Mohamed Khidher University

Faculty of economics, Commercial and Management Sciences
Department of commerce

Specialty: International Commerce & Finance Module: Advanced Econometric Academic year 2024/2025

Exercise series N°2

Exercise1: Choose the correct answer for the following questions

1. What is a qualitative variable in statistical modeling?

- a) A variable that represents quantities and can take any numerical value.
- b) A variable that represents categories or characteristics, often non-numerical.
- c) A variable that is always continuous and measurable.
- d) A variable that only includes time-related data.

2. Which of the following is an example of a qualitative variable?

- a) Age of an individual (in years).
- b) Monthly income (in dollars).
- c) Employment status (Employed, Unemployed).
- d) Temperature (in Celsius).

3. The Logit Model is used to:

- a) Model a continuous dependent variable based on multiple predictors.
- b) Predict probabilities of outcomes for a binary dependent variable.
- c) Determine the linear relationship between independent and dependent variables.
- d) Identify time-series patterns in data.

4. The Logit Model formula can be expressed as:

- a) $P(Y=1)=\beta_0+\beta_1X$.
- b) $P(Y=1)=1/(1+e^{-(\beta_0+\beta_1X)}$
- c) $Y=ln(\beta_0+\beta_1X)$
- d) $Y=e^{\beta 0+\beta 1X}$

5. The Logit Model is best suited for:

- a) Predicting stock prices.
- b) Modeling binary outcomes such as "success vs. failure."
- c) Determining relationships between continuous variables.
- d) Identifying seasonal trends in data.

6. In a Logit Model, the coefficients (β) represent:

- a) The change in the log-odds of the dependent variable for a one-unit change in the predictor.
- b) The probability of success.
- c) The likelihood of multicollinearity.
- d) The mean value of the independent variable.

7. Which of the following is an application of the Logit Model?

- a) Predicting the likelihood of a customer purchasing a product (Yes/No).
- b) Estimating the annual revenue of a company.
- c) Modeling temperature changes over time.

- d) Determining the variance of residuals in linear regression.
- 8. The dependent variable in a Logit Model:
- a) Can take on any real number.
- b) Must be a binary variable (e.g., 0 or 1).
- c) Must be a categorical variable with more than two levels.
- d) Represents the residual error.
- 9. If a logistic regression model produces a coefficient of 0.7 for a variable, what does the corresponding odds ratio indicate?
- a) The odds increase by 70% for a one-unit increase in the independent variable
- b) The odds increase by 100% for a one-unit increase in the independent variable
- The odds increase by $e^{0.7} \approx 2.01$ or 101% for a one-unit increase in the independent variable
- d) The probability of the event occurring is exactly 0.7

10. In a dataset for a Logit Model, which of the following is most appropriate for the dependent variable?

- a) The height of individuals in centimeters.
- b) The income of individuals in dollars.
- c) Whether a student passes or fails an exam (Pass = 1, Fail = 0).
- d) The number of hours worked per week.

11. Which of the following metrics is commonly used to assess the goodness-of-fit of a logistic regression model?

- a) Adjusted R²
- b) Pseudo R² (e.g., McFadden's R²)
- c) Mean Squared Error (MSE)
- d) Variance Inflation Factor (VIF)

Exercise 2

The goal of this study is to **predict whether a customer will purchase a product (Y=1) or not (Y=0)** based on four key independent variables: **Income** – The financial capability of the customer, which may affect purchasing power. **Age** – The age of the customer, which could influence spending behavior. **Advertisement Exposure** – The number of ads seen by the customer, which may impact product awareness and decision-making. **Product Price** – The cost of the product, which plays a critical role in affordability and purchase likelihood.

- 1. Write the logit model, and the logit regression equation
- 2. Using the given data:Perform logistic regression (using EViews). Obtain the estimated values of β_0 , β_1 , β_2 and β_3 .
- 3. Explain the effect of independent variables on the likelihood of purchase based on the sign and magnitude of β_1 and β_2 , β_3 .
- 4. Predict the probability of purchase for a customer with income 70, age 40, Ads seen 7 and price of 67
- 5. Which factor has the **strongest influence** on customer purchasing decisions?

Solution

1. Write the logit model, and the logit regression equation

$$P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 Inc + \beta_2 Age + \beta_3 Adv + \beta_4 Price)}}$$

Logi regression :
$$ln\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 + \beta_1 Inc + \beta_2 Age + \beta_3 Adv + \beta_4 Price$$

Dependent Variable: PURCHASE_DECISION Method: ML - Binary Logit (Newton-Raphson / Marquardt steps) Date: 02/17/25 Time: 09:05 Sample: 1 40 Included observations: 40 Convergence achieved after 9 iterations Coefficient covariance computed using observed Hessian				
Variable	Coefficient	Std. Error	z-Statistic	Prob.
PRODUCT_PRICE INCOME AD_EXPOSURE AGE C	0.107490 -0.078677 1.111428 -0.229501 -15.41308	0.119576 0.188334 1.073290 0.222031 8.295061	0.898928 -0.417756 1.035533 -1.033643 -1.858103	0.3687 0.6761 0.3004 0.3013 0.0632
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Restr. deviance LR statistic Prob(LR statistic)	0.800026 0.500641 0.522706 0.733816 0.599037 54.54837 43.64012 0.000000	Mean dependent var S.E. of regression Sum squared resid Log likelihood Deviance Restr. log likelihood Avg. log likelihood		0.575000 0.225012 1.772057 -5.454125 10.90825 -27.27418 -0.136353
Obs with Dep=0 Obs with Dep=1	17 23	Total obs		40

$$logit (purchase) = -15.41 - 0.078Inc - 0.229Age + 1.11Adv + 0.107Price$$

-The logit regression shows that the income has a coefficient of -0.078, indicating a weak negative relationship with the probability of purchase.

A one-unit increase in income decreases the odds of purchase by approximately 7.5%. however, since the p-value is 0.67 (> 0.05), we cannot conclude that this relationship is statistically significant.

-The logit regression shows that age has a coefficient of -0.22, indicating a medium negative relationship with the probability of purchase.

A one-unit increase in Age decreases the odds of purchase by 2.26%. However, since the **p-value** is 0.30 (> 0.05), we cannot conclude that this relationship is statistically significant.

-The logit regression shows that price has a coefficient of 0.107, indicating a medium positive relationship with the probability of purchase.

A one-unit increase in price increase the odds of purchase by 11.29%. However, since the p-value is 0.36 (> 0.05), we cannot conclude that this relationship is statistically significant.

-- The logit regression shows that Ads seen has a coefficient of 1.111, indicating a strong positive relationship with the probability of purchase.

A one-unit increase in Ads seen increases the odds of purchase by 203.7%. However, since the p-value is 0.30 (> 0.05), we cannot conclude that this relationship is statistically significant.

Predict the probability of purchase for a customer with income 70, age 40, Ads seen 7 and price of 67

$$\widehat{\pmb{P}} = \frac{e^{(-15.41 - 0.078*70 + 1.111*7 + 0.107*67 - 0.22*40)}}{1 + e^{(-15.41 - 0.078*70 + 1.111*7 + 0.107*67 - 0.22*40)}} = \frac{e^{-21.89}}{1 + e^{-21.89}} = 3,10449\text{E}-10$$

the **strongest influence** on customer purchasing decisions is the Ads seen as one unit increase in advertising exposure increase the probability of purchase by 203,7%