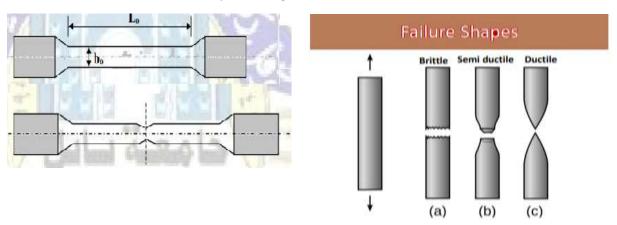
TP Nº1 tensile test


Module: Mechanic 2

1- Objective of tensile test

- Calculating elasticity of Modulus.
- Determine the maximum stress value of the model material (σu, Stress Ultimate).
- Determine the value of the failure stress (Stress Fracture).
- Find the elongation percentage.
- Find the percentage of decrease in cross-sectional area (Area in Reduction %).
- Obtaining the relationship between stress and strain (Curve Strain-Stress)

2- Tensile sample description:

In Figure (1) below, the dimensions of the sample used, made of , with a rectangular cross-section, are noted before and after performing a tensile test on it.

Using the results we obtained from the experiment, the following calculations are performed:

- The strain and strain are calculated:

$$\sigma_n = \frac{F}{S_0} \qquad \qquad \varepsilon_n = \frac{L - L_0}{L_0}$$

-percentage elongation A%:

$$\text{A\%.} = \frac{L_{final} - L_{original}}{L_{original}} *100\%$$

-percentage reduction in Area Z %:

$$Z\% = \frac{A_{original} - A_{final}}{A_{original}} *100\%$$

F(N)	ΔL(mm)	$S_0(mm^2)$	$\sigma = F/S_0 \text{ (MPa)}$	\mathcal{E} = Δ L/L	E= σ/\mathcal{E} (MPa)

Questions:

A standardized tension test is carried out on a beam of diameter d_0 = mm and of length $L_0 \approx$

Using the values from the table above, plot the curve Stress-strain ($\sigma - \epsilon$) and calculate the following values:

- * The module of Young Eth and Eexp E= (E1+....+En)/n
- * The elastic limit stress: σe
- * Maximum tension strength: omax
- * The fracture of stress: ɛr
- * Percentage elongation A%.