Mohamed Khidher University

Faculty of economics, Commercial and Management Sciences
Department of commerce

Specialty: International Commerce & Finance Module: Advanced Econometric Academic year 2024/2025

Exercise series N°03

Exercise 1: choose the correct answer for the following questions

- 1. What is the primary difference between a probit model and a logit model?
 - a) The probit model uses the logistic function, while the logit model uses the normal cumulative distribution function (CDF).
 - b) The probit model assumes a normal distribution of errors, whereas the logit model assumes a logistic distribution of errors.
 - c) The probit model is used for linear regression, while the logit model is used for classification.
 - d) There is no fundamental difference between the two models.
- 2. In a probit model, what type of function links the independent variables to the probability of an event occurring?
 - a) Linear function
 - b) Logarithmic function
 - c) Normal cumulative distribution function (CDF)
 - d) Exponential function
- 3. Which of the following is an assumption of the probit model?
 - a) The error terms follow a standard normal distribution.
 - b) The dependent variable must be continuous.
 - c) The independent variables must be normally distributed.
 - d) The dependent variable must have more than two categories.
- 4. If the estimated coefficient in a probit model is positive, what does it imply?
 - a) The probability of the event occurring decreases.
 - b) The probability of the event occurring increases.
 - c) The variable is not significant.
 - d) The direction of the effect cannot be determined.
- 5. If a probit model is estimated as follows: $P(Y=1|X) = \Phi(0.5+1.5X)$

What is the probability of Y=1 when X=1?

- a) 0.9772
- b) 0.5000
- c) 0.0228
- d) 0.7500

- 6. Which of the following is a common issue when interpreting probit model coefficients?
 - a) The coefficients directly represent the change in probability.
 - b) The coefficients do not have a direct probabilistic interpretation.
 - c) The coefficients can be interpreted in the same way as those in a linear regression model.
 - d) The coefficients are always positive.
- 7. Which test is commonly used to assess the overall goodness-of-fit of a probit model?
 - a) Durbin-Watson test
 - b) Wald test
 - c) Hosmer-Lemeshow test
 - d) McFadden's R²
- 8. Which of the following distributions does the probit model assume for the error term?
 - a) Standard normal distribution
 - b) Exponential distribution
 - c) Logistic distribution
 - d) Poisson distribution
- **9. You estimate a probit model and find the following output:** Intercept: -1.2, Coefficient on X: 2.4

What is the probability of Y=1 when X=1.0?

- a) 0.8849
- b) 0.1151
- c) 0.5000
- d) 0.7500
- 10. A probit model estimates $P(Y=1|X)=\Phi(2.3X-1.1)$. If X=0.8, what is the probability of Y=1?
 - a) 0.7704
 - b) 0.2296
 - c) 0.5000
- 11. In a probit model, a coefficient of -0.7 for an independent variable means:
 - a) The probability decreases, but the change depends on the standard normal distribution.
 - b) The probability decreases by exactly 0.7 for every unit increase in the variable.
 - c) The probability decreases by 70%.
 - d) The probability is always negative.
- 12. If $\beta 3=-0.4$ and X increases from 1 to 2, what happens to the probability of the event occurring?
- a) It increases
- b) It decreases
- c) It stays the same
- d) It becomes exactly 0.5000

13. A researcher estimates a probit model with the following equation:

 $Z = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

where: $\beta_0 = -0.8$, $\beta_1 = 1.2$, $\beta_2 = 0.5$, $\beta_3 = -0.4$

If $X_1=2$, $X_2=3$, and $X_3=1$, what is the predicted **Z-score** and the probability of event occurring?

- a) z-score is 2.7, the probability id 0.9965
- b) z-score is 1.8, the probability id 0.9641
- c) z-score is 2.7, the probability id 0.9820
- d) z-score is 1.8, the probability id 0.9965

Exercise 2

A bank wants to predict whether a loan applicant will default on their loan based on: Credit Score (X1) and Loan Amount (X2)

1. Write the Probit model equation to predict the probability of loan default;

probability of default =
$$\Phi(\beta_0 + \beta_1 Loan + \beta_2 Credit)$$

2. Estimate the parameters, interpret the results;

Dependent Variable: DEFAULT
Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Date: 03/02/25 Time: 21:50
Sample: 1 30
Included observations: 30
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable	Coefficient	Std. Error	z-Statistic	Prob.
CREDIT SCORE LOAN_AMOUNT C	-0.017764 0.004789 12.89640	0.021377 0.151924 17.68864	-0.830975 0.031524 0.729078	0.4060 0.9749 0.4660
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Restr. deviance LR statistic Prob(LR statistic)	0.281459 0.479463 1.114723 1.254843 1.159549 38.19085 10.74915 0.004633	Mean depen- S.E. of regre Sum squared Log likelihoo Deviance Restr. log likel Avg. log likel	ssion d resid d elihood	0.666667 0.419410 4.749425 -13.72085 27.4417 -19.09543 -0.457362
Obs with Dep=0 Obs with Dep=1	10 20	Total obs		30

probability of default = $\Phi(12.89 + 0.0047Loan - 0.0177Credit)$

Loan Coefficient (0.0047): A 1-unit increase in the loan amount increases the probability of default, since the coefficient is positive, higher loan amounts are associated with a higher likelihood of default.

Credit Coefficient (-0.0177): A 1-unit increase in credit score reduces the probability of default because the coefficient is negative. A higher credit score is associated with lower **default risk**, which aligns with intuition.

3. If a borrower has a **Credit Score of 650** and a **Loan Amount of \$25,000\$**, what is the predicted Z-score

$$Z=12.89+(0.0047\times25000)-(0.0177\times650)$$

This very high Z-score suggests that the probability of default is extremely close to 1 because the cumulative standard normal distribution $\Phi(Z)$ approaches 1 for large positive values.

4. Predict Default for a New Applicant, who has: **Credit Score =800, Loan Amount = \$15,000\$**

$$Z=12.89+(0.0047\times15,000)-(0.0177\times800)$$

where $\Phi(Z)$ is the **cumulative standard normal distribution (CDF)** evaluated at Z = 69.23.

Since **Z** = **69.23** is extremely large, the normal CDF $\Phi(69.23)\approx 1\Phi(69.23)\approx 1$. This means the probability of default is **almost 100%**, which seems unrealistic.

5. If an applicant **increases** their loan amount from \$10,000\$ to \$20,000\$, and the coefficient for Loan what happens to the predicted Z-score?

Since only the **Loan** amount changes (Credit Score remains the same), the effect on \mathbf{Z} is determined by the **Loan coefficient** (0.0047):

$$\Delta Z = 0.0047 \times (20,000 - 10,000)$$

$$\Delta Z = 0.0047 \times 10{,}000 \Delta Z = 47$$

Z-score increases by 47 when the loan amount increases from \$10,000\$ to \$20,000\$. Since the **Z-score represents the latent variable in a probit model**, this means that the **probability of default increases**. However, the exact change in probability depends on where the new **Z-score** falls on the **cumulative normal distribution** $\Phi(\mathbf{Z})$.

If a **Credit Score = 750** and a **Loan Amount = \$10,000\$**, what is the predicted **Z-score** and probability of default? (Use $\Phi(-0.3) = 0.3821$) Z=12.89+(0.0047×10,000)-(0.0177×750)

Z=46.615 Since Z=46.615 is extremely high, it suggests a near-certain probability of default. However, this seems unrealistic for real-world cases, indicating a potential issue with the model coefficients or scaling.