

Mohamed Khidher University

*Faculty of economics, Commercial
and Management Sciences
Department of commerce*

*Specialty: International Commerce & Finance
Module: Advanced Econometric
Academic year 2024/2025*

Exercise series N°03

Exercise 1: choose the correct answer for the following questions

1. **What is the primary difference between a probit model and a logit model?**
 - a) The probit model uses the logistic function, while the logit model uses the normal cumulative distribution function (CDF).
 - b) The probit model assumes a normal distribution of errors, whereas the logit model assumes a logistic distribution of errors.
 - c) The probit model is used for linear regression, while the logit model is used for classification.
 - d) There is no fundamental difference between the two models.
2. **In a probit model, what type of function links the independent variables to the probability of an event occurring?**
 - a) Linear function
 - b) Logarithmic function
 - c) Normal cumulative distribution function (CDF)
 - d) Exponential function
3. **Which of the following is an assumption of the probit model?**
 - a) The error terms follow a standard normal distribution.
 - b) The dependent variable must be continuous.
 - c) The independent variables must be normally distributed.
 - d) The dependent variable must have more than two categories.
4. **If the estimated coefficient in a probit model is positive, what does it imply?**
 - a) The probability of the event occurring decreases.
 - b) The probability of the event occurring increases.
 - c) The variable is not significant.
 - d) The direction of the effect cannot be determined.
5. **If a probit model is estimated as follows: $P(Y=1|X)=\Phi(0.5+1.5X)$**

What is the probability of $Y=1$ when $X=1$?

- a) 0.9772
- b) 0.5000
- c) 0.0228
- d) 0.7500

6. Which of the following is a common issue when interpreting probit model coefficients?

- a) The coefficients directly represent the change in probability.
- b) The coefficients do not have a direct probabilistic interpretation.
- c) The coefficients can be interpreted in the same way as those in a linear regression model.
- d) The coefficients are always positive.

7. Which test is commonly used to assess the overall goodness-of-fit of a probit model?

- a) Durbin-Watson test
- b) Wald test
- c) Hosmer-Lemeshow test
- d) McFadden's R^2

8. Which of the following distributions does the probit model assume for the error term?

- a) Standard normal distribution
- b) Exponential distribution
- c) Logistic distribution
- d) Poisson distribution

**9. You estimate a probit model and find the following output: Intercept: -1.2
Coefficient on X: 2.4**

What is the probability of $Y=1$ when $X=1.0$?

- a) 0.8849
- b) 0.1151
- c) 0.5000
- d) 0.7500

10. A probit model estimates $P(Y=1|X)=\Phi(2.3X-1.1)$. If $X=0.8$, what is the probability of $Y=1$?

- a) 0.7704
- b) 0.2296
- c) 0.5000

11. In a probit model, a coefficient of -0.7 for an independent variable means:

- a) The probability decreases, but the change depends on the standard normal distribution.
- b) The probability decreases by exactly 0.7 for every unit increase in the variable.
- c) The probability decreases by 70%.
- d) The probability is always negative.

12. If $\beta_3=-0.4$ and X_3 increases from 1 to 2, what happens to the probability of the event occurring?

- a) It increases
- b) It decreases
- c) It stays the same
- d) It becomes exactly 0.5000

13. A researcher estimates a probit model with the following equation:

$$Z = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

where: $\beta_0 = -0.8$, $\beta_1 = 1.2$, $\beta_2 = 0.5$, $\beta_3 = -0.4$

If $X_1 = 2$, $X_2 = 3$, and $X_3 = 1$, what is the predicted **Z-score** and the probability of event occurring?

- a) z-score is 2.1, the probability is 0.9821
- b) z-score is 1.8, the probability is 0.9641
- c) z-score is 2.1, the probability is 0.9820
- d) z-score is 1.8, the probability is 0.9821

Exercise 2

A bank wants to predict whether a loan applicant will default on their loan based on: **Credit Score (X1)** and **Loan Amount (X2)**

Credit Score (X1)	Loan Amount	Default
600	30	1
650	25	1
700	15	1
750	10	0
720	12	0
680	20	1
710	18	1
640	28	1
670	22	1
730	14	1
690	19	1
620	27	1
740	13	0
660	24	1
780	9	0
630	26	1
760	11	1
725	17	0
605	31	1
675	23	1
745	12	1
695	21	0
715	16	0
655	29	1
785	8	1
610	32	1
770	10	0

725	18	0
640	30	1
720	14	0

1. Write the Probit model equation to predict the probability of loan default ;
2. Estimate the parameters, interpret the results;
3. If a borrower has a **Credit Score of 650** and a **Loan Amount of \$25,000\$**, what is the predicted Z-score
4. Predict Default for a New Applicant, who has: **Credit Score =800, Loan Amount = \$15,000\$**
5. If an applicant **increases** their loan amount from **\$10,000\$ to \$20,000\$**, and the coefficient for Loan what happens to the predicted Z-score?
6. If a **Credit Score = 750** and a **Loan Amount = \$10,000\$**, what is the predicted **Z-score** and probability of default? (Use $\Phi(-0.3) = 0.3821$)