Authored

CREATE (alice)-[:AUTHORED]->(post1)
CREATE (bob)-[:AUTHORED]->(post2)

MATCH (p:Person)
RETURN p.name AS name, p.age AS age

MATCH (alice:Person {name: "Alice'})-[:KNOWS]->(friend)
RETURN friend.name AS friend_name

Trouver tous les posts publiés par Alice:

MATCH (alice:Person {name: "Alice'})-[:AUTHORED]->
(post:Post)

RETURN post.title AS post_title, post.date AS
publication_date

Trouver tous les amis d'Alice et leurs posts:

MATCH (alice:Person {name: "Alice'})-[:KNOWS]->(friend)-
[:AUTHORED]->(post:Post)

RETURN friend.name AS friend_name, post.title AS
post_title

Graph-Oriented Database

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rss="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<foaf:Person rdf:about="http://example.net/Paul Dupont">
<foaf:name>Paul Dupont</foaf:name>
<foaf:img rdf:resource="http://example.net/Paul Dupont.jpg"/>
<foaf:knows rdf:resource="http://example.net/Pierre_Dumoulin"/>
</foaf:Person>
<foaf:Person rdf:about="http://example.net/Pierre Dumoulin">
<foaf:name>Pierre Dumoulin</foaf:name>
<foaf:img rdf:resource="http://example.net/Pierre Dumoulin.jpg"/>
</foaf:Person>
<foaf:Image rdf:about="http://example.net/Paul_Dupont.jpg">
<dc:description>Photo d'identité de Paul Dupont</dc:description>
</foaf:Image>
<foaf:Image rdf:about="http://example.net/Pierre Dumoulin.jpg">
<dc:description>Photo d'identité de Pierre Dumoulin</dc:description>
</foaf:Image>
</rdf:RDF>

Base de données Orienté Graphes

SPARQL

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/06.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT DISTINCT ’nom ?image ?description
WHERE {
?’personne rdf:type foaf:Person.
’personne foaf:name ?’nom.
?image rdf:type foaf:Image.
’personne foaf:img ?image.
?image dc:description ?description

