SW 4

Exercise 1:

Consider the system described by the image opposite. Neglect the difference in heights of the liquid.

a) Express the force F_2 as a function of the force F_1 and the surfaces S_1 and S_2 .

b) How much does the surface S_2 rise when the surface S_1 descends from a height h1?

c) When S_2 is about 100 times greater than S_1 , how can we practically make S_2 rise by 2.00 meters?

(S1 cannot descend more than a few decimeters!)

Solution

a) Neglecting the difference in height of the liquid, the pressure in (1) is the same as in (2). We therefore have: $P_1=P_2$, therefore $F_1/S_1=F_2/S_2$.

By isolating F₂, we obtain: $F_2 = S_2 \cdot F_1 / S_1$. We prefer to write: $F_2 = \frac{S_2 \cdot F_1}{S_1}$

b) When the piston in (1) goes down, the one in (2) goes up so that the volume of oil that is driven out in (1) equals that which is pushed in (2). Therefore $S_1 \cdot h_1 = S_2 \cdot h_2$

The surface S₂ therefore goes up by $h_2 = \frac{S_1}{S_2} \cdot h_1$

when the surface S_1 goes down by h_1 .

Of course, we also have the relation ship: $h_1 = \frac{S2}{S1} \cdot h_2$

c) In the case where $S_2/S_1=100$, h1 would have to be lowered by 200 meters to raise the car by 2.00 meters. This is not practical.

What is done in practice is to lower the surface S_1 by $h_1 = 20$ centimeters, then block the oil duct between sides (1) and (2) and raise the surface S1 by 20 centimeters by injecting oil from an external tank, to open the duct between sides (1) and (2) again. By performing this sequence of movements 1,000 times, the car is raised by 2.0 meters. This process requires a volume of oil from the tank equal to $V = S_2 \cdot h_2$. If $S_2 = 3.00 \text{ [m^2]}$ and $h_2 = 2.00 \text{ [m]}$, then the volume of oil injected from the reservoir is: V =S₂·h₂ =3.00·2.00=6.00 [m³]. The variation in volume on side (1) is negligible. Exercise 2:

In the figure opposite, the surfaces of cylinders A and B are respectively 40 and 4000 cm² and B has a mass of 4000 kg. The container and the pipes are filled with oil of density d = 0.75. Neglecting the weight of cylinder A, determine the force F that will ensure equilibrium.

Solution:

Let us first determine the pressure acting on piston A:

Since X_L and X_R are at the same level in the same liquid, then Pressure at X_L = pressure at XR.

Pressure at X_L = Pressure under A + pressure due to 5 m of oil = P_A+d_{oil}. ρ_{water} .g.h And Pressure at X_R = $\frac{WEIGHT \ OF \ B}{SURFACE \ OF \ B}$ = $\frac{m_B}{SURFACE \ OF \ B}$ Pressure at X_L = pressure at X_R \Rightarrow P_A+d_{oil}. ρ_{water} .g.h= $\frac{m_B}{SURFACE \ OF \ B}$ AN : P_A+ 0,75 × 1000 × 9,807 × 5=4000×9,807 / 0,4 \Rightarrow P_A +36776,25=98070 \Rightarrow P_A = 61293,75 Pa Force F = P_A × S_A = 61293,75 × 4 × 10-3 = 245,175 N

Exercice 3

For the three immiscible liquids in Figure 1, determine the heights at which the ends of the three tubes are open to the atmosphere.

We are given: the density of mercury $\rho_{Hg} = 13600 \text{ kg/m3}$. the density of water $\rho_{H20}=1000 \text{ kg/m3}$, the density of oil $\rho_{oil}=780 \text{ kg/m3}$

Solution do l'Explicit prints (orvise do l'Éranne
Déterminer les hauteurs
$$h_1$$
 et h_2 ?
(Determiner les hauteurs h_1 et h_2 ?
(Determiner les h_1 et h_2 ?
(Determiner h_1 h_2 ?
(Determiner h_1 ?

(

AN:
$$3_B - 3_C = \underline{13600.008 - 1000.027} = 0,0601 \text{ m}}{\underline{13600}}$$

 $h_1 = 6,0 \pm Cm$ 0.5
Pour (h_2) on procède de la même manière:
 \textcircled{O} Appliquer R.F.H entre F et E; on obtient.
 $\underline{14/5}$

Scanné avec CamScanner

$$\begin{split} P_{F} + \frac{3}{4} \lim_{e \to 0} \frac{1}{3} \frac{1}{2} = P_{E} + \frac{1}{4} \lim_{e \to 0} \frac{1}{2} \cdot \frac{3}{8} \frac{1}{2} \dots \frac{1}{2} + \frac{1}{2} \frac{1}{2} \cdot \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \frac{1}{2$$