

Directed Work n° 2

Duration: Two sessions

Objectives: Identify the different types of keys and their uses in a relation.

Exercice 1

We consider the User table filled in when registering for a website :

nom	naissance	email	pseudo
Anna Conda	21/01/1990	a.conda@liberte.fr	Croc15
Luc Ratif	14/11/1995	lratif@tropcool.com	Skyrythm
Amandine Aheurfix	05/12/2001	amandix@zone51.org	Ufologue
Marc Assin	18/06/2000	m.assin3@liberte.fr	Quileur0
Béa Bas	09/05/1998	bbas@aloha.net	Sunnyx
Agathe Zeblues	16/02/1992	piano@musique.fr	Piano
Charles Magne	23/04/1997	cmagne2@historia.org	Durandal
Paul Ichinel	12/08/2002	paulic@tropcool.com	Flask34

- (1). Indicate for each attribute whether it can be used as a primary key.
- (2). Give the possible relational schema for the Internet user relationship.

Exercise 2

You are given the following table:

Table: Student

Student_ID	Last_Name	First_Name	Date_of_Birth	Email	National_ID
1001	Dupont	Jean	2002-05-14	jean.dupont@mail.com	AB123456
1002	Martin	Sophie	2001-11-20	sophie.martin@mail.com	CD789012
1003	Leroy	Paul	2003-07-08	paul.leroy@mail.com	EF345678

1. What are the **candidate keys** in this table?
2. Which key would you choose as the **primary key**, and why?

Exercice 3

Consider the library database schema consisting of the following tables:

Student (StudentID, StudentName, StudentAddress)
Book (BookID, BookTitle, AuthorID, PublisherID, ThemeID, PublicationYear)
Author (AuthorID, AuthorName, AuthorAddress)
Publisher (PublisherID, PublisherName, PublisherAddress)
Theme (ThemeID, ThemeTitle)
Loan (StudentID, BookID, LoanDate, ReturnDate)

Rules & Constraints:

- A student can borrow multiple books at the same time.
- When a book is returned, the ReturnDate is updated; otherwise, its value remains null.
- For statistical purposes, all returned books are kept in the Loan (Prêt) table.
- A book cannot be borrowed on the same day it is returned.

Tasks:

1. Identify the primary keys for each table and justify your choice.
2. List all referential integrity constraints that apply to this schema.

Exercise 4 :

Consider the Student table with the following columns:

ID_student (Unique integer, automatically generated)
Email(String, format: xxx@univ.dz)
CNI (National identity card number, unique)
LastName (String)
FirstName (String)
DateOfBirth (Date)

Questions:

Part 1: Candidate Keys

1. List all possible candidate keys. Explain why they qualify as candidate keys.
2. Which column would you choose as the primary key? Justify your choice.
3. If the Email column can be NULL, does it remain a candidate key? Why or why not?

Part 2: Modifying the Table Structure

A new column is added:

- **RegistrationNumber** (Unique integer, format: year + sequential number (e.g., 20240001))

Questions:

1. After this modification, which column would become the best primary key?
2. If the CNI is not mandatory (can be NULL), is it still a candidate key?

Part 3: Composite Keys

Suppose that no single column is individually unique. However, the combination of **LastName + FirstName + DateOfBirth** is unique for each student.

Questions:

1. Can this combination be used as a primary key? What are the advantages and disadvantages?
2. Suggest another possible composite candidate key.

Exercise 5

Write the **SQL queries** to create the following tables, properly defining the primary and foreign keys.

Let be the two tables of a sale Database :

Product(product_code, product_name, price);

Sale(sale_ID, product_code,quantity, sale_date) ;

1. Define the **primary key** for each table.
2. Define the **foreign key** in the **Sale** table.
3. Write the **SQL code** to create these tables.

Exercise 6

Let the following relationship schema be:

```
Personne (Num-Personne, nom, prenom, sexe, adresse)
Exemplaire (Num-exemplaire, date-achat)
Emprunter (Num-Exemplaire, Num-Personne, Date, date-retour)
```

Provide the SQL statements to create the tables **Personne**, **Exemplaire**, and **Emprunter** while ensuring compliance with the following integrity constraints:

- a) All fields must be non-empty.
- b) The **Sexe** field must only take values **F** or **M**.
- c) **Date-retour** must have a default value of **00/00/0000**.
- d) **Date-retour** must always be strictly greater than **Date-achat**.
- e) **Num-Personne** is the primary key of the **Personne** table.
- f) **Num-Exemplaire** is the primary key of the **Exemplaire** table.
- g) **(Num-Exemplaire, Num-Personne, Date)** is the primary key of the **Emprunter** table.