
DRAFT
Human Machine Interface

TELLI AbdelmoutiA
Class A Associate Professor

Computer Science Department
Biskra University

2023-2024



DRAFT

Domaine: Mathematics and Computer Science
Title of the ACADEMIC LICENSE: Computer Science
Speciality: Informatic Systems
Semestre: S5
Fundamental teaching unit: UEF2
Title of the material: Human Machine Inteface.
Credits: 5
Coefficients: 3
Objectives of teaching: Allow students to acquire skills to create visual
graphical interfaces while respecting ergonomic criteria and design standards
of interactive and user-friendly interfaces.
Knowledge of ergonomic rules.
Knowledge of HMI development methods.
Coupling with the object-based development method.
Implementing these methods in a project.
Recommended prior knowledge: Algorithms and data structure, soft-
ware engineering.
Content of the material:

1. Chapter I: Notions of interaction.

2. Chapter II: HMI construction methodology.

3. Chapter III: Models and architectures.

4. Chapter IV: Ergonomic rules in HMIs.

5. Chapter V: Multi-users interface design.

6. Chapitre VI : Interfaces adaptatives

7. Chapter VII: Multimodal interfaces and future interfaces.

Evaluation method: Exam (60%) + Continuous assessment (40%).

1 TELLI A.



DRAFT

The author has prepared this work by collecting a wide range
of different scientific sources for educational purposes. The use
of these courses is authorized as part of university training with
mention of the author.

Rferences

• Ménadier Jean-Paul, l’interface utilisateurs: Pour une informatique
conviviale, DUNOD, Informatique et Stratégie, 1991.

• Coutaz Joelle, Interface homme ordinateur: conception et réalisation
Dunod Informatique 1990.

• Kolski, C, Ezzedine, H et Abed, M, Développement du logiciel:
des cycles classiques aux cycles enrichis sous l’angle des IHM », ouvrage
collectif, Analyse et conception de l’IHM, Interaction homme machine
pour les systèmes d’information Vol 1, Hermès, 2001.

• Drouin, A, Valentin, A et Vanderdonckt, J, Les apports de
l’ergonomie à l’analyse et à la conception des syteme d’information,
in Christophe KOLSKI, Analyse et conception de l’IHM, Interaction
homme machine pour les systèmes d’information Vol 1, Hermes, 2001.

• David Benyon, Designing Interactive Systems: A Comprehensive
Guide to HCI, UX and Interaction Design,Pearson; 3 edition, 2013.

• Yvonne Rogers, Helen Sharp et Jenny Preece, Interaction Design:
beyond human computerinteraction (3rd edition), Wiley, 2011

• Norman DA, The Design of Everyday Things, Basic Books, 2002.
Serengul Smith Atakan The Fast Track to Human Computer Interac-
tion, (Paperback) Thomson Learning, 2006.

2 TELLI A.



DRAFT

Contents

1 Notions of interaction 7

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Causes for rejection of applications . . . . . . . . . . . . . . . 10

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Definition of an HMI . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 History of HMI . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 HMI construction methodology 15

2.1 Classic methodology . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Identification stage . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Task analysis stage . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Modeling stage . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Specification stage . . . . . . . . . . . . . . . . . . . . 20

3 Models and Architectures 22

3



DRAFT

CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The Dialog Controller . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Presentation of the Seeheim model . . . . . . . . . . . . . . . 24

3.4 Presentation of the PAC model . . . . . . . . . . . . . . . . . 25

3.5 Presentation of MVC model . . . . . . . . . . . . . . . . . . . 26

3.6 Presentation of agent models . . . . . . . . . . . . . . . . . . . 27

4 Ergonomic rules in HMIs 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Rules of User Interface Design . . . . . . . . . . . . . . . . . . 30

4.2.1 Visibility of system status . . . . . . . . . . . . . . . . 30

4.2.2 Match between the system with the real world . . . . 31

4.2.3 User control and freedom . . . . . . . . . . . . . . . . . 32

4.2.4 Consistency and standards . . . . . . . . . . . . . . . . 32

4.2.5 Error prevention . . . . . . . . . . . . . . . . . . . . . 33

4.2.6 Recognition rather than recall . . . . . . . . . . . . . . 33

4.2.7 Flexibility and efficiency of use . . . . . . . . . . . . . 34

4.2.8 Aesthetic and minimalist design . . . . . . . . . . . . . 34

4.2.9 Help users recognise, diagnose and recover errors . . . . 34

4.2.10 Help and documentation . . . . . . . . . . . . . . . . . 35

4.3 Nielsen heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 TELLI A.



DRAFT

CONTENTS

4.4 Bastien and Scapin ergonomic criteria . . . . . . . . . . . . . . 39

4.5 Coutaz Golden Rules . . . . . . . . . . . . . . . . . . . . . . . 43

5 Multi-users interface design 44

5.1 Steps for Multi-User Interface Design . . . . . . . . . . . . . . 45

5.2 Single-user Vs Multi-User HMI . . . . . . . . . . . . . . . . . . 46

5.3 User-centered design methods . . . . . . . . . . . . . . . . . . 48

5.3.1 Principles of UCD . . . . . . . . . . . . . . . . . . . . 48

5.3.2 The UCC process . . . . . . . . . . . . . . . . . . . . . 49

5.3.3 Advantages of UCD . . . . . . . . . . . . . . . . . . . . 51

5.3.4 UCD vs. HCD . . . . . . . . . . . . . . . . . . . . . . 52

5.3.5 User centred design examples . . . . . . . . . . . . . . 53

5.4 Examples of multi-user interface . . . . . . . . . . . . . . . . . 54

6 Interfaces Adaptatives 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 The Vaudry Model . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Aspects of adaptation . . . . . . . . . . . . . . . . . . 56

6.2.2 Principle of Adaptation in HMI(s) . . . . . . . . . . . . 56

6.2.3 Adaptability Vs Adaptivity . . . . . . . . . . . . . . . . 58

6.3 Study of an example: Agent model . . . . . . . . . . . . . . . 60

6.3.1 The Agent Presentation free space calculation algorithm 61

5 TELLI A.



DRAFT

CONTENTS

6.3.2 Example of screen splitting . . . . . . . . . . . . . . . . 62

7 Multimodal Interfaces and Future Interfaces 64

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Multimodal interfaces . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.1 Type of multimodal interfaces . . . . . . . . . . . . . . 66

7.3 Advanced interaction techniques . . . . . . . . . . . . . . . . . 71

7.3.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . 71

7.3.2 Tangible Interface . . . . . . . . . . . . . . . . . . . . . 71

7.3.3 3D projection (Hologram) . . . . . . . . . . . . . . . . 72

7.3.4 Movement Analysis . . . . . . . . . . . . . . . . . . . . 72

7.4 Visual Programming . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.1 Characteristics of Visual Programming . . . . . . . . . 73

7.4.2 Elements of Visual Programming . . . . . . . . . . . . 75

6 TELLI A.



DRAFT

Chapter 1

Notions of interaction

1. Definitions: Interaction, Interactivity, ...

2. Causes for rejection of certain applications.

3. Challenges.

4. Difficulties.

5. Definition of an HMI.

6. History of HMIs.

Introduction

Human Machine Interface (HMI) is a technology that serves as a bridge
between humans and machines, allowing users to interact with and control
machines or systems. It is a critical component in various industries, particu-
larly in automation and control systems. HMI technology plays a crucial role
in simplifying human interaction with complex machines and systems across
various industries, enhancing efficiency and safety in industrial processes.

7



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

1.1 Definitions

Notions of interaction on Human-Machine Interfaces (HMI) refer to the ways
in which humans and machines communicate and collaborate in various con-
texts:

Human-Computer Interaction (HCI): HCI is a multidisciplinary
field that explores how humans interact with computers and HMI systems.
It encompasses the study of user interfaces, user experience design and us-
ability.

User-Centered Design: Interaction on HMI is often guided by user-
centered design principles, where the focus is on creating interfaces that meet
the needs and preferences of users.

Interactivity: HMI systems can vary in terms of interactivity, ranging
from simple push-button controls to advanced touchscreens, voice recogni-

8 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

tion, and gesture-based interfaces.

Feedback and Response: Effective interaction involves providing users
with feedback on their actions and the system’s response. This can include
visual cues, sounds, or haptic feedback.

Adaptive Interfaces: Some HMIs incorporate adaptive features that
learn from user behavior and adjust the interface accordingly, aiming to
enhance user satisfaction and efficiency.

Cross-Platform Interaction: With the increasing use of mobile de-
vices, cross-platform interaction is essential. HMIs may need to adapt to
different screen sizes and input methods.

Safety and Ergonomics: Interaction design in critical systems, such
as industrial control panels, focuses on safety and ergonomics to prevent
accidents and minimize user fatigue.

Future Trends: The future of HMI is likely to involve more advanced
technologies like augmented reality, virtua reality, and natural language pro-
cessing, enabling more intuitive interactions.

9 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

1.2 Causes for rejection of applications

There are several reasons why certain applications on Human-Machine In-
terfaces (HMI) may be rejected or encounter issues:

Access Restrictions: errors can occur when the user does not have the
necessary permissions to run or modify an application on the HMI.

High CPU Usage: Some applications may lead to excessive CPU usage,
causing performance problems or even system crashes.

Connection Failures: Applications relying on network connections, like
Vijeo Designer Air App, may fail due to network issues or misconfiguration.

Errors in Application Design: Poorly designed applications may trig-
ger errors, indicating issues within the application.

User Administration: In complex systems like WinCC (TIA Portal),
incorrect user administration settings can lead to access problems.

Compatibility: Compatibility issues with specific HMI hardware or soft-
ware versions may cause rejection or malfunction of applications.

Communication Problems: Applications using protocols like OPC
UA may encounter communication problems if not properly configured or
integrated.

File Copying Errors: Copying HMI applications can lead to issues
like "Problems opening InTouch after copying an application" if not done
correctly.

Known Software Issues: Some software versions may have known is-
sues, as documented in the list of known issues for iX Developer.

Documentation: Users may face challenges when applications are not
well-documented, making it difficult to troubleshoot or operate.

10 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

1.3 Challenges

Human-Machine Interface (HMI) design and implementation present various
challenges in different domains. Addressing these challenges requires exper-
tise in interface design, human factors, technology integration, and continu-
ous adaptation to evolving user needs and expectations.

User Interface Complexity: Complex user interfaces can confuse users
and hinder efficient interaction.

HMI Failures: Failures such as unresponsive touchscreens or system
crashes can disrupt operations.

Brain-Computer Interface (BCI) Limitations: BCI integration with
HMI faces limitations in accuracy and practicality.

Next-Generation HMI Development: Developing advanced HMI so-
lutions requires overcoming technical and design challenges.

Technology Integration: Integrating new technologies into HMIs, like
augmented reality or voice commands, can be challenging.

Automotive HMI Design: The automotive sector grapples with de-
signing intuitive and safe HMIs for vehicles.

Transportation Interface: Ensuring user-friendly interfaces in trans-
portation systems is vital for safety.

Audio-Based HMIs: Challenges in designing audio-based HMIs include
noise interference and user adaptability.

LCD HMI Challenges: Overcoming challenges associated with LCD-
based HMIs, such as visibility and durability.

Software Development: Developing automotive software for HMIs in-
volves addressing specific challenges.

11 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

1.4 Difficulties

Designing Human-Machine Interfaces (HMI) presents several difficulties, in-
cluding:

Diverse User Base: HMIs must cater to a wide range of users with
varying levels of technical expertise, making user-friendly design crucial.

Complex Manufacturing Environments: In manufacturing, HMIs
are used in complex settings with machinery and processes. Ensuring these
interfaces are intuitive and efficient is challenging.

Communication Gap: Bridging the gap between designers and devel-
opers is essential. Often, designers create HMI concepts that developers need
to implement accurately.

To address these difficulties, HMI designers focus on user-centered design
principles, emphasizing user needs and usability testing. Collaborative ef-
forts between designers and developers, as well as continuous feedback loops,
help refine HMI designs. Additionally, staying updated with innovative HMI
technologies can simplify complex manufacturing environments.

1.5 Definition of an HMI

A Human-Machine Interface (HMI) is a technology or interface that allows
communication between a human operator and a machine, system, or de-
vice. It serves as a bridge for users to interact with and control machines or
processes efficiently. HMIs typically include components like touchscreens,
graphical displays, buttons, and software applications.

12 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

Common elements of an HMI include:

Graphical User Interface (GUI): This visual component presents in-
formation in a user-friendly manner, often using icons, graphics, and menus.

Input Devices: HMIs offer various input methods such as touchscreens,
keyboards, or mice to allow users to input commands or data.

Control Functions: Users can control machines or processes through
the HMI, issuing commands, setting parameters, and monitoring perfor-
mance.

Feedback: HMIs provide feedback to users, showing the current status,
alarms, and relevant data.

Integration: They integrate with the underlying systems or machinery,
facilitating data exchange and control.

HMI technology is widely used in industries such as manufacturing, au-
tomation, healthcare, and more, enhancing operational efficiency and en-
abling users to interact with complex systems effectively.

13 TELLI A.



DRAFT

CHAPTER 1. NOTIONS OF INTERACTION

1.6 History of HMI

The history of HMI is a fascinating journey that has evolved significantly
over time. Here’s a concise overview:

1. Early Precursors: The predecessors of HMI include early mechanical
interfaces used for controlling machinery. Examples include levers, buttons,
and dials, which were manual and lacked the sophistication of modern HMIs.

2. Digitization: With the advent of digital technology, the evolution
of HMIs accelerated. The transition from mechanical interfaces to digital
screens allowed for more dynamic and intuitive interactions with machines.

3. Graphical User Interfaces (GUIs): The development of GUIs rev-
olutionized HMI design. GUIs made use of icons, menus, and visual elements
to simplify complex interactions, making machines more user-friendly.

4. Touchscreens: The introduction of touchscreens further enhanced
user experiences. These interfaces eliminated the need for physical buttons,
offering a more adaptable and versatile way to control and interact with
machines.

5. Advanced Functionality: Modern HMIs are capable of sophisti-
cated tasks, including real-time monitoring, data visualization, and remote
control. They have become integral in various industries, including manu-
facturing, automation, and process control.

6. Integration with AI and IoT: The latest trend in HMI development
involves integrating Artificial Intelligence (AI) and the Internet of Things
(IoT) to create smarter and more responsive interfaces.

To explore the rich history of HMI in more detail, the provided sources
offer comprehensive insights into its evolution, including articles on the roles
of women in shaping HMI interfaces, the transition toward easier design.

14 TELLI A.



DRAFT

Chapter 2

HMI construction methodology

1. Classic Methodology.

2. Identification stage.

3. Task analysis stage.

4. Modeling stage.

5. Specification stage.

Introduction

Human Machine Interface (HMI) construction methodology refers to the pro-
cess of designing and implementing the interface between humans and ma-
chines, particularly in the context of construction equipment and machinery.
This involves creating user-friendly interfaces that enable operators to inter-
act with and control complex machinery efficiently and safely.

15



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

2.1 Classic methodology

The classic methodology for constructing a HMI involves a systematic ap-
proach to designing and implementing interfaces for human interaction with
machines or systems.

Here is a general outline of the classic HMI construction methodology:

User Needs Assessment: Begin by identifying the needs and require-
ments of the users who will interact with the HMI. This includes understand-
ing their tasks, preferences, and expectations.

HMI Design: Create a user-centered design for the HMI based on the
gathered user requirements. This design phase includes layout planning,
selecting appropriate controls (buttons, touchscreens, etc.), and defining data
visualization methods.

Hardware and Software Integration: Implement the hardware com-
ponents (sensors, displays, input devices) and the software systems (control
algorithms, user interface software) required for the HMI.

Prototyping: Develop a prototype or mockup of the HMI to test its
usability and functionality. This allows for early user feedback and design
improvements.

16 TELLI A.



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

Usability Testing: Conduct usability testing with representative users
to evaluate the HMI’s effectiveness, efficiency, and user satisfaction. Make
necessary adjustments based on user feedback.

Safety Considerations: If applicable, integrate safety features and
emergency shutdown controls into the HMI to ensure user and system safety.

Documentation: Create comprehensive documentation, including user
manuals and training materials, to assist users in understanding and using
the HMI effectively.

Training: Provide training to users and operators to ensure they are
proficient in using the HMI to control the associated machinery or system.

Maintenance and Updates: Develop a plan for ongoing maintenance
and updates of the HMI to address issues, improve performance, and adapt
to changing user needs or technology advancements.

Validation and Compliance: Ensure that the HMI complies with rel-
evant industry standards and regulations, particularly in safety-critical ap-
plications.

Deployment: Finally, deploy the HMI in its intended environment,
whether it’s in manufacturing, automation, transportation, or another field,
and monitor its performance in real-world conditions.

This classic methodology prioritizes user-centric design and iterative de-
velopment to create an HMI that is intuitive, efficient, and safe for operators.
It is adaptable to various industries and technologies, making it a founda-
tional approach in HMI construction.

17 TELLI A.



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

2.1.1 Identification stage

The identification stage in HMI construction methodology focuses on gath-
ering requirements, identifying assets and access points, understanding user
mental models, and fostering innovative solutions for effective HMI design:

1. Analysis: During this phase, the design team identifies the goals and
requirements of the HMI system. This includes understanding the spe-
cific needs of users and the tasks the system will perform. The analysis
helps in defining the scope and purpose of the HMI.

2. User Needs Assessment: Part of the identification stage involves
assessing the needs and preferences of the end-users. This step ensures
that the HMI is tailored to meet the users’ expectations and require-
ments.

3. System Requirements: Identifying the technical and functional re-
quirements of the HMI system is essential. This includes determining
the hardware and software components, data inputs, and communica-
tion protocols necessary for seamless interaction.

4. Goal Definition: Clearly defining the objectives and goals of the HMI
helps in creating a design that aligns with the intended outcomes.

2.1.2 Task analysis stage

During this stage, detailed analysis of the tasks that users will perform with
the HMI system is conducted to inform the design and development process.
The main aspects of the task analysis stage:

• Identifying User Tasks: Task analysis begins with identifying and com-
prehending the specific tasks that users need to accomplish.

18 TELLI A.



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

• Task Decomposition: This decomposition helps in creating a clear and
detailed picture of what users need to do.

• Hierarchical Task Analysis: This hierarchical structure helps in design-
ing an intuitive interface that reflects the user’s mental model.

• Task Sequencing: Task analysis also includes determining the order
and sequence of tasks, as well as any dependencies between them.

• Usability and Performance: The information gathered during task anal-
ysis is used to evaluate and refine the design of the interface to ensure
that it supports users in performing their tasks efficiently.

• Iterative Process: It’s important to continuously refine the analysis as
the design evolves.

2.1.3 Modeling stage

This stage involves creating a model or prototype of the HMI interface based
on the findings from the earlier stages:

19 TELLI A.



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

The modeling stage serves as the bridge between conceptual design and
actual implementation. It allows for testing and refining the HMI interface
before it is deployed in real-world applications. The iterative nature of this
stage ensures that user feedback is incorporated, resulting in an HMI that
meets user needs and expectations.

2.1.4 Specification stage

In this stage the detailed requirements and specifications for the HMI system
are defined. It lays the foundation for the entire HMI development process
and ensures that the system meets the needs of users and the objectives of
the project. The main aspects of the specification stage are:

• Study of needs for the HMI: It involves a comprehensive analysis
to understand the specific requirements and expectations of the users
and the project.

• Conceptual specification: A conceptual specification for a Human-
Mmachine Interface (HMI) involves defining the high-level require-
ments and design principles before delving into the detailed design and
implementation.

• Functional specification: Enumerate all the functional capabilities
of the HMI system, such as:

– Real-time monitoring of processes or equipment.

– Control functions, including start, stop, and adjust.

– Data visualization, trends, and historical data access.

– Alarm management and notifications.

– User authentication and security features.

20 TELLI A.



DRAFT

CHAPTER 2. HMI CONSTRUCTION METHODOLOGY

1. Syntactic specification: refers to the definition of rules and grammar
that dictate how commands, data, and interactions within the HMI
system should be structured and formatted. It includes:

• Command Syntax: defines the syntax for issuing commands to
the HMI system, specifying how users should provide instructions.

• Data Representation: HMI systems often display data to users.
Syntactic specification outlines how data should be represented
visually, specifying formats for numerical values, text, graphics,
and other data types.

• Message Formatting: In communication between the HMI and
other devices or systems, syntactic specification governs the for-
mat of messages. This includes specifying how data is structured
within messages, the use of protocols, and data encoding formats.

2. Lexical specification: refers to the definition of rules and guidelines
for recognizing and interpreting individual words, symbols, and tokens
within the HMI system. It can accurately process and understand user
inputs and commands. The lexical specification includes:

• Reserved Keywords: HMI systems often have reserved key-
words or commands that trigger specific actions. Lexical speci-
fication lists and defines these keywords, ensuring that they are
recognized as commands when used in user inputs.

• Data Types: It defines the lexicon of data types used in the HMI
system. This includes specifying how different data types.

• Symbols and Operators: Lexical specification includes rules
for recognizing symbols and operators used for calculations or in-
teractions.

• Localization: defines how different languages or dialects are han-
dled within the HMI.

21 TELLI A.



DRAFT

Chapter 3

Models and Architectures

1. The Dialog Controller (definition and role).

2. Presentation of the Seeheim model

3. Presentation of the PAC model

4. Presentation of MVC model

5. Presentation of agent models

22



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

3.1 Introduction

The architectures governing HMI software encompass the fundamental de-
sign principles and templates that steer the development, fusion, and upkeep
of these applications. Nonetheless, these HMI software architectures exhibit
substantial variability contingent on the platform, device, and specific do-
main of the HMI application. Such disparities pose notable challenges, in-
cluding issues of inconsistency, suboptimal performance, and the potential
for incompatibility when transitioning across diverse HMI systems.

In this chapter, we delve into the exploration of strategies and frameworks
aimed at achieving standardization of HMI software architectures across a
spectrum of platforms and devices.

3.2 The Dialog Controller

The Dialog Controller on an Human-Machine Interface (HMI) is a component
responsible for managing and controlling dialog boxes or windows that appear
on the interface. These dialog boxes are typically used to interact with users,
display information, and request input. Here’s an explanation of the Dialog
Controller’s role:

Dialog Box Management: The Dialog Controller oversees the creation,
display, and removal of dialog boxes.

User Interaction: It handles user interactions within dialog boxes. This
includes capturing user input, such as button clicks, text entries, and selec-
tions from dropdowns, and processing these inputs accordingly.

Data Exchange: It facilitates communication between the dialog boxes
and the underlying software or system. It transfers data entered or selected
by the user to the appropriate parts of the HMI application.

23 TELLI A.



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

Navigation: It manages the flow of dialog boxes, determining which
dialog should appear next based on user interactions and application logic.

Error Handling: The Dialog Controller can also handle error messages
and prompts, ensuring that users are informed of any issues or exceptional
conditions.

Appearance and Behavior: It controls the appearance and behavior of
dialog boxes, including their layout, styling, animations, and responsiveness
to different screen sizes and orientations.

User Guidance: In some cases, the Dialog Controller may provide guid-
ance or assistance to users through tooltips, hints, or context-sensitive help.

3.3 Presentation of the Seeheim model

The Seeheim Model is an architectural pattern introduced in 1983 to struc-
ture the human-computer interaction in interactive software. It provides a
logical framework for designing user interfaces. This model separates the
dialogue structure from the presentation of the user interface.

This model was created before direct manipulated interfaces were con-
structed, and therefore the model has difficulties in capturing the dynamics
of a graphical user interface.

24 TELLI A.



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

3.4 Presentation of the PAC model

The Presentation-Abstraction-Control (PAC) model is an architectural pat-
tern that promotes the separation of concerns in software user interfaces.

The PAC architecture does not have the model as its core component, but
a hierarchical structure of PAC components. Each PAC component consists
of these items:

Control: It processes external events and updates the model. It also
directly updates the Presentation part.

Abstraction: contains the data, like in MVC. However, it may be just
part of the complete data structure of the application, and it does not play
an active role in the notification of changes.

Presentation: is exactly like the View of MVC. It displays the informa-
tion from the Abstraction.

25 TELLI A.



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

3.5 Presentation of MVC model

The Model-View-Controller (MVC) is a widely used architectural pattern in
software development, particularly for designing user interfaces. It provides
a structured and organized way to separate an application’s concerns into
three distinct components: Model, View, and Controller.

The Model: contains the pure application data and pure logic describing
how to present the data to a user.

The View: The View is responsible for presenting the data to the user
and managing the user interface components. It displays the information
from the Model and presents it in a user-friendly format. The Controller:
The Controller acts as an intermediary between the Model and the View.
It receives user input and processes it to update the Model or the View
accordingly. Controllers handle user interactions, making decisions based on
the input and updating the Model and View as necessary.

26 TELLI A.



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

3.6 Presentation of agent models

These models introduce a level of automation, intelligence, and adaptabil-
ity to HMIs where the agent models involve the use of intelligent software
agents. These agents are autonomous, decision-making entities that can per-
form specific tasks or functions within the HMI system. In many cases, HMI
agent models employ multi-agent systems. Multiple intelligent agents work
together within the HMI ecosystem to achieve common goals, share informa-
tion, and coordinate tasks.

27 TELLI A.



DRAFT

CHAPTER 3. MODELS AND ARCHITECTURES

Distributed Architecture: Agent-based HMIs often feature a dis-
tributed architecture where intelligent agents are distributed across the sys-
tem. This allows for decentralized decision-making and improved scalability.

Autonomous Task Execution: Intelligent agents can autonomously
perform tasks such as system monitoring, fault detection, diagnostics, and
even decision-making. This reduces the need for constant human interven-
tion.

Adaptive Behavior: Agent models can exhibit adaptive behavior by
learning from user interactions and adjusting their responses or recommen-
dations based on user preferences and historical data.

Human-Agent Collaboration: While agents can handle many tasks
independently, they also facilitate human-agent collaboration. Users can
interact with agents to request information, receive recommendations, or
make decisions jointly.

Self-Organization: Some agent models incorporate self-organizational
capabilities, allowing the HMI to reconfigure itself dynamically to optimize
user experience and task execution.

28 TELLI A.



DRAFT

Chapter 4

Ergonomic rules in HMIs

1. Nielsen heuristics.

2. Bastien and Scapin ergonomic criteria

3. Coutaz Rules

4.1 Introduction

Ergonomics plays a crucial role in the design of Human-Machine Interfaces
(HMIs) to ensure they are user-friendly, efficient, and comfortable. these
ergonomic rules, HMIs can be designed to enhance user experience, minimize
errors, and improve overall productivity and safety in various applications.

Ergonomics is a multidisciplinary field that applies to various industries,
including office environments, manufacturing, healthcare, and transporta-
tion. By following these ergonomic rules, organizations can create safer,
more comfortable, and productive workplaces while reducing the risk of in-
juries and health issues.

29



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.2 Rules of User Interface Design

User interface design is much more than pure aesthetics. The foundation of
good UI design is user-friendliness, which is achieved through visuals.

The primary focus of a user interface design is anticipating what a user
might need to do to make their experience as intuitive as possible. User
interface design is all about usability, utility and desirability. These are 10
rules of thumb for every UI designer. The essential 10 user interface guidelines
are:

4.2.1 Visibility of system status

Making the system status visible helps the users understand the outcome of
their prior interactions and decide the next steps intuitively.

For example, Google Maps uses an arrow, or a car icon, to indicate where
the user is in their journey. Additionally, they’ve placed a status bar at the
top of the screen that displays their next step and how far to go until their
next step.

30 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.2.2 Match between the system with the real world

When it comes to UI design, keep it simple. Put information in natural
and logical order. Terms, icons and images should correspond to predictable
outcomes. Icons like a magnifying glass or arrow are clear to your user. This
practice is also called “natural mapping”.

For example, The pinch-to-zoom Pinch-to-zoom was invented in 1983 but
it wasn’t used in consumer devices until 2005 with JazzMutant’s product, the
Lemur. The Lemur was a multi-touch device that served as a controller for
musical devices like synthesisers and mixing consoles.

31 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.2.3 User control and freedom

Users need clearly marked exits from accidental or unwanted actions. This
saves them from having to redo an entire process. “Emergency exits” create
a feeling of freedom for users. The exits need to be clearly labelled and
discoverable too.

For example: Undo and redo in Google Docs In most word processors,
Google Docs included, you’ll find “undo” and “redo” functions in the tool-
bar. You might also recognise the common keyboard functions control or
command + Z or control and command + Y. This allows users to quickly
and easily fix a mistake without experiencing too much frustration.

4.2.4 Consistency and standards

By maintaining consistency, we will avoid making users learn something new.
Sticking to industry standards reduces cognitive load and allows users to feel
like your app is intuitive.

There are two types of usability; internal and external. Internal usability
means that all of your wording, icons, fonts, layouts and actions are uniform
throughout your user interface. External usability refers to adhering to other
apps’ industry standards for those same components.

For example: Search magnifying glass, A magnifying glass always means
“search.” The search function, indicated by the magnifying glass, is usually
located at the top of the page on desktop and bottom of the screen on mobile.
They are easy to find in these areas and easy to navigate quickly.

32 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.2.5 Error prevention

To design efficiently, focus on preventing high-cost errors first. Then, make
a plan to tackle the more minor frustrations. UI designers can use practical
constraints, change default settings or provide confirmation options to pre-
vent slips. They can minimise mistakes by making the cognitive load lighter.
For example, Shake to undo confirmation box on iPhone’s latest OS Apple
introduced shake-to-undo with iOS 13 back in 2019.

4.2.6 Recognition rather than recall

Humans’ short-term memory only lasts 20-30 seconds. The designer should
ensure that users don’t need to remember or transfer information from one
part of your interface to another. All key elements, actions and options
should be visible or easily retrievable throughout the app. They should also
be located in the same place. For example, Security code autofill iOS 13
also introduced a security code autofill function. When a user requests a
security code from an app, the keyboard will grab the code from their text
and suggest it above the user’s keyboard. No short-term memory is required
anymore.

33 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.2.7 Flexibility and efficiency of use

While consistency and uniformity are important to build trust and intuition
with users, flexibility can be crucial too. Making your interface efficient by
providing shortcuts and customisations can build a different kind of trust
with your user.

This can look like a customisable dashboard, keyboard shortcuts or touch
gestures that speed up common functions. Alternatively, like most social
media platforms, you could offer your user content personalisation. This
might be a way to tailor their feed like Pinterest or a hidden algorithm like
Instagram or TikTok.

4.2.8 Aesthetic and minimalist design

Designs shouldn’t feature something that’s rarely needed. Keeping unimpor-
tant components in a design reduces the relative visibility and importance of
key elements.

This doesn’t mean your design has to be flat design. But it does mean
that you should focus your content and visual design on the essentials. Above
all else, your interface should support the users’ primary goals.

For example, facebook uses a slick black-and-white interface. Buttons
are clearly labelled in grey or outlined. Their site is easy to navigate and
includes very few menu options.

4.2.9 Help users recognise, diagnose and recover errors

Users want autonomy and control. To avoid this, it’s essential to help users
recognise, diagnose and recover from mistakes independently.

34 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

Clear, plain language error messages that offer a constructive solution
can accomplish this. Avoid using error codes. Include a graphic or visual
representation of the error for even faster recognition.

4.2.10 Help and documentation

Strong error messages are not enough to completely cover all of your bases.
Providing help and documentation that is searchable and easy to find is
crucial for the long term success of any piece of software or hardware. This
should be kept concise. The next steps to solve a problem or learn a function
should be listed in a concrete way. Where possible, it’s best to present the
documentation to the user at the moment that they actually need it.

Chatbots are a prime example of offering help at the moment. Rather
than exploring the website for help.

35 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.3 Nielsen heuristics

Jakob Nielsen’s 10 general principles for interaction design. They are called
"heuristics" because they are broad rules of thumb and not specific usability
guidelines. Jakob Nielsen’s Usability Heuristics are a set of ten principles
or guidelines widely used in the field of user interface (UI) and user experi-
ence (UX) design to evaluate the usability of software and websites. These
heuristics serve as a checklist for designers and usability experts to identify
potential usability issues. Here are the ten Nielsen Usability Heuristics:

1. Visibility of System Status: Keep users informed about what’s
happening through appropriate feedback within a reasonable time. This
includes loading indicators and progress bars.

2. Match between System and the Real World: Speak the user’s
language. Use words, phrases, and concepts familiar to the user. Follow
real-world conventions and make information appear in a natural and logical
order.

36 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

3. User Control and Freedom: Allow users to easily undo actions,
exit situations, and navigate without feeling trapped. Provide "emergency
exit" options.

4. Consistency and Standards: Follow established conventions, both
internal (within your product) and external (widely accepted industry stan-
dards), to create a consistent and predictable user experience.

5. Error Prevention: Strive to prevent errors by offering clear in-
structions, confirming destructive actions, and providing meaningful error
messages.

6. Recognition Rather than Recall: Reduce the user’s memory load
by making objects, actions, and options visible. Users shouldn’t have to
remember information from one part of the interface to another.

37 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

7. Flexibility and Efficiency of Use: Offer shortcuts and accelerators
to power users while still accommodating novice users. Don’t force users into
a single way of doing things.

8. Aesthetic and Minimalist Design: Strive for a clean and visually
pleasing design. Only include elements that are necessary for functionality.

9. Help Users Recognize, Diagnose, and Recover from Errors:
Provide clear error messages that explain the problem and suggest a solution.
Offer guidance to help users recover from errors.

38 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

10. Help and Documentation: Ideally, make the system self-explanatory.
If necessary, provide concise, accessible documentation and help features.

These heuristics are valuable for assessing and improving the usability of
digital interfaces. Designers and evaluators use them as a starting point to
identify potential problems and enhance the user experience.

4.4 Bastien and Scapin ergonomic criteria

Bastien and Scapin are two scientists in ergonomic psychology and cogni-
tive ergonomics who have chosen to focus on user experience and human-
computer interfaces. The ergonomic criteria presented below were created in
the context of a research project in the mid-90s.

These criteria provide a structured approach to assessing the quality of in-
teractive systems. Below are the key ergonomic criteria proposed by Bastien
and Scapin:

39 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

1. Guidance: This criterion evaluates whether the system provides clear
and helpful guidance to users, such as instructions, tooltips, and cues.
Those are the sub citeria of Guidance criteria

• Prompting: refers to the means available in order to lead the
users to making specific actions whether it be data entry or other
tasks.

• Grouping/Distinction: concerns the visual organisation of in-
formation items in relation to one another. This criterion takes
into account the topology (location) and some graphical charac-
teristics (format). The criterion Grouping/Distinction of Items is
subdivided into two criteria: Grouping/Distinction by Location
and Grouping/Distinction by Format.

• Immediate Feedback: concerns system responses to users’ ac-
tions. These actions may be simple keyed entries or more complex
transactions such as stacked commands.

• Legibility: concerns the lexical characteristics of the information
presented on the screen that may hamper or facilitate the reading
of this information (character brightness, contrast between the let-
ter and the background, font size, interword spacing, line spacing,
paragraphs spacing, line length, etc.).

2. Workload: It assesses the cognitive and physical workload imposed on
users while interacting with the system. Lowering workload is essential
for user comfort. The criterion Workload is subdivided into two criteria:

• Brevity: corresponds to the goal of limiting the reading and input
workload and the number of action steps. The criterion Brevity
is subdivided into two criteria: Concision and Minimal Actions.

– The criterion Concision: concerns perceptual and cogni-
tive workload for individual inputs or outputs.

40 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

– The criterion Minimal Actions: concern workload with
respect to the number of actions necessary to accomplish a
goal or a task. It is here a matter of limiting as much as
possible the steps users must go through.

• Information Density: concerns the users’ workload from a per-
ceptual and cognitive point of view with regard to the whole set
of information presented to the users rather than each individual
element or item.

3. Explicit Control: This criterion examines whether the system gives
users explicit control over their actions, allowing them to perform tasks
with precision. The criterion Explicit Control is subdivided into two
criteria:

• Explicit User Action: refers to the relationship between the
computer processing and the actions of the users. This relation-
ship must be explicit, i.e., the computer must process only those
actions requested by the users and only when requested to do so.

• User Control: refers to the fact that the users should always be
in control of the system processing (e.g., interrupt, cancel, pause
and continue). Every possible action by a user should be antici-
pated and appropriate options should be provided.

4. Adaptability: It considers the system’s ability to adapt to users’ needs
and preferences, allowing for customization and flexibility. The crite-
rion Adaptability is subdivided into two criteria:

• Flexibility: The criterion Flexibility refers to the means avail-
able to the users to customise the interface in order to take into
account their working strategies and/or their habits, and the task
requirements.

• User Experience: The criterion User Experience refers to the
means available to take into account the level of user experience.

41 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

5. Error Management: Evaluates how well the system handles errors,
including error prevention, error detection, and the recovery process.
The criterion Error Management is subdivided into three criteria:

• Error Protection : refers to the means available to detect and
prevent data entry errors, command errors, or actions with de-
structive consequences.

• Quality of error messages : refers to the phrasing and the
content of error messages, that is: their relevance, readability,
and specificity about the nature of the errors (syntax, format,
etc.) and the actions needed to correct them.

• Error correction: refers to the means available to the users to
correct their errors.

6. Consistency: it refers to the way interface design choices (codes, nam-
ing, formats, procedures, etc.) are maintained in similar contexts, and
are different when applied to different contexts.

7. Significance of Codes: The criterion Significance of Codes qualifies
the relationship between a term and/or a sign and its reference. Codes
and names are significant to the users when there is a strong semantic
relationship between such codes and the items or actions they refer to.

8. Compatibility: it refers to the match between users’ characteristics
(memory, perceptions, customs, skills, age, expectations, etc.) and task
characteristics on the one hand, and the organisation of the output, in-
put, and dialogue for a given application, on the other hand. The crite-
rion Compatibility also concerns the coherence between environments
and between applications.

42 TELLI A.



DRAFT

CHAPTER 4. ERGONOMIC RULES IN HMIS

4.5 Coutaz Golden Rules

Joëlle Coutaz’s "Seven Golden Rules" are a set of principles for interface de-
sign that focus on creating user-friendly and ergonomic computer interfaces.

These seven golden rules are essential in creating interfaces that are intu-
itive, efficient, and user-friendly. They are widely recognized in the field of
Human-Computer Interaction (HCI) and are used as guidelines for designing
interfaces that enhance the user experience. The 7 golden rules of Coutaz:

1. Fight for consistency: Ensure that the interface behaves consistently
throughout, so users can predict how it will respond to their actions.

2. Fight for conciseness: Keep the interface simple and avoid unneces-
sary elements or information, making it easier for users to understand
and navigate.

3. Reduce cognitive load: Minimize the mental effort required by users
to operate the interface. This involves simplifying tasks and providing
clear guidance.

4. Place control in the hands of the user: Allow users to have control
over the system and their interactions with it, empowering them to
make choices.

5. Offer informative feedback: Provide users with timely and mean-
ingful feedback about their actions, helping them understand the sys-
tem’s response.

6. Design dialogues to yield closure: Structure interactions in a way
that leads to a clear conclusion or endpoint, preventing user confusion
or frustration.

7. Prevent errors: Anticipate and prevent errors through careful inter-
face design, making it difficult for users to make mistakes.

43 TELLI A.



DRAFT

Chapter 5

Multi-users interface design

1. Steps for multi-user interface design.

2. Comparative study between single-user and multi-user HMI.

3. User-centered design methods.

4. Example of multi-user interface.

Introduction

Designing interfaces for multiple users, often referred to as Multi-User Inter-
face (MUI) design, involves creating interactive experiences that cater to the
needs of multiple users simultaneously. It requires careful planning, perfor-
mance optimization, user control, and consideration of hardware and collabo-
ration elements, among other factors, to ensure a seamless and user-friendly
experience. Usability testing and accessibility are also essential aspects of
MUI design.

44



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

5.1 Steps for Multi-User Interface Design

The principles and steps for effective Multi-User Interface design:

1. User Scenarios: Start by defining user scenarios that describe how
different users will interact with the system or application.

2. Performance Optimization: Prioritize performance to ensure a seam-
less experience for all users. Efficiently handle data, processing, and
communication to minimize lag and delays.

3. User Control: Empower users by placing them in control of their
actions. Provide options for customization and user-specific settings to
enhance their experience.

4. Hardware Consideration: Design with respect to the hardware on
which the interface will run. Optimize the interface for the capabilities
and limitations of the devices being used.

5. Model-Based Design: Consider employing model-based design tech-
niques, which involve creating abstract representations of the interface
and its behavior before implementation.

6. Collaborative and Social Elements: If the multi-user interface is
collaborative or social in nature, design features that facilitate com-
munication, sharing, and cooperation among users. Incorporate chat,
collaboration tools, or social networking components as needed.

7. Usability Testing: Regularly conduct usability testing with actual
users to gather feedback and refine the interface.

8. Accessibility: Ensure that the multi-user interface is accessible to
users with disabilities. Incorporate features such as screen readers, key-
board navigation, and alternative text for images to make the interface
inclusive.

45 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

5.2 Single-user Vs Multi-User HMI

Single-user and Multi-User HMI systems refer to how human operators in-
teract with machines and control systems:

• Single-User HMI: In a single-user HMI system, there is one operator
or programmer responsible for controlling and monitoring the machine
or system. This type of HMI setup is suitable for scenarios where only
one person needs access to the control interface at a time, such as
small-scale machines or standalone equipment.

• Multi-User HMI: A multi-user HMI system involves multiple users
or teams working simultaneously on the same project or machine, often
with shared resources and goals. It allows multiple operators to interact
with and control the same system concurrently, which is useful in larger-
scale industrial environments where collaboration is essential.

46 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

The choice between single-user and multi-user HMI depends on the spe-
cific requirements of the application, including the need for collaboration and
the complexity of user access management. Here’s a comparison of the two:

Property Single-User HMI Single-User HMI
Restriction Single operator or Multiple users to access

user at a time the system simultaneously
Collaboration Limiting collaborative Real-time collaboration among users

work
Simplicity Simpler to set up Complex due to the need for access

and manage control and user management
Use Cases One user interacts Several operators interact

with a machine and control a system together

47 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

5.3 User-centered design methods

User-centered design (UCD) is an iterative design process in which designers
focus on the users and their needs in each phase of the design process. In
UCD, design teams involve users throughout the design process via a variety
of research and design techniques, to create highly usable and accessible
products for them.

In UCD, designers use a mixture of investigative methods and tools (sur-
veys and interviews) and generative ones (brainstorming) to develop an un-
derstanding of user needs. The term was coined in the 1970s. Later, cognitive
science and user experience expert Don Norman adopted the term in his ex-
tensive work on improving what people experience in their use of items.

5.3.1 Principles of UCD

ISO standard 9241-210:2019 defines six fundamental principles that form the
basis of the user-centered design process:

1. Design is based on understanding users, their tasks and their
environment: It is not enough to have a vague impression of the
product’s target group. User-centered design requires deep immersion
into the lives of users.

2. Users are involved throughout the entire development and de-
sign process: This is one of the main differences to other approaches.
Users are not just invited to assess a finished product, rather their
opinions are the basis for development.

3. The design process is guided by user ratings: Users evaluate
every prototype and every beta version, and this feedback is used to
develop the product.

48 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

4. The process is iterative: The process steps in product development
are performed non-linearly and repeatedly. Feedback from users can
make multiple iterations of individual phases necessary.

5. The entire user experience is taken into account: The aim of
user-centered design is not to make using a product as simple as pos-
sible. Instead, the process takes a broader view of the user experience.
Products should evoke positive emotions, offer genuine solutions and
encourage users to use them repeatedly.

6. The project team is multi-disciplinary: User-centered design re-
quires close cooperation across disciplines. There is no room for silo
mentalities in product development. User requirements can only be
implemented optimally if copywriters, graphic designers, and program-
mers share their different perspectives.

5.3.2 The UCC process

Generally, each iteration of the UCD approach involves four distinct phases:

49 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

1. Context analysis:

The first step is to analyze the context in which users will use the
product. Who are the future users, and what are their specific appli-
cations for the product? Project teams can find answers by observing
and surveying potential users.

2. Defining the requirements:

The second step is to define the specific requirements for the new prod-
uct. This step describes user requirements, taking corporate require-
ments into account.

3. Design:

The actual design process doesn’t start until the requirements have
been defined. In the first instance, designers will usually create a simple
prototype, e.g. using paper, followed by digital wireframes, and finally
produce a finished prototype.

4. Evaluation:

After a prototype has been produced, the project team asks potential
users for feedback. For digital applications, this is generally done via
extensive user testing and qualitative surveys. Surveys and tests as-
sess effectiveness (can users achieve what they want?), efficiency (how
quickly can users achieve their objective?) and general satisfaction.

The project team returns to step 2 or 3 in the design process with the new
information to optimize the product. These iterations continue until satisfac-
tory user feedback is achieved, taking into account the corporate frameworks
(time and costs).

50 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

5.3.3 Advantages of UCD

A consistent focus on user-centered design not only benefits the user, it’s also
worthwhile for companies.

• Customer satisfaction: Close integration of users in the early stages
of the development process means that the end product is more likely
to meet the customer’s expectations. This boosts revenue and reduces
customer service costs.

• Product safety: The project team develops a product for a specific
target group and a specific use case. As this information is considered
in detail, the risk of inappropriate usage, which could endanger the
user, decreases.

• Quality: When developers and designers get to know the needs, fears,
and requirements of customers, they develop empathy. This results in
more ethical and ergonomic products. Aspects that could have been
neglected otherwise – like privacy or usability – become important.

• Sustainability: Because the perspective during development is shifted
to the needs of potential customers, the resulting products appeal to
a broader customer base. In this way, user-centered design also con-
tributes to a company’s sustainability goals.

• Cost efficiency: The costs for alterations remain relatively low, be-
cause user feedback is considered right from the start and not only at
the end of the product development phase. This enables developers to
incorporate user feedback from the get-go.

• Competitive advantage: Since not all companies have made user-
centered design their top priority or have had difficulty implementing
it, companies that work according to an effective user-centered design
process can set themselves apart from the competition.

51 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

It remains to be seen whether the marketing sector will be talking about
user-centered design, human-centered design or people-centered design in the
years to come. Implementation methods are not static; they will continue to
change.

However, one thing is already clear: user-centered design approaches
aren’t just a temporary fad, they’re already best practice in the digital sec-
tor. And they will grow in importance in the future given the volatility,
uncertainty, and complexity of the market.

5.3.4 UCD vs. HCD

User-centered design is very often used interchangeably with human-centered
design, but there is a difference in that it is a subset of it. Simply put, all
users are humans, but not all humans will be your users. Thus, user-centered
design requires deeper analysis of users – your target audience. It is not
only about general characteristics of a person; it is about particular habits
and preferences of target users to come up with right solutions for specific
problems.

User-centered design takes into account age, gender, social status, edu-
cation and professional background, influential factors, product usage expec-
tations and demands and many other important things that may vary for
different segments. What is critical for some may be irrelevant for others.
User-centered design is about deep research on users’ habits, from their in-
teractions with the product to their vision of how the product should look
like and behave.

52 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

5.3.5 User centred design examples

• Focus groups: involves encouraging an invited group of intended or
actual users of a site or digital service to share their thoughts, feelings,
attitudes, and ideas on a certain subject. Focus groups are most often
used as an input to design. They generally produce non-statistical data
and are a good means of getting information about a domain.

• Usability testing: Usability testing sessions evaluate a site by col-
lecting data from people as they use it. A person is invited to attend
a session in which they’ll be asked to perform a series of tasks while
a moderator takes note of any difficulties they encounter. Usability
testing can be used as an input to design or at the end of a project.
It’s an excellent way to uncover key usability and digital accessibility
issues with a site or digital prototype.

• Card sorting: Card sorting is a method for suggesting intuitive struc-
tures/categories. A participant is presented with an unsorted pack of
index cards. Each card has a statement written on it that relates to
a page of the site. Card sorting is usually used as an input to design.
It’s an excellent way of suggesting good categories for a site’s content
and deriving its website information architecture.

• Participatory design: Participatory design does not just ask users
for their opinions on design issues, but actively involves them in the
design and decision-making processes. An example would be a partici-
patory design workshop in which developers, designers, and users work
together to design an initial prototype. This initial digital prototyping
would then feed into a more traditional design process.

• Questionnaires: A questionnaire or quantitative survey is a type of
user research that asks users for their responses to a pre-defined set of
questions and are a good way of generating statistical data.

53 TELLI A.



DRAFT

CHAPTER 5. MULTI-USERS INTERFACE DESIGN

• Questionnaire considerations: Questionnaires allow statistical anal-
ysis of results. This data can increase a study’s credibility, but it’s im-
portant that the survey is well designed and asks non-biased questions.

• Interviews: An interview usually involves one interviewer speaking to
one participant at a time. The advantages of an interview are that a
participant’s unique point of view can be explored in detail. It is also
the case that any misunderstandings between the interviewer and the
participant are likely to be quickly identified and addressed.

5.4 Examples of multi-user interface

A multi-user interface refers to a system or software environment that allows
concurrent access by multiple users. Here are some examples and contexts
in which multi-user interfaces are used:

1. Multi-User Operating Systems: Multi-user interfaces are com-
monly associated with multi-user operating systems, such as Unix,
Linux, and Windows Server.

2. Collaborative Software: Multi-user interfaces are often found in
collaborative software applications. Examples include Google Docs,
Microsoft Teams, and collaborative design software.

3. Database Applications: In the context of database applications, a
multi-user interface allows multiple users to access and interact with
a shared database concurrently. This is crucial in enterprise systems
where multiple users need access to the same data without conflicts.

4. Multi-User Interface Development: There are also tools and en-
vironments designed specifically for developing multi-user interfaces,
such as video conferencing platforms or online gaming environments.

54 TELLI A.



DRAFT

Chapter 6

Interfaces Adaptatives

1. The Vaudry Model.

2. Study of an example: Agent model.

6.1 Introduction

"Interfaces adaptatives" mean the design and implementation of methods and
techniques that allow interfaces to automatically adapt to different users.
This concept is particularly relevant in the field of human-computer inter-
action and user experience design. Adaptive interfaces aim to provide a
personalized and user-friendly experience by adjusting elements such as lay-
out, content, or functionality to suit the individual needs and preferences of
the user.

55



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

6.2 The Vaudry Model

According to Christophe Vaudry, the design of adaptive HMIs has been the
subject of a great deal of work. It turns out that this is a very complex
problem as evidenced by the borrowings from different branches of informa-
tion sciences and human sciences such as psychology, artificial intelligence,
pedagogy, Human-Machine interfaces, etc.

6.2.1 Aspects of adaptation

Adaptation in human-machine interaction can be considered at least accord-
ing to the five following aspects:

1. The reason for the adaptation.

2. The object of the adaptation.

3. The trigger for the adaptation.

4. The moment of adaptation.

5. The means used to achieve the adaptation.

6.2.2 Principle of Adaptation in HMI(s)

The different tasks carried out on the adaptation system made it possible
to identify different types of adaptations. The adaptation of an application
is the ability to satisfy users in their dialogue situations. Remember that
the interaction (or use) situation is a triple <User, use, context> and that
the context summarizes the platform or reading device and the environment
used.

56 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

The system is considered adaptable if it can meet the user’s customization
request. From a design perspective, adaptability is paramount. A system is
said to be adaptable if it can automatically adapt to the user or other usage
factors. From a design perspective, adaptability is paramount.

Therefore, adaptation can be associated with many aspects of interactive
applications:

1. The Human-Machine interface is divided into three sub-elements:

• Interface display (position, size, image, sound, color, structure),

• Interaction techniques and styles (menu, multiple selection, etc.).

• Navigation

2. Filtered and/or reorganized data or information.

3. Modifiable services (additions, restrictions, configurations).

57 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

Depending on the axis of causes, it is adaptation to the physical charac-
teristics of the target platform or adaptation to environmental conditions.

Depending on the when axis, the adaptation is static, that is to say that
the constraints can be fixed at the design, and the interface is generated
accordingly, or the adaptation is dynamic, that is to say say that during
execution, the interface is adapted according to variations in constraints.

Depending on the object axis, plasticity is an adaptation of the task tree
and/or the rendering technique.

Depending on the axis of the actors, the system or the human (designer
or end user) ensures the adaptation.

6.2.3 Adaptability Vs Adaptivity

Interface customization is characterized by two characteristics: adaptability
and adaptability. Adaptability means that the user can change the interface,
and adaptability means that the interface can be changed automatically with-
out any explicit user interaction.

Adaptability and adaptivity are terms used to describe "how" an intelli-
gent mechanism can achieve its goal of adapting a user interface to a partic-
ular user.

Adaptability in this context is multiple instantiations of that user in-
terface with a combination of components and attributes to tailor the user
interface to a particular user group.

Adaptivity is a continuous extension of the user interface that is pro-
duced at runtime (based on feedback methods). There are not multiple
predefined user interfaces. Only one (the user interface that interacts with
real users) is constantly evolving.

58 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

Simply put, adaptability modifies the UI at instantiation (or earlier), and
adaptivity modifies the UI at runtime when the user interacts with it.

The following table summarizes the difference between adaptability and
Adaptivity:

Adaptability Adaptivity
User issues an explicit request, System adapts itself thanks
the system adapts to respond to user observation
Before user/system interaction During user-system interaction

Static Dynamic
Depends on the user’s goal Depends on the goal of the action

59 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

6.3 Study of an example: Agent model

The AMEBICA (Auto adaptive Multimedia Environment Based on
Intelligent Collaborating Agents) project aimed to model, create and
validate an architecture based on agents to achieve an adaptive composition
applied to industrial supervision.

This architecture should make it possible to quickly generate applications
specific to different industrial domains by specifying only the application
context.

The AMEBICA architecture is made up of rational agents of the BDI
(Belief-DesireIntention) type which follow a notion of weak agent. Their
characterization defines a rational agent as possessing the following charac-
teristics:

60 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

• Reactive. It reacts to the actions of other agents.

• Proactive: It is directed by its own internal goals.

• Autonomous: He does not undergo direct and continuous supervision.

• Social: He interacts with other agents.

6.3.1 The Agent Presentation free space calculation
algorithm

This algorithm is based on the use of a scan line. The function of the Pre-
sentation Agent is to calculate the rectangular areas available on the screen,
based on knowledge of the rectangular areas already occupied by elements
of the interface (which correspond to the information displayed by Media
Agents. The information on the free rectangular areas is then given to the
Media Allocator Agent which deduces an appropriate placement of the dif-
ferent information.

The two main data structures of this algorithm are:

1. A data structure for representing scanlines. This data structure in-
cludes the start and end ordinate of the segment, the current abscissa and
an associated available rectangle.

2. A data structure to represent available or occupied rectangles. This
data structure includes the coordinates of the upper left point of the rectan-
gle, its width, its length, and a Boolean indicating whether it is available or
busy.

61 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

6.3.2 Example of screen splitting

We consider that the scanning is carried out in a rectangle representing the
screen. A list of occupied rectangles is given as input to the algorithm. The
algorithm outputs a list of available and occupied rectangles that make up
the screen in question.

The scanning is carried out along the abscissa axis. The algorithm main-
tains a list of scanlines. Indeed, each time a scan line encounters an occupied
rectangle during its course, the scan line is deleted or fragmented into one or
two scan lines.

In the opposite situation, when the scan leaves an occupied rectangle, a
new scan line is created. The length of this line is equal to the height of
the occupied rectangle, the starting ordinate of the scanning line having the
value of the ordinate of the point Upper right of occupied rectangle.

62 TELLI A.



DRAFT

CHAPTER 6. INTERFACES ADAPTATIVES

Each scan line constructs a rectangle marked as available as it passes
through the screen. Before destroying a scan line, the associated available
rectangle is added to the list of rectangles making up the screen.

During scanning, two cases can occur: a scanning line is fragmented or
destroyed and a new scanning line is created:

63 TELLI A.



DRAFT

Chapter 7

Multimodal Interfaces and
Future Interfaces

1. Advanced interaction techniques, Augmented Reality, Tangible, Inter-
face, 3D projection, Movement Analysis).

2. Visual Programming.

7.1 Introduction

Multimodal interfaces combine multiple modes of interaction, such as touch,
voice, gesture, and gaze, to create a more intuitive and efficient user experi-
ence. These interfaces are designed to accommodate diverse user preferences
and abilities. Examples of multimodal interfaces include smartphones with
touchscreens and voice recognition, as well as virtual reality systems that
incorporate hand gestures and eye tracking.

64



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.2 Multimodal interfaces

They are a new class of emerging systems that aim to recognize naturally
occurring forms of human language and behavior, with the incorporation
of one or more recognition-based technologies (e.g., speech, pen, vision).
Multimodal interfaces represent a paradigm shift away from conventional
graphical user interfaces.

They are being developed largely because they offer a relatively expres-
sive, transparent, efficient, robust, and highly mobile form of human–computer
interaction. They represent users’ preferred interaction style, and they sup-
port users’ ability to flexibly combine modalities or to switch from one input
mode to another that may be better suited to a particular task or setting.

65 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.2.1 Type of multimodal interfaces

Multimodal interfaces are user interfaces that allow users to interact with a
system or device using multiple modes of communication. These interfaces
are designed to enhance the user experience by combining various input and
output methods. Here are some common types of multimodal interfaces:

1. Text and Speech Interface: Users can interact with the system
through both text and speech, such as voice commands and text input.

2. Gesture and Touch Interface: These interfaces combine gestures
and touch-based interactions, commonly used in touchscreens and motion-
sensing devices.

66 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

3. Speech and Gesture Interface: Users can interact with the sys-
tem using both spoken commands and physical gestures, often used in
gaming and virtual reality applications.

4. Voice and Visual Interface: This combines voice recognition with
visual elements, like on-screen displays, making it common in smart
home devices and virtual assistants.

67 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

5. Touch and Visual Interface: Users can use touch inputs in conjunc-
tion with visual elements, often seen in mobile devices and tablets.

6. Multimodal Biometric Interface: Combines various biometric au-
thentication methods, such as facial recognition, fingerprint scanning,
and voice recognition, to provide a secure and user-friendly interface.

68 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7. Haptic and Visual Interface: This type combines haptic feedback
(tactile sensations) with visual information, enhancing user interaction
in virtual reality and gaming.

8. Eye Tracking and Gesture Interface: Utilizes eye tracking technol-
ogy in combination with gestures for a more natural and immersive user
experience, often found in gaming and augmented reality applications.

69 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

9. Brain-Computer Interface (BCI): BCI systems allow users to con-
trol devices or interact with systems using brain signals, which can be
combined with other modalities for more versatile interactions.

10. Audio and Braille Interface: Designed for users with visual im-
pairments, this type combines audio feedback with Braille displays for
text-based communication.

70 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.3 Advanced interaction techniques

Methods and approaches used to enable more complex and sophisticated in-
teractions between humans and computers. These techniques are commonly
used in user interface design, human-computer interaction, and user experi-
ence (UX) design. There are some advanced interaction techniques:

7.3.1 Augmented Reality

Augmented Reality (AR) and Virtual Reality (VR) technologies provide im-
mersive, 3D environments that users can interact with. Augmented reality
is an interactive experience that enhances the real world with computer-
generated perceptual information. Using software, apps, and hardware such
as AR glasses, it overlays digital content onto real-life environments and
objects.

7.3.2 Tangible Interface

Is a type of user interface that allows users to interact with digital systems
using physical objects or tangible elements. These interfaces bridge the gap
between the physical and digital worlds, enhancing the user experience and
providing more intuitive ways of interacting with technology.

71 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.3.3 3D projection (Hologram)

the technique of representing three-dimensional objects or scenes in a two-
dimensional space, like a screen or a canvas. It’s widely used in various
applications, including cinema, events, and video games.

7.3.4 Movement Analysis

Movement analysis is an assessment of an individual’s motion. It may com-
bine the assessment of biomechanics by a trained individual or the use of
technology such as video analysis. Neurophysiology should also be consid-
ered in movement analysis.

72 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.4 Visual Programming

Visual programming is a programming paradigm that utilizes graphical ele-
ments, such as icons, symbols, and diagrams, to create and manipulate code.
It is often used to make programming more accessible to individuals who
may not have a strong background in traditional text-based coding.

7.4.1 Characteristics of Visual Programming

Visual programming is a powerful approach for teaching programming con-
cepts, prototyping, and creating applications with a focus on ease of use
and accessibility. It can be a valuable tool for both beginners and experi-
enced developers, depending on the specific use case. It hvae the followig
aracteristics:

• Visual Interface: Visual programming environments provide a graph-
ical user interface (GUI) where users can drag and drop visual elements
to create, edit, and organize code.

• Blocks or Nodes: Visual programming often involves using blocks
or nodes as building blocks. Each block represents a specific action or

73 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

function, and they can be connected to form a flowchart-like structure
that defines the program’s logic.

• Connections and Flow: Users connect blocks or nodes to define the
flow of the program. This flowchart-like structure makes it easier to
understand the program’s logic.

• Events and Triggers: In visual programming, you can often define
events or triggers visually, which then lead to specific actions or func-
tions being executed. This is commonly used in event-driven program-
ming.

• Data Flow: Data can be visually represented and manipulated through
connections between blocks. You can see the flow of data within the
program, making it easier to understand data processing.

• Code Generation: Underlying code is generated automatically based
on the visual elements and their connections. Visual programming
environments may generate code in various programming languages,
making it versatile.

• Debugging Tools: Visual programming environments typically in-
clude debugging tools to help identify and resolve issues in the code.
Users can often set breakpoints, inspect variables, and step through
the program visually.

• Extensibility: Many visual programming environments allow for the
creation of custom blocks or nodes, enabling users to extend the func-
tionality of the platform.

• Applications: Visual programming is used in various domains, includ-
ing game development, robotics, web development, and data analysis.
Some well-known visual programming languages and environments in-
clude AgentCubes, Blockly, LabVIEW, and TouchDesigner,

74 TELLI A.



DRAFT

CHAPTER 7. MULTIMODAL INTERFACES AND FUTURE
INTERFACES

7.4.2 Elements of Visual Programming

Visual Programming, also known as Visual Programming Language (VPL),
involves creating software applications using visual elements such as dia-
grams, flowcharts, symbols, and graphical components, rather than tradi-
tional lines of code.

The general goal of VPLs is to make programming more accessible to
novices and to support programmers at three different levels: Syntax, Seman-
tics, and Pragmatics. The main elements of Visual Programming include:

1. Graphical Components: Visual Programming utilizes graphical el-
ements to represent different functionalities, making it easier for users
to understand and design software.

2. Text and Symbols: Text and symbols are used to provide labels,
descriptions, and context to the graphical elements within the program,
enhancing readability and user-friendliness.

3. Spatial Arrangements: Visual expressions and spatial arrangements
of text and graphic symbols are used as elements of syntax or secondary
notation in the program, aiding in the logical organization of code.

4. Flowcharts and Diagrams: Visual Programming often involves the
use of flowcharts and diagrams to represent the flow of the application,
making it visually intuitive and accessible.

75 TELLI A.


	Notions of interaction
	Definitions
	Causes for rejection of applications
	Challenges
	Difficulties
	Definition of an HMI
	History of HMI

	HMI construction methodology
	Classic methodology
	Identification stage
	Task analysis stage
	Modeling stage
	Specification stage


	Models and Architectures
	Introduction
	The Dialog Controller
	Presentation of the Seeheim model
	Presentation of the PAC model
	Presentation of MVC model
	Presentation of agent models

	Ergonomic rules in HMIs
	Introduction
	Rules of User Interface Design
	Visibility of system status
	 Match between the system with the real world
	User control and freedom
	Consistency and standards
	Error prevention
	Recognition rather than recall
	Flexibility and efficiency of use
	Aesthetic and minimalist design
	Help users recognise, diagnose and recover errors
	Help and documentation

	Nielsen heuristics
	Bastien and Scapin ergonomic criteria
	Coutaz Golden Rules

	Multi-users interface design
	Steps for Multi-User Interface Design
	Single-user Vs Multi-User HMI
	User-centered design methods
	Principles of UCD
	The UCC process
	Advantages of UCD
	UCD vs. HCD
	User centred design examples

	Examples of multi-user interface

	Interfaces Adaptatives
	Introduction
	The Vaudry Model
	Aspects of adaptation
	Principle of Adaptation in HMI(s)
	Adaptability Vs Adaptivity

	Study of an example: Agent model
	The Agent Presentation free space calculation algorithm
	Example of screen splitting


	Multimodal Interfaces and Future Interfaces
	Introduction
	Multimodal interfaces
	Type of multimodal interfaces

	Advanced interaction techniques
	Augmented Reality
	Tangible Interface
	3D projection (Hologram)
	Movement Analysis

	Visual Programming
	Characteristics of Visual Programming
	Elements of Visual Programming



