الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالى والبحث العلمي

Ecole Normale Supérieure

Bou-Saada

Dép. Sciences Exactes

Bou-Saida

Dép. Sciences Exactes

المدرسة العليا للأساتذة - بوسعادة المجاهد الفريق أحمد قايد صالح قسم: العلوم الدقيقة

دروس في الاهتزازات و الأمواج

المقياس: الاهتزازات و الأمواج

المستوى: السنة الثانية علوم دقيقة (متوسط، ثانوي)

الاستاذ: صحراوي توفيق

الرتبة: أستاذ محاضر -ب- المدرسة العليا للأساتذة - بوسعادة

السنة الجامعية: 2022-2021

<u>جدول المحتويات</u>

05	مقدمة عامة
06	المحور الأول: الاهتزازات الميكانيكية
06	الفصل الأول: عموميات حول الحركة الاهتزازية
06	1 الحركة الاهتزازية
06	1.1 الحركة الدورية
06	2.1 الحركة التوافقية البسيطة
07	1.2.1 الزمن الدوري
07	2.2.1 سعة الاهتزاز
08	3.2.1 النبض (التواتر الزاوي)
08	4.2.1 التردد
08	5.2.1 الطور الابتدائي
08	6.2.1 سرعة الحركة التوافقية
09	7.2.1 تسارع الحركة التوافقية
09	3.1 التمثيل الشعاعي للحركة التوافقية.
09	1.3.1 تمثيل فرينل (الشعاع الدوار)
10	2.3.1 التمثيل العقدي للحركة التوافقية (الأعداد المركبة)
10	3.3.1 القوى في الحركة التوافقية البسيطة
10	4.3.1 الطاقة في الحركة التوافقية البسيطة
10	1.4.3.1 الطاقة الحركية.
11	2.4.3.1 الطاقة الكامنة
12	3.4.3.1 الطاقة الكلية
12	4.1 تداخل الحركات التوافقية
12	1.4.1 جمع حركتان جيبيتان لهما نفس الاتجاه و نفس التواتر
12	2.4.1 استعمال تمثيل فرينل
13	3.4.1 الطريقة المثلثية
14	4.4.1 جمع حركتان جيبيتان لهما نفس الاتجاه وتواتران مختلفان
16	1.4.4.1 ظاهرة النبضات (الخفقان)
17	5.4.1 تداخل حركتين متعامدتين لهما نفس التواتر
21	تمارين الفصل الأول
23	الفصل الثاني: تحليل فورييه للحركة الاهتزازية
23	2 تحليل فورييه
23	1.2 سلاسل فورييه
23	2.2 حساب المعاملات an ،ao و مطاب

24	3.2 عبارة معاملات فورييه في حالة الزمن المتحول
26	4.2 الصيغة العقدية لسلاسل فورييه
27	تمارين الفصل الثاني
29	الفصل الثالث: الاهتزازات الحرة الغير المخمدة ذات درجة واحدة من الحرية
29	3. الاهتزازات الحرة الغير المخمدة
29	1.3 الإحداثيات المعممة
29	2.3 درجة الحرية
30	3.3 الاهتزازات الحرة غير المخمدة
30	1.3.3 اشتقاق المعادلة التفاضلية للحركة الحرة غير المخمدة
34	2.3.3 حل المعادلة التفاضلية
34	تمارين الفصل الثالث
37	الفصل الرابع: الاهتزازات الحرة المتخامدة للأنظمة ذات درجة واحدة من الحرية
37	4. الاهتزازات الحرة المخمدة
38	1.1.4 المعادلة التفاضلية للحركة.
41	2.1.4 التناقص اللو غارتمي
41	3.1.4 حساب الطاقة المتبددة خلال دور واحد
42	4.1.4 معامل الجودة
45	تمارين الفصل الرابع
47	الفصل الخامس: الاهتزازات القسرية لنظام ذي درجة حرية واحدة
47	5. الاهتزازات القسرية
47	1.5 الاهتزازات القسرية بتأثير قوة خارجية دورية
48	2.5 حل المعادلة التفاضلية
50	3.5 مناقشة العوامل المؤثرة على سعة الاهتزاز القسري
51	4.5 الاهتزازات القسرية لنظام كهربائي
53	5.5 ظاهرة الرنين ومعامل الجودة
54	6.5 الاهتزازات القسرية بتأثير حركة المسند
55	7.5 العوامل المؤثرة على سعة الاهتزاز القسري
57	تمارين الفصل الخامس
59	الفصل السادس: الحركة الاهتزازية لانظمة متعددة درجات الحرية
59	6. الأنظمة ذات درجتين من الحرية
59	1.6. در اسة الاهتزازات الحرة لنواسين مترابطين
60	2.6 إيجاد التواترين الطبيعيين
61	3.6 إيجاد النمطين الأساسيين للحركة
62	4.6 حل معادلتي الحركة
64	تمارين الفصل السادس

66	المحور الثاني: الأمواج
66	1 الامواج الميكانيكية
66	1.1 عموميات
66	2.1 تعريف الموجة
67	2.2 خصائص الموجة
67	1.2.2 سرعة انتشار الموجة
69	2.2.2 طول الموجة
69	3.2 الانتشار الحر للأمواج العرضية في وتر
72	4.2 تركيب الأمواج (مبدأ التراكب)
73	5.2 الانعكاس والأمواج المستقرة
75	6.2 التجاوب
77	1.6.2 الانعكاس عن نهاية ثابتة
77	2.6.2 الانعكاس عن نهاية حرة
78	7.2 الصوت
79	1.7.2 شدة الصوت ومستوى الشدة
79	2.7.2 الأمواج الصوتية المستقرة
79	1.2.7.2 الأنبوب مفتوح الطرفين
80	2.2.7.2 الأنبوب مغلق من طرف واحد
81	8.2 الخفقان
82	9.2 تأثير دوبلر
83	مارين الفصل السابع

مفدمه عامه:

تتذبذب أشياء عديدة أو تهتز مثل جسم متصل عند نهاية نابض، وشوكة رنانة و رقاص الساعة، و النواس البسيط، والمسطرة البلاستيكية عندما تمسك بقوة من عبر حافة طاولة ويتم ضربها برشاقة، و أوتار القيتار أو البيانو، والعنكبوت يتحسس فريسته بوساطة اهتزازات شبكته، والسيارات تهتز للأعلى والأسفل عندما تمر على ممهل، والبنايات والجسور تهتز عندما تمر بالقرب منها أو عليها الشاحنات. في الحقيقة لأن المواد الصلبة مرنة فإن معظم الاشياء تهتز عندما تزود بقوة أو نبضة. وتحدث الاهتزازات الكهربائية في أنظمة الراديو والتلفزيون. وعلى المستوى الذري تهتز الذرات ضمن الجزيئة و تهتز ذرات المادة الصلبة حول مواضع اتزانها الثابتة نسبيا.

ترتبط الاهتزازات والحركة الموجية بعضها بالبعض، فالأمواج سواء كانت، أمواج البحر، أمواج على وتر، أمواج الزلازل او أمواج الصوت في الهواء يكون لها مصدر ها للاهتزاز. في حالة الصوت ليس فقط المصدر هو الشيء المهتز ولكن كذلك المتحسس (طبلة الأذن أو المايكروفون). وفي حقيقة الامر الوسط الذي تتقدم خلاله الموجة يهتز (مثل الهواء بالنسبة لأمواج الصوت). سندرس في المحور الأول الحركة الاهتزازية في الأنظمة الميكانيكية و الأنظمة الكهربائية، ونقارن بين الحركة التوافقية البسيطة والحركة الدائرية، ونستعرض الاهتزازات في ستة فصول و هي كالتالي:

الفصل الأول: عموميات حول الحركة الاهتزازية

الفصل الثاني: تحليل فورييه للحركة الاهتزازية.

الفصل الثالث: الاهتزازات الحرة الغير المخمدة ذات درجة واحدة من الحرية.

الفصل الثالث: الاهتزازات الحرة الغير المخمدة ذات درجة واحدة من الحرية.

الفصل الرابع: الاهتزازات الحرة المتخامدة للأنظمة ذات درجة واحدة من الحرية.

الفصل الخامس: الاهتزازات القسرية لنظام ذي درجة حرية واحدة.

الفصل السادس: الحركة الاهتزازية لأنظمة متعددة درجات الحرية.

أما في المحور الثاني فسوف نركز على حركة الامواج، ونقوم بدراسة الامواج العرضية في وتر، وندرس تراكب الامواج، ظاهرة الانعكاس، التجاوب، و سنتناول امواج الصوت لكي نحسب انطلاق الامواج الصوتية وشدة أمواج الصوت، و ندرس الأمواج الصوتية المستقرة، الخفقان، ونطلع على تأثير دوبلر.

هذه المطبوعة مخصصة لطلاب السنة ثانية علوم دقيقة بالمدارس العليا للأساتذة، و التي يتضمن موضوعها الاهتزازات و الأمواج، يتوزع الحجم الزمني الأسبوعي كما يلي:

1سا و 30 د (Cours): الدروس.

اسا و 30 د (Travaux Dirigés): أعمال موجهة.

45 د (Travaux Pratiques): الأعمال التطبيقية.

المحور الأول: الاهتزازات المبلآنبة الفخرازبة الفصل الأول: عمومبات حول الحركة الاهتزازبة 1 الحركة الاهتزازبة

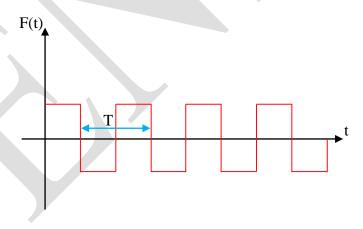
مفدمت

في هذا الفصل سنحاول دراسة نوع من أنواع الحركة، مثل حركة الشوكة الرنانة (Tuning Fork) عندما نجري تجربة معامل الرنين، حركة النواس البسيط (Pendulum) او حركة اوتار الة الكمان (String). وهي عبارة عن حركة توافقية بسيطة، يتم من خلالها التعرف على سرعة وتسارع الجسيم، ونتعرف على ما يسمى السعة (Amplitude)، التردد (التواتر) (Frequensy) ونتعرف كذلك على ما يدعى زاوية الطور (Phase Angle)، الزمن الدوري (Periodic Time). وغيرها من الصفات والخواص التي تلازم الحركة التوافقية البسيطة.

1.1 الحركة الدورية

هي حركة يعود فيها الجسم إلى موقع محدد بعد فترة زمنية ثابتة، مثل حركة القمر حول الأرض، حركة الأرض حول الأرض حول الشمس، حركة الجزيئات في المواد الصلبة تتذبذب حول موضع اتزانها في حركة دورية مستمرة.

- نقول عن دالة F(t) = F(t+T) انها دورية إذا كانت تحقق المعادلة التالية F(t) = F(t+T) حيث T دورها.



الشكل 1.1: (F(t دالة دورية

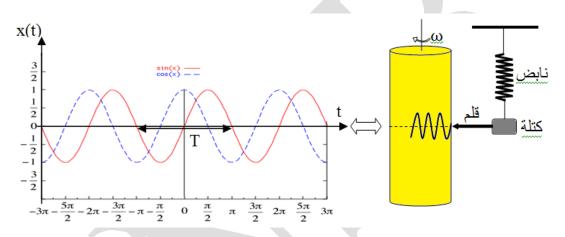
2.1 الحركة النوافقية البسيطة:

نقول عن جسم ما انه يؤدي حركة توافقية بسيطة إذا كانت إزاحته x معطاة بدلالة الزمن بالعلاقة التالية: $x(t) = A\cos(\omega t + \varphi)$ و يمكن تعريفها أيضا بالعلاقة:

$$x(t) = A \sin(\omega t + \varphi)$$

حيث:

- A سعة الحركة Amplitude.
- (ωt+φ) زاوية الطور Phase Angle -
- ϕ الطور الابتدائي أي قيمة زاوية الطور في اللحظة ϕ
 - w نبض الحركة.
- تتكرر دالة الـ \cos (أو دالة الـ \sin) كلما از دادت الزاوية بمقدار π 0 و منه الدور هو \sin 1 و النبض ω 1 [rad/s]



الشكل 2.1 : دالة الد cos (او دالة الد sin).

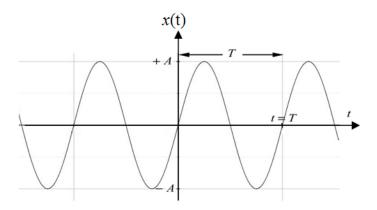
1.2.1 الزمن الدوري

x=-Aيعرف الزمن الدوري على انه الزمن الذي يستغرقه الجسيم عندما يتحرك من النقطة x=A إلى النقطة x=A ثم يعود مرة أخرى إلى نفس النقطة x=A. و عندئذ نقول أن الجسيم عمل دورة كاملة. ويمكن ملاحظة أن الزمن الذي يستغرقه الجسيم في الحركة من النقطة x=A إلى النقطة x=A يساوي الزمن الذي يستغرقه في الحركة من x=A إلى المركة من x=A إلى النقطة x=A

$$T = \frac{2\pi}{\omega} [s]$$

2.2.1 سعه الاهنزاز

هي أقصى إزاحة يصل إليها الجسم المهتز من موضع الاتزان $(x=\pm A)$ ، أو هي المسافة بين نقطتين في مسار حركة الجسم تكون سرعته في إحداهما أقصاها وفي الأخرى منعدمة وتقاس بـ m.



الشكل 3.1: دالة جيبية بسيطة

3.2.1 النبض (النوائر الزاوي)

هو عدد الاهتزازات الكلية التي يقوم بها الجسيم المهتز خلال زمن مقداره 2π ثانية و يقاس بوحدة -2π حيث:

$$\omega = \frac{2\pi}{T} = 2\pi f \left[\frac{rad}{s} \right]$$

4.2.1 النردد

يعرف التردد، و يرمز له بالرمز f، على انه عدد الدورات الكاملة المنجزة من طرف الجسيم خلال وحدة الزمن أي أن:

$$f = \frac{1}{T} = \frac{\omega}{2\pi} [Hz]$$

5.2.1 الطور الابندائي

يرمز للطور الابتدائي بالرمز ϕ ، وتسمى الزاوية $(\phi t + \phi)$ زاوية الطور (Phase Angle) وتحدّد قيمة الطور الابتدائي من موقع وسرعة الجسم عند بدء الحركة نسبة إلى محور القياس، فقيمة الثابت ϕ تتغيّر إذا تغيّر اتجاه محور القياس لأن موقع وسرعة الجسم هي كميات متجهة تعتمد إشارتها على اتجاه محور القياس.

6.2.1 سرعة الخركة النوافقية

ان: $x(t) = A\cos(\omega t + \varphi)$ فان: $x(t) = A\cos(\omega t + \varphi)$ فان:

$$v(t) = \dot{x} = \frac{dx(t)}{dt}$$

$$\dot{x} = -\omega A sin(\omega t + \varphi) = \omega A cos(\omega t + \varphi + \frac{\pi}{2})$$

x(t) و هذا يعني أن سرعة الجسيم المتحرك على تربيع في الطور مع الإزاحة x(t)

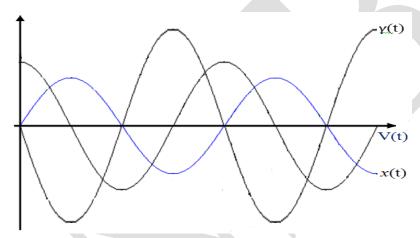
7.2.1 نسارع الحركة النوافقية

يكتب تارع الجسيم المتحرك وفق المعادلة التالية:

$$\gamma(t) = \ddot{x} = \frac{d^2x(t)}{dt^2}$$

$$\ddot{x} = -\omega^2 A sin(\omega t + \varphi) = \omega^2 A cos(\omega t + \varphi + \pi)$$

من خلال ما سبق نلاحظ أن تسارع الحركة الجيبية يتناسب مع الإزاحة x(t) ويعاكسها. ملاحظة: سرعة و تسارع الحركة التو افقية البسيطة عبارة عن دالتين جيبيتين لهما نفس النبض x(t) و نفس الدور x(t).



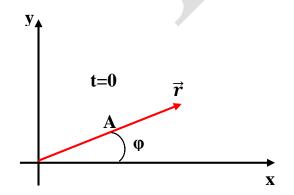
الشكل 4.1: إزاحة، سرعة و تسارع الحركة التوافقية بسيطة

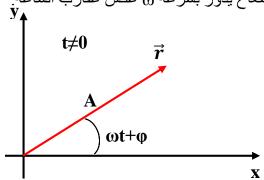
3.1 النمثبل الشعاعي للحركة النوافقية 1.3.1 نمثبل فربنل (الشعاع الدوار)

نقوم باختيار معلم (oxy)، ثم نمثل الحركة الجيبية بشعاع طويلته تساوي سعة الحركة و زاويته θ بحيث.

$$t \neq \theta \rightarrow \theta = \omega t + \phi$$
 $t = 0 \rightarrow \theta = \phi$

و هذا الشعاع يدور بسرعة \odot عكس عقارب الساعة.





الشكل 5.1: تمثيل فرينل للحركة التوافقية

2.3.1 النمثيل العفدي للحركة النوافقية (الأعداد المركبة)

Z=1 مع Z=1 مع Z=x+iy عمدي Z=x+iy مع المستوي العقدي بعدد عقدي المستوي العقدي المستوي العقدي

ومنه: $y(t) = A \sin(\omega t + \varphi)$ و $x(t) = A \cos(\omega t + \varphi)$

 $Z = A\cos(\omega t + \varphi) + i A\sin(\omega t + \varphi)$

باستعمال معادلة اويلر: $\begin{cases} \cos\theta - i \sin\theta = e^{-i\theta} \\ \cos\theta + i \sin\theta = e^{i\theta} \end{cases}$ نحصل على

 $\mid Z \mid$ $\mid A = \sqrt{x^2 + y^2}$ طویلته $Z = x + iy = A e^{i(\omega t + \phi)}$

 $\sin\theta = \frac{y}{A}$ و عمدة $\cos\theta = \frac{x}{A}$:Z و عمدة

يسمى حد الاهتزاز. $X=x+iy=A~e^{i(\omega t+\phi)}=A~e^{i\phi}$ يسمى حد الاهتزاز. $Z=x+iy=A~e^{i(\omega t+\phi)}=A~e^{i\phi}$

3.3.1 القوى في الحركة النوافقية البسيطة

 $\sum ec F = m ec \gamma$ باستعمال المبدأ الأساسي للتحريك:

 $F(x) = m \; rac{d^2 x(t)}{dt^2}$ في حالة جملة لها بعد واحد:

 $\frac{d^2x(t)}{dt^2} = -\omega^2 x(t)$ بالنسبة للحركة الجيبية

F(x) = -k x(t) نضع $F(x) = -m\omega^2 x(t)$

 $k=m\omega^2$ يسمى ثابت المرونة وحدته $k=m\omega^2$.

نلاحظ أن القوة متناسبة مع الانتقال (الإزاحة) ومعاكسة له فهي تمثل قوة إرجاع (Restoring force)

4.3.1 الطافة في الحركة النوافقية البسيطة 1.4.3.1 الطافة الحركية

تعرف الطاقة الحركية لجسيم يخضع لحركة سرعتها v بالعلاقة:

$$T = E_C = \frac{1}{2}mv^2$$

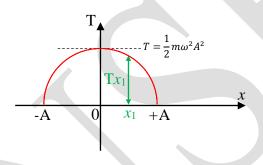
في الحركة التوافقية لدينا عبارة الإزاحة تكتب على الشكل:

 $x(t) = A \cos(\omega t + \varphi)$

 $\dot{x} = -\omega A \sin(\omega t + \varphi)$ و منه:

نعوض قيمة السرعة في العلاقة السابقة للطاقة الحركية نحصل على:

$$T=E_C=rac{1}{2}m\omega^2A^2sin^2(\omega t+arphi)=rac{1}{2}m\omega^2A^2[1-cos^2(\omega t+arphi)]$$
 $T=rac{1}{2}m\omega^2[A^2-A^2cos^2(\omega t+arphi)]$ $T=rac{1}{2}m\omega^2[A^2-X^2(t)]$ $x(t)=0$ عندما يكون عظمى عندما يكون عندما يكون $T=T_{max}=rac{1}{2}mA^2\omega^2
ightarrow x(t)=0$ $x(t)=\pm A$ $x(t)=0$ $x(t)=\pm A$



الشكل 6.1: الطاقة الحركية للحركة التوافقية

2.4.3.1 الطافة اللامنة

للوصول إلى عبارة الطاقة الكامنة نستعمل العلاقة التالية:

$$F = -\frac{dU}{dx}$$

في الحركة الجيبية F(x) = -k x(t) و منه بعد التعويض

$$\frac{dU}{dx} = k. x \rightarrow U = \int_0^x k. x dx \rightarrow U = \frac{1}{2} k. x^2$$

$$U = \frac{1}{2} k. x^2 = \frac{1}{2} m\omega^2 x^2$$

$$x(t) = 0 \rightarrow U = 0$$
 عندما تكون: $x(t) = 0$

$$x(t)=\pm A \rightarrow U=U_{max}=\frac{1}{2}mA^2\omega^2$$
 . و عندما تکون

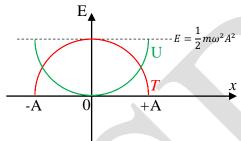
3.4.3.1 الطافة الللبة

نعلم ان الطاقة الكلية للحركة تعطى بالعلاقة التالية:

$$E = T + U$$

و منه:

$$E = \frac{1}{2}m\omega^{2}[A^{2} - x^{2}(t)] + \frac{1}{2}m\omega^{2}x^{2} = \frac{1}{2}m\omega^{2}A^{2} = cte$$



الشكل 7.1: الطاقة الكلية للحركة التوافقية

ملاحظة هامة: أثناء اهتزازة واحدة يوجد تبادل بين الطاقة الكامنة والطاقة الحركية، فعندما يبتعد الجسم عن وضع التوازن تزداد الطاقة الكامنة على حساب الطاقة الحركية ويحصل العكس عندما يعود الجسم إلى وضع التوازن.

4.1 نداخل الحركات النوافقية

1.4.1 جمع حركنان جبببنان لهما نفس الانجاه و نفس النوائر

ليكن لدينا حركتان من الشكل:

$$x_1(t) = A_1 \cos(\omega t + \varphi_1) \rightarrow \overrightarrow{r_1}$$
$$x_2(t) = A_2 \cos(\omega t + \varphi_2) \rightarrow \overrightarrow{r_2}$$

تداخل حركتين:

$$x(t) = x_1(t) + x_2(t) \rightarrow \vec{r}$$

2.4.1 استعمال نمثبل فربنل

الزاوية التي يصنعها $\overrightarrow{r_1}$ مع $\overrightarrow{r_2}$ هي:

$$(\omega t + \phi_2) - (\omega t + \phi_1) = \phi_2 - \phi_1$$

و بالتالي فطول شعاع المحصلة \vec{r} يبقى ثابتا، و يدور بسرعة زاوية ثابتة $\underline{\omega}$. و منه فان الشعاع \vec{r} ينشئ حركة توافقية جديدة سعتها \underline{A} (طويلة \underline{r})، و تواتر ها الزاوي $\underline{\omega}$ و منه:

$$x(t) = A\cos(\omega t + \varphi)$$

- لإيجاد السعة A نستعمل العلاقة التي تعطي محصلة شعاعين:

$$\vec{r} = \overrightarrow{r_1} + \overrightarrow{r_2}$$

نقوم بالإسقاط على المحورين oy و oy فنحصل على المعادلات التالية حيث:

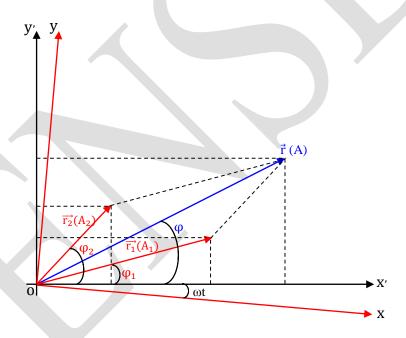
$$\begin{cases} Acos\varphi = A_1cos\varphi_1 + A_2cos\varphi_2 \dots \dots 1 \\ Asin\varphi = A_1sin\varphi_1 + A_2sin\varphi_2 \dots \dots 2 \end{cases}$$

بتربيع 1 و2 و الجمع طرف إلى طرف نجد:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

- ولإيجاد زاوية الطور (الطور الابتدائي) φ، نقوم بقسمة المعادلة 2 السابقة على المعادلة 1 فنجد:

$$tg\varphi = \frac{A_1 sin\varphi_1 + A_2 sin\varphi_2}{A_1 cos\varphi_1 + A_2 cos\varphi_2}$$



الشكل 8.1: تمثيل فرينل لحركتين لهما نفس الاتجاه و التواتر الزاوي

3.4.1 الطربغة المثلثبة

$$x_1(t) = A_1 \cos(\omega t + \varphi_1)$$

$$x_2(t) = A_2 \cos(\omega t + \varphi_2)$$

$$x(t) = x_1(t) + x_2(t) = A_1 \cos(\omega t + \varphi_1) + A_2 \cos(\omega t + \varphi_2)$$

$$= A\cos(\omega t + \varphi)$$

بعد النشر و التبسيط نجد:

السعة A·

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

زاوية الطور φ:

$$tg\varphi = \frac{A_1 sin\varphi_1 + A_2 sin\varphi_2}{A_1 cos\varphi_1 + A_2 cos\varphi_2}$$

حالات خاصة

$$A = A_1 + A_2$$

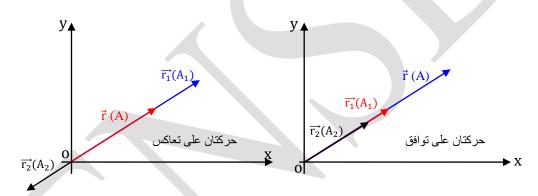
- حركتان على توافق في الطور
$$(\phi_2 - \phi_1 = 0)$$
:

$$A = |A_1 - A_2|$$

$$\phi_2 - \phi_1 = \pi$$
 حركتان على تعاكس في الطور (

$$A = \sqrt{A_1^2 + A_2^2}$$

$$(\phi_2 - \phi_1 = \frac{\pi}{2})$$
 حركتان على ترابع في الطور



الشكل 9.1: تمثيل فرينل لحركتين لهما نفس الاتجاه و التواتر الزاوي (على توافق، على تعاكس)

خلاصة: جمع حركتين أو مجموعة من الحركات الجيبية لها نفس الاتجاه و نفس التواتر الزاوي هو عبارة عن حركة جيبية لها نفس التواتر.

4.4.1 جمع حركنان جبببنان لهما نفس الانجاه ونوائران مخنلفان

ليكن لدينا حركتان من الشكل:

$$x_1(t) = A_1 \cos(\omega t + \varphi_1) \rightarrow \overrightarrow{r_1}$$

$$x_2(t) = A_2 \cos(\omega t + \varphi_2) \rightarrow \overrightarrow{r_2}$$

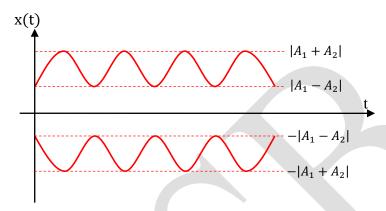
- الزوایا التي یصنعها کل من $\overrightarrow{r_2}$ و $\overrightarrow{r_2}$ هي دالة للزمن لیست ثابتة، و بالتالي فشعاع المحصلة \overrightarrow{r} لیست له طویلة ثابتة و لا یدور بسرعة زاویة ثابتة.
 - فالحركة الناتجة إذن ليست توافقية لكن يمكن مع ذلك حساب طويلة شعاع المحصلة الذي يساوي:

$$A(t) = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos[(\omega_2 - \omega_1)t + (\varphi_2 - \varphi_1)]}$$

- بما أن دالة الـ \cos محصورة بين -1 و +1 فان السعة A(t) محصورة بين قيمتين:

$$|A_1 - A_2| < A(t) < |A_1 + A_2|$$

- ظاهرة اهتزاز السعة بين $|A_1+A_2|$ و $|A_1-A_2|$ تسمى ظاهرة تعديل السعة (تكييف السعة).



الشكل10.1: ظاهرة تعديل السعة

حالة خاصة: لتعديل السعة نفرض الحركات الاهتزازية التالية:

$$x_1(t) = A\cos(\omega_1 t)$$

 $\omega_1 = \omega$

$$x_2(t) = B\cos(\omega_2 t)$$

 $\omega_2 = \omega + \Delta \omega$

$$x_3(t) = B\cos(\omega_3 t)$$

 $\omega_3 = \omega - \Delta \omega$

باستعمال التمثيل العقدي

$$x(t) = x_1(t) + x_2(t) + x_3(t)$$

$$x(t) = Ae^{i\omega t} + Be^{i(\omega + \Delta\omega)t} + Be^{i(\omega - \Delta\omega)t}$$

$$x(t) = e^{i\omega t} \left[A + B(e^{i\Delta\omega t} + e^{i(-\Delta\omega)t}) \right]$$

$$x(t) = A \left[1 + \frac{2B}{A} \cos(\Delta\omega t) \right] e^{i\omega t}$$

بالرجوع إلى التمثيل المثلثي

$$x(t) = A \left[1 + \frac{2B}{A} \cos(\Delta \omega t) \right] \cos(\omega t) = A(t) \cos(\omega t)$$

في هذه الحالة أيضا لدينا ظاهرة تعديل السعة حيث:

- درجة تعديل السعة. $\frac{2B}{A}$
 - بيض التعديل. $\Delta \omega$

التعديل: هو عملية تقنية لعلم الإرسال يتم بتأثير اهتزازة تواترها صغير $\Delta \omega$ في اهتزازة تواترها عال "كبير" ω ، و يؤدي ذلك الى تغير في عبارة السعة.

1.4.4.1 ظاهرة النبضاك (الخففان)

هي ظاهرة تغير سعة الدالة بصورة توافقية، وتنتج عن تداخل حركتين جيبيتين توافقيتين متساويتين في السعة ومختلفتين قليلا في التواتر الزاوي. تظهر النبضات مثلا عند إطلاق إشارتين صوتيتين من منبع واحد. ندرس فيمايلي حالة مبسطة تتساوى فيها زاويتا الطور.

$$x_1(t) = A\cos(\omega_1 t)$$

$$x_2(t) = A\cos(\omega_2 t)$$

$$\omega_1\cong\omega_2$$
 اي $\omega_2-\omega_1=\Delta\omega$

محصله هاتين الحركتين هي:

$$x(t) = x_1(t) + x_2(t) = A[\cos(\omega_1 t) + \cos(\omega_2 t)]$$

باستعمال العلاقة الرياضية:

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

ومنه:

$$x(t) = 2A\cos\frac{\omega_1 + \omega_2}{2}t\cos\frac{\omega_1 - \omega_2}{2}t$$

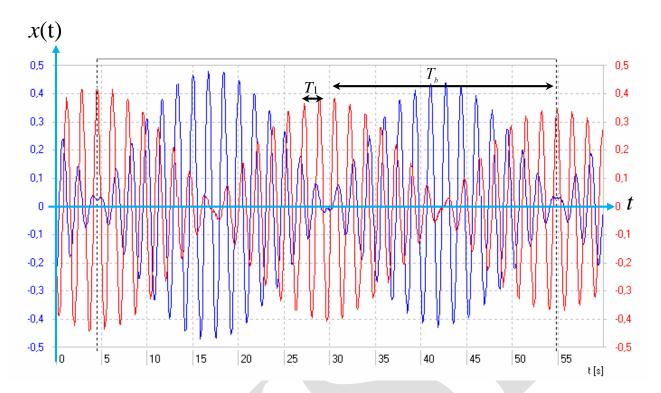
$$\omega_1 - \omega_2 = \Delta \omega$$
 نضع: $\overline{\omega} = \frac{\omega_1 + \omega_2}{2}$

فتصبح معادلة الحركة من الشكل:

$$x(t) = 2A\cos\overline{\omega}t\cos\frac{\Delta\omega}{2}t$$

- رياضيا المحصلة هي حاصل ضرب دالتين جيبيتين $x_1(t)$ و $x_1(t)$ الدالة الأولى تواترها $\overline{\omega}$ دورها $T_1 = \frac{2\pi}{\omega} = \frac{4\pi}{\omega}$ (دور الحركة). الدالة الثانية تواترها $T_2 = \frac{2\pi}{\omega}$
 - الفاصل الزمني الذي يوصل مرور السعة بقيمتين عظيمتين T_b نسميه دور الخفقان (النبضات)

$$T_b = \frac{T_2}{2} = \frac{2\pi}{\Delta\omega}$$



الشكل11.1: ظاهرة الخفقان

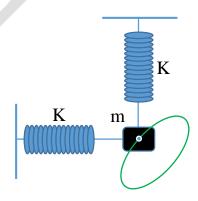
5.4.1 نداخل حر كنبن منعامدنبن لهما نفس النوائر

لتكن لدينا الحركة الأولى على المحور الافقي كمايلي:

$$x(t) = A\cos(\omega t)$$

والحركة الثانية على المحور العمودي:

$$y(t) = B\cos(\omega t + \varphi)$$



الشكل 12.1: تداخل حركتين متعامدتين

حيث ϕ فرق الطور بين $\chi(t)$ و $\chi(t)$ فتكون الحركة المحصلة كمايلي:

$$\begin{cases} x = A\cos\omega t \\ y = B\cos\omega t\cos\omega - B\sin\omega t\sin\varphi \end{cases}$$

$$\begin{cases} \cos\omega t = \frac{x}{A} \\ \sin\omega t = \frac{B\cos\omega t\cos\varphi - y}{B\sin\varphi} \end{cases}$$

$$\begin{cases} \cos\omega t = \frac{x}{A} \\ \sin\omega t = \frac{B\frac{x}{A}\cos\varphi - y}{B\sin\varphi} \end{cases}$$

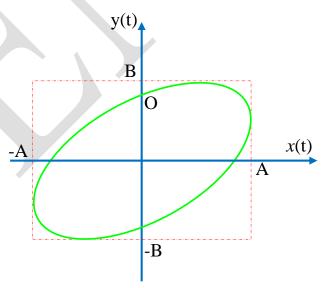
$$\begin{cases} \cos\omega t = \frac{x}{A} \\ \sin\omega t = \frac{Bx\cos\varphi - Ay}{AB\sin\varphi} \end{cases}$$

$$\begin{cases} \cos\omega t = \frac{x}{A} \dots \dots 1 \\ \sin\omega t = \frac{Bx\cos\varphi - Ay}{AB\sin\varphi} \dots 2 \end{cases}$$

$$1^2 + 2^2 = 1 \rightarrow \frac{x^2}{A^2} + \frac{B^2x^2\cos^2\varphi + A^2y^2 - 2ABxy\cos\varphi}{A^2B^2\sin^2\varphi}$$

بعد النشر والتبسيط نحصل على:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - 2\frac{xy}{AB}\cos\varphi = \sin^2\varphi \dots *$$
المعادلة * هي معادلة قطع ناقص يقع داخل مستطيل ابعاده (2A ,2B).

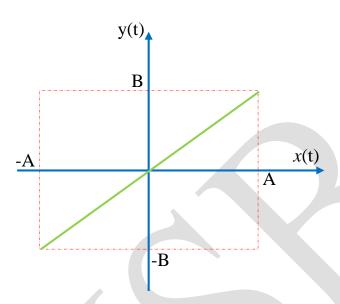


الشكل 13.1: تداخل حركتين متعامدتين (حلقة لوساجو)

حالات خاصة:

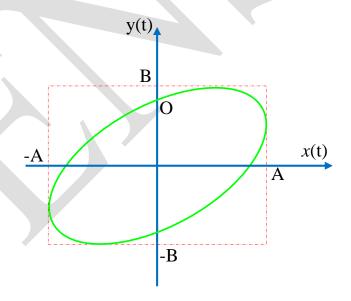
$$\phi = 0$$
 فرق الطور:

$$\left(\frac{x}{A} - \frac{Y}{B}\right)^2 = 0 \leftrightarrow y = \frac{B}{A}x$$
: تصبح المعادلة مستقيم ميله $\frac{B}{A}$ موجب.



$$0 < \varphi < \frac{\pi}{2}$$
 । فرق الطور

تصبح المعادلة * معادلة قطع ناقص ميله موجب.

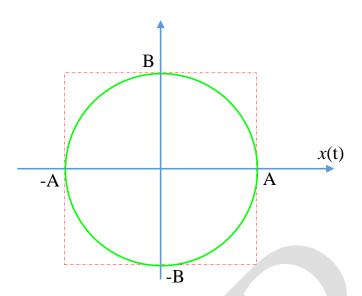


$$\varphi = \frac{\pi}{2}$$
 فرق الطور:

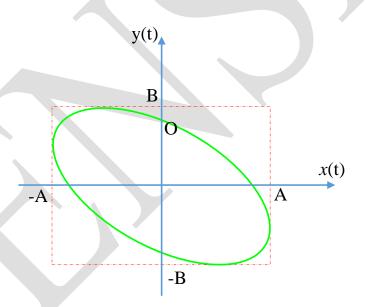
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$
 : تصبح المعادلة * كمايلي

و هي معادلة قطع ناقص قائم.

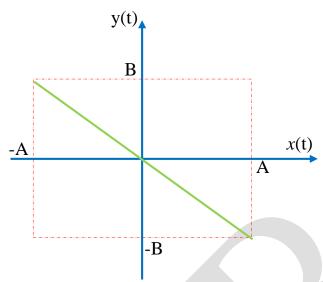
اذا كان A=B يتحول القطع الناقص الى دائرة.



 $\frac{\pi}{2} < \phi < \pi$ - فرق الطور : $\phi < \pi$ - نصبح المعادلة * معادلة قطع ناقص ميله سالب .



 $\phi=\pi$ فرق الطور: $\left(\frac{x}{A}+\frac{Y}{B}\right)^2=0 \leftrightarrow y=-\frac{B}{A}x$ تصبح المعادلة : صبح المعادلة مستقيم ميله $\frac{-B}{A}$ سالب.



نماربن الفصل الأول:

التمرين الأول:

اكتب الدوال التالية كعبارة او مجموع لدوال cosinus و sinus

- 1- $x = 2\cos(5t + \pi/6)$
- 2- $x = 3\sin 4\pi (t-0.125)$

التمرين الثاني:

تعرف تحركات نقطة مادية ما بالدوال التالية:

- $1- x = -2\cos 5\pi t + 3\sin 5\pi t$
- 2- $x = 3\cos 10t 2\sin 10t$

اكتب كل معادلة على شكل دالة cosinus

التمرين الثالث:

يعرف موضع نقطة مادية على مستقيم موجه بدلالة الدوال التالية:

- 1- $x = 5\cos(25t + \pi/6)$
- 2- $x = 2\cos 5\pi (t-0.05)$
- $3- x=5\cos 3\pi t$
- 4- $x=3\sin(10t-\pi/4)$
- 5- $x=-4\sin\pi(2t+0.25)$

Rad و الطور ب S وحدتها Cm و الطور ب

احسب:

- 1- السعة
- 2- الطور الابتدائي، التواتر الزاوي، التردد و الدور الزمني.
 - 3- عبارة السرعة و التسارع بدلالة الزمن.
 - 4- القيم القصوى للسرعة و التسارع.
 - 5- ارسم الدوال x(t) في التمثيل الكارتيزي.

التمرين الرابع:

نظام له حركة توافقية جيبية ذات تردد f=500 و سعة A=1 ، إذا افتر ضنا أن النظام متأخر بـ f=500 و نظام له حركة توافقية جيبية ذات تردد f=100 و f=100 و f=100 بالنسبة إلى معلم متحرك (له نفس f=100 و f=100

- cosinus بدلالة a(t), v(t), x(t) معادلة -1
- ا- تمثیل شعاعی a(t), v(t), x(t) ا ا تمثیل شعاعی -2

ب- تمثیل کارتیزي

التمرين الخامس:

لنفترض لدينا نظام يتحرك بصيغة جيبية ذات تردد f=10Hz وسعة حركته A=3cm، مع العلم انه في اللحظة الابتدائية t=0 كانت الإزاحة t=0 والسرعة سالبة.

- ماهى معادلة الحركة لهذا النظام؟

التمرين السادس:

محرك كهربائي يدور بسرعة 3600 دورة في الثانية مما يؤدي إلى اهتزاز قاعدته بحركة توافقية بسيطة ذات سعة مقدار ها 0.5m ناتجة عن عدم تمركز محور دورانها.

- 1- احسب القيمة العظمى لتسارع قاعدة المحرك.
- 2- إذا كانت كتلة المحرك تساوي 100kg، فاحسب القيمة العظمى للقوة التي يطبقها المحرك على الأرضية

التمرين السابع:

اوجد صيغة عامة لدور الحركة الاهتزازية باستخدام مبدأ انحفاظ الطاقة ثم اوجد الطاقة الحركية T في حالة الحركة الجيبية، وبرهن أن القيمتين الوسطيتين للطاقة الحركية والطاقة الكامنة بالنسبة لهزاز توافقي متساويتان.

الفصل الثاني: تحلبل فورببه للحركة الاهتزازبة

2 نخلیل فورییه

1.2 سلاسل فورببه

لتكن الدالة f(x) دالة دورية في المجال π الى π الى π ، تمتلك عدد محدود من النقاط الصغرى و العظمى، و للتكامل $\int_{-\pi}^{+\pi} |f(x)| dx$ قيمة منتهية. تحت هذه الشروط يمكن كتابة:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} (a_n \cos nx + b_n \sin nx) \dots \dots 1$$

حيث a_n ، a_0 و a_n تسمى معاملات فورييه.

b_n و a_n ، a_0 حساب المعاملات 2.2

 $[-\pi, +\pi]$ و نجري التكامل في المجال و cosmx و نجري التكامل في المجال المعامل a_n

$$\int_{-\pi}^{+\pi} f(x) cosmx dx = \int_{-\pi}^{+\pi} \frac{a_0}{2} cosmx dx$$

$$+ \int_{-\pi}^{+\pi} \sum_{n=1}^{n=\infty} a_n \cos nx \cos mx \, dx + \int_{-\pi}^{+\pi} \sum_{n=1}^{n=\infty} b_n \sin nx \cos mx \, dx$$

إذا كان $n \neq m$ فان كل التكاملات تساوي الصفر (0)

إذا كان n=m فان:

$$\int_{-\pi}^{+\pi} f(x) cosmx dx = \int_{-\pi}^{+\pi} \frac{a_0}{2} cosnx dx$$

$$+ \int_{-\pi}^{+\pi} \sum_{n=1}^{n=\infty} a_n \cos^2 nx + \int_{-\pi}^{+\pi} \sum_{n=1}^{n=\infty} b_n \sin nx \cos nx \, dx$$

$$\begin{cases} \cos 2nx = \cos^2 nx - \sin^2 nx \\ \cos 2nx = 2\cos^2 nx - 1 \end{cases}$$

$$\cot^2 nx = \frac{\cos^2 nx - 1}{2}$$

$$\int_{-\pi}^{+\pi} a_n \cos^2 nx \, dx = a_n \int_{-\pi}^{+\pi} \frac{\cos 2nx + 1}{2} dx = a_n \pi$$

و منه النتيجة تصبح كمايلي:

$$\int_{-\pi}^{+\pi} f(x) cosnx dx = a_n \pi$$

إذا تصبح:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cdot \cos nx \cdot dx$$

و لإيجاد المعاملات b_n نضرب المعادلة 1 في $\sin n$ و نجري التكامل في المجال b_n : نجد في الأخير.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cdot \sin(x) \, dx$$

 $[-\pi, +\pi]$ نجري التكامل مباشرة في المجال a_0 نجري التكامل مباشرة

$$\int_{-\pi}^{+\pi} f(x) cosnx dx = \int_{-\pi}^{+\pi} \frac{a_0}{2} dx = a_0 \pi$$
 ومنه $a_0 = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) . dx$

ملاحظات: $\frac{a_0}{2}$ تمثل القيمة الوسطى للدالة للدالة f(x) خلال الدور.

. a_0 دالة فردية كل معاملات $a_{
m n}$ تساوي الصفر (0) بما في ذلك - إذا كانت الدالة

$$f(x) = \sum_{n=1}^{n=\infty} (b_n \sin nx)$$

الدالة f(x) دالة زوجية كل معاملات b_n تساوي الصفر f(x)

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} (a_n \cos nx)$$

3.2 عبارة معاملات فورببه في حالة الزمن المنحول

نضع:

$$\begin{cases} x \to \omega t \\ f(x) \to f(t) \\ -\pi \le x \le +\pi, \\ -\frac{\pi}{\omega} \le t \le +\frac{\pi}{\omega}, \quad -\frac{T}{2} \le t \le \frac{T}{2}, \quad T = \frac{2\pi}{\omega} \end{cases}$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cdot cosnx \cdot dx$$

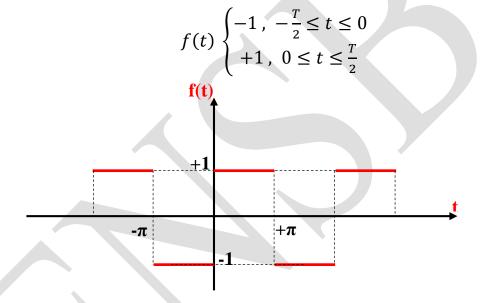
$$a_{\rm n} = \frac{1}{\pi} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot cosn\omega t \cdot d\omega t = \frac{\omega}{\pi} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot cosn\omega t \cdot dt$$

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot \cos n\omega t \cdot dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot \sin n\omega t \cdot dt$$

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot dt$$

الدالة المربعة: هي دالة غير مستقرة قيمتها 1+ خلال نصف الدور و1- خلال نصف الدور الأخر.



الشكل 1.2: الدالة المربعة

يلاحظ من البيان أن الدالة f(x) دالة فردية إذن معاملات a_0 و a_0 تساوي الصفر (0). حساب معاملات b_n

$$b_{n} = \frac{2}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t) \cdot sinn\omega t \cdot dt = \frac{2}{T} \left[\int_{-\frac{T}{2}}^{0} -sinn\omega t \, dt + \int_{0}^{\frac{T}{2}} \sin n\omega t \, dt \right]$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} -sinnt \, dt + \frac{1}{\pi} \int_{0}^{\pi} sinnt \, dt = \frac{1}{n\pi} [cosnt]_{-\pi}^{0} - \frac{1}{n\pi} [cosnt]_{0}^{\pi}$$

$$= \frac{1}{n\pi} [2 - 2cosn\pi]$$

$$b_{n} = \frac{2}{n\pi} [1 - cosn\pi]$$

يال المبغة المعقدية العلامات فوربيه
$$\begin{cases} \cos\theta - i \sin\theta = e^{-i\theta} \\ \cos\theta + i \sin\theta = e^{i\theta} \end{cases}$$
 : باستعمال معادلات اويلر $f(t) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$: في نشر فورييه $a_n \cos n\omega t + b_n \sin n\omega t = a_n \left(\frac{e^{in\omega t} + e^{-in\omega t}}{2} \right) + b_n \left(\frac{e^{in\omega t} - e^{-in\omega t}}{2i} \right)$
$$= \frac{a_n}{2} \left(e^{in\omega t} + e^{-in\omega t} \right) + \frac{b_n}{2i} \left(e^{in\omega t} - e^{-in\omega t} \right)$$

$$= e^{in\omega t} \left(\frac{a_n}{2} + \frac{b_n}{2i} \right) + e^{-in\omega t} \left(\frac{a_n}{2} - \frac{b_n}{2i} \right)$$

$$= e^{in\omega t} \left(\frac{a_n - ib_n}{2} \right) + e^{-in\omega t} \left(\frac{a_n + ib_n}{2} \right)$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin n\omega t = c_n e^{in\omega t} + c_{-n} e^{-in\omega t}$$

$$a_n \cos n\omega t + b_n \sin$$

$$f(t)=\sum_{n=-\infty}^{n=+\infty}\!\!\left(c_ne^{in\omega t}
ight)$$
 C_n حساب معاملات $C_n=rac{1}{2}(a_n-ib_n)$

$$C_{n} = \frac{1}{2} \left[\frac{2}{T} \int_{0}^{T} f(t) cosn\omega t dt - \frac{2}{T} \int_{0}^{T} if(t) sinn\omega t dt \right]$$

$$C_{n} = \frac{1}{T} \int_{0}^{T} f(t) (cosn\omega t - isinn\omega t) dt$$

$$C_{n} = \frac{1}{T} \int_{0}^{T} f(t) e^{-in\omega t} dt$$

لتكن لدينا ظاهرة فيزيائية معينة f(t) (تيار متناوب مثلا)

$$f_{eff}^2 = \frac{1}{T} \int_0^T f^2(t) dt$$
 :اقيمة الفعالة هي

حيث القيمة المتوسطة لهذه الدالة هي:

$$f_{moy} = \frac{1}{T} \int_0^T f(t) dt$$

نماربن الفصل الثاني:

التمرين الاول:

اوجد الرسم البياني ونشر بواسطة فورييه للدوال التالية:

3-
$$F(t) = t^2$$
; $-\pi \le t \le \pi$

4-
$$F(t) = t^2$$
; $0 \le t \le 2\pi$

$$+t ; 0 \le t \le 2$$
2- $F(t) = +t ; 0 \le t \le 2$
-t+4; $0 \le t \le 4$

1- F(t) = -t; $-2 \le t \le 0$

التمرين الثاني:

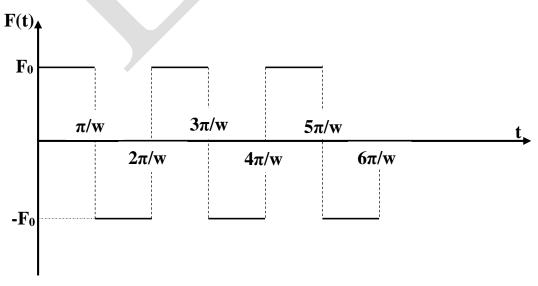
جسم كتلته m يخضع إلى القوة المبينة في الشكل ادناه.

1- اكتب معادلة حركة الجسم باستعمال متسلسلات فورييه.

2- تأكد أن حلها يكتب كمايلي:

$$x(t) = a + bt + Asinwt + bsin3wt + \dots$$

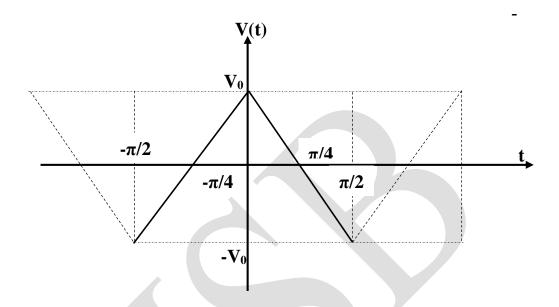
حيث a و b ثابتان اختياريان.



التمرين الثالث:

فرق جهد بهيئة إشارة دورية مثلثية (الشكل المقابل).

- اوجد عبارة التيار المار عبر المكثفة باستعمال نشر فورييه في صيغته الحقيقية و العقدية.



الفصل الثالث: الاهتزازات الحرة الغبر المخمدة ذات درجة واحدة من الحربة 3. الاهتزازات الحرة الغبر المخمدة

1.3 الإحداثبات المعممة

- يمكن تعيين موضع نقطة مادية m تعيينا كاملا في الفضاء بثلاث إحداثيات وقد تكون هذه الإحداثيات كارتيزية أو السطوانية أو كروية، ونحتاج إلى إحداثيتان فقط إذا كانت النقطة المادية مقيدة الحركة في مستو أو سطح ثابت. بينما إذا كانت تتحرك على خط مستقيم أو منحني فعندئذ يكفي إحداثي معمم واحد.
- في حالة منظومة متكونة من N جسيم نحتاج بصورة عامة إلى 3N من الإحداثيات لتعيين مواضع جميع الجسيمات في أن، أما إذا فرضت قيود على المنظومة فنحتاج إلى عدد من الإحداثيات اقل من 3N.

مثلا إذا كان الجسيم عبارة عن جسم صلب لابد من توفر 6 إحداثيات معممة لتحديد موضعه تحديدا كاملا.

- 3 إحداثيات لمركز ثقله
- بالإضافة إلى 3 أخرى تتمثل في زوايا اويلر للميلان.

ويتطلب بصورة عامة أصغر عدد معين n لتعيين الشكل العام للمنظومة وسوف نرمز لهذه الإحداثيات بالرموز

$$q_1(t), q_2(t), q_3(t), \dots \dots q_n(t)$$

والتي تسمى الإحداثيات معممة

2.3 درجه الحربه

هي عدد الإحداثيات المعممة المستقلة " التي لا تشمل الزمن".

 $M_2 o ({f x}_2, {f y}_2, {f z}_2)$ و $M_1 o ({f x}_1, {f y}_1, {f z}_1)$ و الإحداثيات المعممة لهذا النظام هي $M_1 o ({f x}_1, {f y}_1, {f z}_1)$ و العلاقة التي تربط بين الإحداثيات المعممة

$$e = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

 M_1 e M_2

فعدد درجات الحرية d=N-n حيث:

n : هو عدد العلاقات (المعادلات) التي تربط بين الإحداثيات المعممة.

N : هو عدد الإحداثيات المعممة.

في هذه الحالة عدد درجات الحرية هو: 6-1=5

. مشتقات الاحداثيات المعممة تسمى السرعات المعممة

$$q_1(t),q_2(t),q_3(t),\dots\dots q_n(t)$$
 الإحداثيات

$$q_1(t),q_2(t),q_3(t),\dots q_n(t)$$
 السرعات

3.3 الاهتزازات الحرة غبر المخمدة

مفرمن:

الاهتزازات الحرة غير المخمدة هي تلك الاهتزازات الناتجة عن إزاحة النظام عن وضع توازنه، أو اكتساب إحدى نقاطه المادية سرعة ابتدائية ثم نتركه يهتز بحرية دون أي قوة خارجية. نهتم في هذا الفصل بدراسة الأنظمة التي يكون فيها فقدان الطاقة بسبب التخامد الضعيف (غير المخمد) أثناء الاهتزاز بحيث يمكن اعتبارها أنظمة محافظة بصورة تقريبية.

1.3.3 اشتفاق المعادلة التفاضلية للحركة الحرة غير المخمدة

لاشتقاق المعادلة التفاضلية لحركة هنالك عدة طرق أهمها:

- طريقة الاتزان.
- طريقة لاغرانج.
- طريقة انحفاظ الطاقة.

- طربقة الائزان:

نعتمد على استخدام قانون نيوتن الثاني للحركة لاشتقاق المعادلة التفاضلية للنظام

مثال1: نظام ميكانيكي: نابض-كتلة (m) (قوى الاحتكاك مهملة).

m: مقدار الكتلة kg

k: ثابت مرونة النابض N/m

m الطول الابتدائى للنابض L_0

ΔL: استطالة النابض تحت تأثير الكتلة.

الشكل 1.3: حركة كتلة معلقة بنابض

بعد تعليق الكتلة نختار موضع الاتزان الذي يكون في مستوي نهاية النابض وهو في حالة سكون ونحدد
 اتجاها موجبا للحركة.

طريقة نيوتن "المبدأ الأساسي للتحريك يعطى بالعلاقة التالية:

- $\sum \overrightarrow{F_{\mathrm{ext}}} = m \vec{\gamma}$ حرکة انسحابیة -
- $\sum \mu(F) = I\ddot{\theta}$ حرکة دورانية حرکة د
- في حالة السكون: تؤثر على الكتلة قوتان هما قوة الثقل وقوة شد الخيط ومنه.

$$\sum \overrightarrow{F_{\rm ext}} = \overrightarrow{0} \rightarrow m\overrightarrow{g} + k.\overrightarrow{\Delta L} = \overrightarrow{0}$$

 $mg + k \cdot \Delta L = 0$

الإسقاط على محور الحركة نجد:

• في حالة الحركة:

$$\sum \overrightarrow{F_{\rm ext}} = m\overrightarrow{\gamma} = m\ddot{x} \to mg - k. (\Delta L + x) = m\ddot{x}$$

$$mg - k \cdot \Delta L - kx = m\ddot{x} \rightarrow \ddot{x}(t) + \frac{k}{m}x(t) = 0$$

و هي المعادلة التفاضلية لحركة غير متخامدة لنظام لها درجة واحدة من الحرية، تكتب على الشكل التالي بدلالة الإحداثيات المعممة.

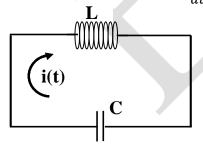
$$\ddot{q}(t) + \omega_0^2 q(t) = 0$$

q(t) عيمكن أن تكون إزاحة حركة انسحابية q(t) أو حركة دورانية $\theta(t)$ أو اهتزاز شحنة كهربائية q(t) أو ضغط هوائي p(t)

$$T_0=rac{2\pi}{\omega_0}=2\pi\sqrt{rac{k}{m}}$$
 و دور ها $\omega_0^2=rac{k}{m}$ و $\omega_0=\sqrt{rac{k}{m}}$ يسمى النبض الطبيعي للحركة

مثال2: نظام كهربائي: دارة (L,C)، في هذه الحالة نفرض أن المقاومة الداخلية للوشيعة L مهملة. في النظام الكهربائي نستعمل الطريقة المكافئة لقانون نيوتن وهي طريقة كيرشوف (مجموع فروق الجهد في دارة مغلقة يساوي الصفر).

$$V_L + {
m V_C} = 0$$
 يَذَا كَانَ هَنَاكُ شَحَنَةُ ابتَدَائِيَّةً في الْدَارِةَ فَانَ: $L rac{di(t)}{dt} + rac{1}{C} \int i(t) \ dt = 0$



$$Lrac{d^2i(t)}{dt^2}+rac{1}{c}i(t)=0$$
 : انشتق بالنسبة إلى ا $rac{d^2i(t)}{dt^2}+rac{1}{c}i(t)=0$ و منه:

وهي المعادلة التفاضلية للحركة الحرة غير المخمدة حيث:

 $T_0=2\pi\sqrt{LC}$ النبض الطبيعي: $\omega_0^2=\frac{1}{LC}\to\omega_0=\sqrt{\frac{1}{LC}}$ و الدور الطبيعي في هذه الحالة هو $\omega_0^2=\frac{1}{LC}\to\omega_0=\sqrt{\frac{1}{LC}}$ ملاحظة: يمكن التعبير عن المعادلة السابقة بواسطة الشحنة الكهربائية.

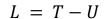
$$L\frac{di(t)}{dt} + \frac{1}{c} \int i(t) dt = 0 \rightarrow L\frac{d^2q(t)}{dt^2} + \frac{1}{c} q(t) = 0 \rightarrow \frac{d^2q(t)}{dt^2} + \frac{1}{LC} q(t) = 0$$

ملاحظة: في كلا النظامين الكهربائي و الميكانيكي نلاحظ أن ω_0 و ω_0 هما دالتان لخصائص النظام لا يتعلقان بمقدار سعة الاهتزاز و لا بالشروط الابتدائية.

- طريفة لاغرانج:

طريقة معممة طورها لاغرانج بالاعتماد على الطاقة الحركية والطاقة الكامنة. بالنسبة لنظام يخضع لحركة حرة غير مخمدة تأخذ معادلة لاغرانج الشكل التالي:

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$



إحداثي معمم و \perp دالة لاغرانج حيث :

مثال1: نظام ميكانيكي: نابض- كتلة (m) (قوى الاحتكاك مهملة).

لدينا إحداثي معمم واحد (x(t يعبر عن حركة النظام.

$$T = \frac{1}{2} m \dot{x}^2$$

 $T=rac{1}{2}\;m\;\dot{x}^2$: الطاقة الحركية

$$U = \frac{1}{2} x^2$$

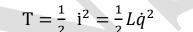
 $U=\frac{1}{2} x^2$ الطاقة الكامنة:

$$L = T - U = \frac{1}{2} \ m \ \dot{x}^2 - \frac{1}{2} \ k \ x^2$$
 : دالة لاغرانج

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \rightarrow mx + kx = 0 \rightarrow \ddot{x} + \frac{k}{m}x = 0$$

و هي المعادلة التفاضلية للحركة

مثال2: نظام كهربائي (L,C) نهمل المقاومة الداخلية للنظام



الطاقة الحركية:

$$U = \frac{1}{2} \frac{1}{C} q^2$$

الطاقة الكامنة:

$$L = T - U = \frac{1}{2} \mathrm{L}\dot{q}^2 - \frac{1}{2C} \, q^2$$
 : دالة لاغرانج

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \rightarrow L \ddot{q} + \frac{1}{c} q = 0 \rightarrow \ddot{q} + \frac{1}{LC} q = 0$$

و هي المعادلة التفاضلية للحركة.

مثال 3: نظام میکانیکی (نو اس بسیط)

يتكون النواس من كتلة نقطية m وخيط طوله 1 مهمل الكتلة و غير قابل للامتطاط.

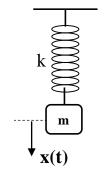
$$T=rac{1}{2}$$
 $\dot{v}^2=rac{1}{2}ml^2\dot{ heta}^2$ الطاقة الحركية:

$$U=mgl~(1-cos heta)$$
 : الطاقة الكامنة

$$L=T-U=rac{1}{2}ml^2\dot{ heta}^2-mgl(1-cos heta)$$
 : دالة لاغرانج

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0 \rightarrow ml^2 \ddot{\theta} + mgl \sin \theta = 0$$

عند الاهتز از بزوایا صغیرة یکون $\sin\theta \approx 0$ و منه:



$$ml^2\ddot{\theta} + mgl\theta = 0 \rightarrow \ddot{\theta} + \frac{g}{l}\theta = 0$$

وهي وهي المعادلة التفاضلية للحركة حيث:

$$T_0=2\pi\sqrt{rac{l}{g}}$$
 و الدور الطبيعي في هذه الحالة هو $\omega_0^2=rac{g}{l}
ightarrow \omega_0=\sqrt{rac{g}{l}}$ النبض الطبيعي:

- طربفة انخفاظ الطافة:

تعتمد هذه الطريقة على مبدأ انحفاظ الطاقة، إذ يبقى مقدار الطاقة الكلية للنظام محافظ أي ثابتا في أي لحظة زمنية، فإذا عبرنا عن الطاقة الكلية بدلالة الطاقة الحركية والطاقة الكامنة يكون.

$$E = T + U$$

حبث:

$$\frac{dE}{dt} = 0 \rightarrow \frac{dT}{dt} + \frac{dU}{dt} = 0$$
 نأخذ المشتقة الأولى للمعادلة السابقة بالنسبة للزمن.

ومنها يتم إيجاد المعادلة التفاضلية للحركة

نجد الطاقة الحركية والطاقة الكامنة للنظام مقارنة مع وضع الاتزان.

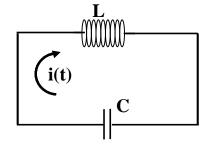
$$T=rac{1}{2}\;m\;\dot{x}^2$$
 : الطاقة الحركية

$$U = \frac{1}{2} x^2$$
 الطاقة الكامنة:

$$E = T + U = \frac{1}{2} \text{ m } \dot{\mathbf{x}}^2 + \frac{1}{2} k \mathbf{x}^2$$
 : الطاقة الكلية للنظام

$$\frac{\mathrm{dE}}{\mathrm{dt}} = 0 \rightarrow m\dot{x}\ddot{x} + kx\dot{x} = 0 \rightarrow m\ddot{x} + kx = 0 \rightarrow \ddot{x} + \frac{k}{m}x = 0$$
 و هي المعادلة التفاضلية للحركة.

مثال: نظام كهربائي (L,C) نهمل المقاومة الداخلية للنظام.



$$T = \frac{1}{2} L i^2 = \frac{1}{2} L \dot{q}^2$$
 الطاقة الحركية:

$$U = \frac{1}{2} \frac{1}{c} q^2$$
 الطاقة الكامنة :

$$E=T+U=rac{1}{2}\mathrm{L}\dot{\mathrm{q}}^2-rac{1}{2C}\;\mathrm{q}^2$$
 : دالة الكلية للنظام

$$\frac{dE}{dt}=0$$
 $\rightarrow L\dot{q}$ $\ddot{q}+\frac{1}{c}q\dot{q}=0$ $\rightarrow \ddot{q}+\frac{1}{LC}q=0$ نشتق بالنسبة للزمن.

وهي المعادلة التفاضلية للحركة.

2.3.3 حل المعادلة النفاضلية

لتكن لدبنا المعادلة التفاضلية التالية:

$$\ddot{q} + \omega_0^2 q = 0 \dots *$$

وهي معادلة تفاضلية من الدرجة الثانية بمعاملات ثابتة وبدون طرف ثان. لغرض حل هذه المعادلة نفرض أن الحل يكون على الشكل التالى:

$$q(t) = Ae^{rt} \rightarrow \ddot{q} = Ar^2e^{rt}$$

نعوض في المعادلة * السابقة نجد:

$$Ar^2e^{rt} + \omega_0^2 Are^{rt} = 0 \to r^2 + \omega_0^2 = 0 \to r^2 = -\omega_0^2 \to r_{1,2} = \pm i\omega_0$$

$$q(t) = A_1 e^{i\omega_0 t} + A_2 e^{-i\omega_0 t}$$
 يمنه:

وهذا الحل يمكن أن يكتب على الشكل التالى:

$$q(t) = A\cos\omega_0 t + B\sin\omega_0 t$$

$$q(t) = C \cos(\omega_0 t + \varphi)$$
 أو على الشكل:

$$C = \sqrt{A^2 + B^2}$$

ملاحظة: الثوابت A_1 و A_2 او A_3 و A_4 و A_5 ملاحظة الثوابت الشروط الابتدائية .

نماربن الفصل الثالث:

التمرين الأول:

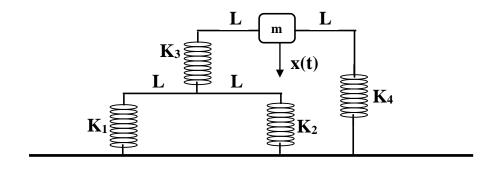
نعلق كتلة m=1kg في نابض شاقولي، فنلاحظ انه يستطيل في حالة السكون بمقدار m=1kg. الكتلة الموجودة في حالة الاتزان نعطيها حركة نحو الأعلى، فتبدأ تهتز بسعة 0.005m، بإهمال قوى الاحتكاك.

- 1- اوجد ثابت مرونة النابص K.
- 2- اوجد معادلة الحركة، واحسب دورها.
- 3- ماهى عبارة الإزاحة (x(t بدلالة الزمن؟
- 4- اوجد عبارة السرعة والتسارع في هذه الحالة.

التمرين الثاني:

نظام مهتز يتكون من كتلة m متصلة بذراعين وأربعة نوابض كما في الشكل المقابل، فإذا افترضنا أن الكتلة تتحرك باتجاه عمودي فقط، مع إهمال كتلة الذراعين.

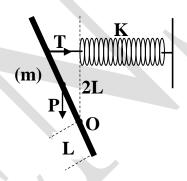
- اوجد التواتر الطبيعي للنظام (النبض).



التمرين الثالث:

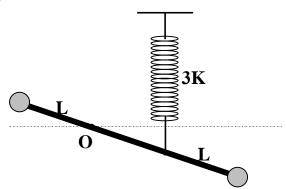
نظام مهتز يتكون من ساق كتأتها m وطولها 14 تدور حول محور يمر بالنقطة O بدون احتكاك.

- عند وضع التوازن تكون الساق في الوضعية الشاقولية (والنابض في حالة راحة)، نزيح الساق عن وضع توازنها بزاوية θ ثم نتركها حرة لحالها.
 - 1- اوجد المعادلة التفاضلية للحركة مستعملا المبدأ الأساسي للتحريك في الحركة الدورانية.
 - 2- ماهي الشروط الواجب توفرها حتى يخضع النظام إلى حركة اهتزازية توافقية.



التمرين الرابع:

النظام المهتز يتكون من ساق مهملة الكتلة طولها 2L ونابض ثابت مرونته 3K، وكتلتين نقطيتين مثبتتين في حافتي الساق كما يوضحه الشكل المقابل. عند وضع التوازن تكون الساق في الوضعية الأفقية.



نزيح الجملة عن وضع توازنها بزاوية θ ثم نتركها حرة لحالها.

- الله U عبر عن قيمة الطاقة الكامنة U بدلالة θ
- 2- ماهي الشروط الواجب توفرها في وضع التوازن.
 - 3- بسط عبارة الطاقة الكامنة U في هذه الحالة.
 - 4- اوجد عبارة الطاقة الحركية T.
 - 5- استنتج عبارة دالة لاغرانج.
- 6- اوجد المعادلة التفاضلية للحركة بتطبيق طريقة لاغرانج.

التمرين الخامس:

يتكون النظام المهتز من كتلتين نقطيتين معلقتين في نهايتي ساق طويلة وكتلة نقطية ثالثة معلقة في ساق قصيرة معلقة عموديا بالساق الطويلة وثلاثة نوابض مرنة كما يوضحه الشكل المقابل. تأخذ الساق الطويلة الوضعية الشاقولية عند التوازن. نزيح الجملة عن وضع توازنها بزاوية θ ثم نتركها حرة لحالها.

- اوجد عبارة الطاقة الكامنة U بدلالة θ .
- 2- ماهو الشرط الواجب توفرها عند وضع التوازن.
 - 3- بسط عبارة الطاقة الكامنة U.
 - 4- اوجد عبارة الطاقة الحركية T.
- 5- اوجد المعادلة التفاضلية للحركة بتطبيق مبدأ انحفاظ الطاقة.
 - 6- احسب التواتر الزاوي للحركة.

الفصل الرابع: الاهتزازات الحرة المتخامدة للأنظمة ذات درجة واحدة من الحربة 4. الاهتزازات الحرة المخمدة

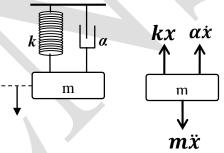
نمهبد:

هي تلك الاهتزازات التي تتناقص سعتها مع مرور الزمن حتى تنعدم وذلك بسبب تبدد طاقتها نتيجة تأثير قوى التخامد أو الاحتكاك عليها. وهناك أنواع من التخامد نذكر منها:

- 1- النخامر اللزوجي: يظهر عند حركة الأجسام بسرعة معتدلة في مائع، ويتناسب مقدار القوة المقاومة للحركة طرديا مع السرعة وتزداد قيمتها بازدياد لزوجة المائع وكثافته.
- 2- النخامد الصلب (نخامد كولومب): يظهر عند انز لاق سطحين جافين او جسمين صلبين على بعضهما البعض ومقداره ثابت في اغلب الأحيان.

النخامد اللزوجي للاهنزازات الحرة: يعتبر التخامد اللزوجي أكثر الأنواع بساطة في التحليل الرياضي و يتم تمثيل قوة التخامد كدالة للسرعة وفق العلاقة التالية: $\vec{F} = -\alpha \vec{v}$ حيث: α ثابت التخامد اللزوجي [Ns/m].

نعتبر أن الهزاز التوافقي (K.m) يتحرك داخل مائع معين بحيث تولد لزوجة هذا المائع قوة احتكاك تساوي: $F = -\alpha \dot{x}$



الشكل 1.4: حركة كتلة معلقة بنابض تخضع الى تخامد لزوجي.

- طربفت نبونن:

هناك ثلاثة قوى تؤثر على الكتلة المتحركة اثناء الاهتزاز:

- قوة القصور (قوة العطالة).
- قوة التخامد وهي دالة للسرعة.
- قوة النابض وهي دالة للإزاحة.

تظهر هذه القوى في المعادلة التفاضلية للحركة وفق طريقة الاتزان

$$m\ddot{x}(t) = -\alpha \dot{x}(t) - kx(t) \Rightarrow m\ddot{x}(t) + \alpha \dot{x}(t) + kx(t) = 0 \dots \dots \dots (1)$$

- طربفه لاغرانج:

يمكن اشتقاق المعادلة التفاضلية للحركة وفق طريقة لاغرانج بتطبيق المعادلة:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = F(t)$$

النظام الميكانيكي يتكون من كتلة ومخمد ونابض.

$$L = T - U = \frac{1}{2}m\dot{x} - \frac{1}{2}kx^2$$
 $/F = -\alpha\dot{x}$

ومنه بعد التعويض نجد:

$$m\ddot{x}(t) + kx(t) = -\alpha \dot{x}(t) \Rightarrow m\ddot{x}(t) + \alpha \dot{x}(t) + kx(t) = 0$$

و يمكن ان نكتب معادلة لاغرانج كالتالي:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = -\frac{\partial D}{\partial \dot{q}}$$

حيث D دالة التبدد (fonction de dissipation)

$$D = \frac{1}{2}\alpha\dot{q}^2$$

$$F = -\frac{\partial D}{\partial \dot{q}} = -\alpha\dot{q}$$

$$\ddot{x}(t) + \frac{\alpha}{m}\dot{x}(t) + \frac{k}{m}x(t) = 0$$
 يمكن كتابة المعادلة (1) على الشكل:

$$\ddot{q}(t)+2\lambda\,\dot{q}(t)+\omega_0^2q(t)=0$$
 او على الشكل المعمم التالي:

هذه المعادلة التفاضلية من الدرجة الثانية تعبر عن حركة النظام المهتز بصورة حرة مخمدة، وعند مقارنة المعادلتين الاخيرتين نجد:

معامل التخامد.
$$\lambda = \frac{\alpha}{2m}[s]$$

النبض الذاتي (الطبيعي).
$$\omega_0 = \sqrt{\frac{\mathbf{k}}{m}}$$

نسبة التخامد.
$$\xi = \frac{\lambda}{\omega_0}$$

1.1.4 للمعادلة النفاضلية للحركة:

$$\ddot{q} + 2\lambda \, \dot{q} + \omega_0^2 q = 0$$

هي معادلة تفاضلية خطية من الدرجة الثانية بمعاملات ثابتة وبدون طرف ثان. نفرض ان الحل الرياضي لهذه المعادلة يكون على الشكل التالي:

$$q(t) = Ae^{rt} \Rightarrow \dot{q} = rAe^{rt} \Rightarrow \ddot{q} = r^2Ae^{rt}$$

نعوض في المعادلة التفاضلية فنجد:

$$r^2 + 2\lambda r + \omega_0^2 = 0$$

وهي المعادلة المميزة للمعادلة التفاضلية مميزها يكون على الشكل التالى:

$$\Delta' = \lambda^2 - \omega_0^2 = -(\omega_0^2 - \lambda^2) = i^2(\omega_0^2 - \lambda^2)$$

يعتمد الحل الناتج على العلاقة بين قيمتي λ و ω_0 و هناك ثلاث حالات:

 Δ' < $0
ightarrow \lambda < \omega_0$ الحالة الاولى: نخامد ضعيف

ينتج في هذه الحالة حلين مركبين:

$$r_2 = -\lambda - i\sqrt{\omega_0^2 - \lambda^2} = -\lambda - i\omega_a$$
$$r_1 = -\lambda + i\sqrt{\omega_0^2 - \lambda^2} = -\lambda + i\omega_a$$

حيث: $\omega_a = \sqrt{\omega_0^2 - \lambda^2}$ هو التواتر الطبيعي الزاوي للاهتزازات المتخامدة، و منه دور الحركة المخمدة (شبه الدور) يكون على الشكل:

$$T_{a} = \frac{2\pi}{\omega_{a}} = \frac{2\pi}{\sqrt{\omega_{0}^{2} - \lambda^{2}}} = \frac{2\pi}{\omega_{0}^{2} \sqrt{1 - \frac{\lambda^{2}}{\omega_{0}^{2}}}} = \frac{T_{0}}{\sqrt{1 - \xi^{2}}}$$

 $q(t) = A_1 e^{r_1 t} + A_2 e^{r_2 t}$ يعطى حل المعادلة التفاضلية على الشكل:

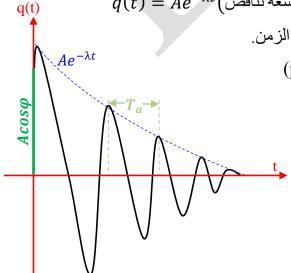
$$q(t) = A_1 e^{(-\lambda + i\omega_a)t} + A_2 e^{(-\lambda - i\omega_a)t} = A_1 e^{-\lambda t} e^{i\omega_a t} + A_2 e^{-\lambda t} e^{-i\omega_a t}$$

$$q(t) = e^{-\lambda t} (A_1 e^{\mathrm{i}\omega_a t} + A_2 e^{-\mathrm{i}\omega_a t})$$

 $q(t)=Ae^{-\lambda t}$ (السعة تناقص) $\cos(\omega_a t+\phi)$ حدالاهتزاز

يمثل الشكل التالي الشكل البياني للحركة المتخامدة بدلالة الزمن.

نوع الحركة: حركة شبه دورية (pseudo periodique)



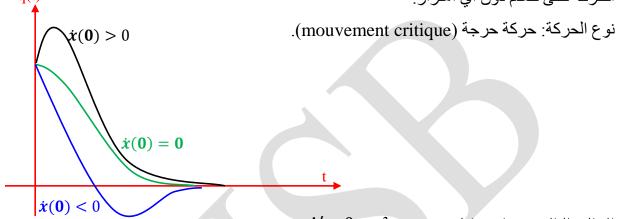
 $\Delta'=0
ightarrow \lambda = \omega_0$ الحالة الثانية: نخامد حرج

$$\lambda = \lambda_c = \omega_0 = \sqrt{\frac{k}{m}} \rightarrow \lambda_c = \frac{\alpha_c}{2m} = \sqrt{\frac{k}{m}} \Rightarrow \alpha_c = 2\sqrt{km}$$

 $r_1=r_2=-\lambda$ ينتج في هذه الحالة حلا مضاعف:

$$q(t) = (_1 + A_2 t)e^{-\lambda t}$$
 عنه يصبح حل المعادلة التفاضلية:

الدالة q(t) لا تتضمن حدا اهتزازيا وبالتالي فالكتلة m لا تؤدي الى حركة اهتزازية وانما الى تناقص سعة q(t) الحركة حتى تنعدم دون اى اهتزاز.



 $\Delta' > 0
ightarrow \lambda > \omega_0$ الحالث الثالثث: نخامد تغبل

ينتج في هذه الحالة حلين حقيقيين:

$$r_2 = -\lambda - \sqrt{\lambda^2 - \omega_0^2}$$

$$r_1 = -\lambda + \sqrt{\lambda^2 - \omega_0^2}$$

ومنه حل المعادلة التفاضلية يكون على الشكل:

q(t) $q(t)=e^{-\lambda t}(A_1e^{\sqrt{\lambda^2-\omega_0^2}\,t}+A_2e^{-\sqrt{\lambda^2-\omega_0^2}\,t})$ هنا كذلك ليس لدينا حدا اهتزازيا وبالتالي فالحركة هي حركة لا دورية تتناقص مع الزمن وتعود الكتلة الى موضع الاتزان. حركة حرجة حرجة مركة مين موضع الاتران.

2.4.1 الننافص اللوغارنمي:

هي طريق عملية وبسيطة نسبيا لإيجاد التخامد في النظام الديناميكي، ويتم هذا من خلال تحديد نسبة تناقص سعة اهتزازاته الحرة المتخامدة، ويعرف التناقص اللو غارتمي بأنه اللو غاريتم الطبيعي للنسبة بين اي سعتين متتاليتين يفصلهما زمن دوري واحد T_a .

نأخذ حلا لاهتزازات النظام وفق العلاقة:

$$x(t) = Ae^{-\lambda t}\cos(\omega_a t + \varphi)$$

تعطى قيمة التناقص اللوغارتمي وفق العلاقة التالية:

$$\delta = lin\frac{x(t_1)}{x(t_2)} = lin\frac{Ae^{-\lambda t_1}\cos(\omega_a t_1 + \varphi)}{Ae^{-\lambda t_2}\cos(\omega_a t_2 + \varphi)} = lin.e^{\lambda(t_2 - t_1)}.\frac{\cos(\omega_a t_1 + \varphi)}{\cos(\omega_a t_2 + \varphi)}$$

بما ان: $T_2=T_1+T_a$ فان قيمتى الجيب تمام متساويتان و منه:

$$\delta = lin. e^{\lambda(t_2 - t_1)} = lin. e^{\lambda T_a}$$

$$\delta = \lambda . T_a$$

$$\xi = \frac{\lambda}{\omega_0} \Rightarrow T_a = \frac{2\pi}{\omega_a} = \frac{T_0}{\sqrt{1-\xi^2}}$$
 و لدينا مما سبق نسبة التخامد:

$$\delta = \lambda . T_a \Rightarrow \delta = \frac{2\pi}{\sqrt{1-\xi^2}}2$$

ومن خلال العلاقة الاخيرة يمكن ايجاد نسبة التخامد ع من خلال التناقص اللو غارتمي.

اما اذا اخذنا النسبة بين از احتين يفصل بينهما زمن يعادل عدة ازمنة دورية $\mathbf{T}_a = \mathbf{T}_1 + \mathbf{n}$ ومنه

$$\delta = \frac{2n\pi\xi}{\sqrt{1-\xi^2}}$$

تبين العلاقة (2) ان السعة تتناقص بصورة أكبر مع تزايد التخامد في النظام، وهي تستخدم عمليا لإيجاد مقداري α و α في الانظمة المهتزة.

3.4.1 حساب الطافة المنبددة خلال دور واحد

ليكن لدينا نظام يؤدي حركة اهتزازية شبه دورية بتواتر ω_a وزمن دوري T_a . ونفرض ان هذا النظام يغذى بطاقة خارجية بحيث تبقى سعة الاهتزازات ثابتة في المقدار اي:

$$x(t) = Ae^{-\lambda t}\cos(\omega_a t + \varphi)$$

 $\dot{x}(t) = -A\omega_a \sin(\omega_a t + \varphi)$ ومنه تكون السرعة:

لحساب الطاقة المتبددة (الضائعة) ΔE نقوم بحساب العمل الذي تنجزه قوة التخامد خلال دورة واحدة:

$$\delta W = \int_{t}^{t+T_{a}} F(x) dx = \int_{t}^{t+T_{a}} -\alpha \dot{x} dx$$
$$\dot{x} = \frac{dx}{dt} \Rightarrow dx = \dot{x}dt$$

نعوض قيمة dx نجد:

$$\delta W = \int_{t}^{t+T_{a}} -\alpha \dot{x} \, dx = \int_{t}^{t+T_{a}} -\alpha \dot{x}^{2} \, dt = \int_{t}^{t+T_{a}} -\alpha [-A\omega_{a} \sin(\omega_{a}t + \varphi)]^{2} dt$$

$$\delta W = -\alpha A^{2} \omega_{a}^{2} \int_{t}^{t+T_{a}} \sin^{2}(\omega_{a}t + \varphi) dt$$

$$= -\alpha A^{2} \omega_{a}^{2} \int_{t}^{t+T_{a}} \frac{1 + \cos 2(\omega_{a}t + \varphi)}{2} dt$$

$$\delta W = \Delta E = -\alpha A^{2} \pi \omega_{a}$$

رمنه يصبح:

$$\delta W = \Delta E = -2\pi m \lambda A^2 \pi \omega_a \qquad / \alpha = 2m\lambda$$

و هذا مقدار العمل الذي يوافق الطاقة المفقودة خلال دورة واحدة بسبب تأثير قوة التخامد اللزوجي و يلاحظ ان الطاقة المتبددة (الضائعة) تتناسب طرديا مع مقدار معامل التخامد α ومربع سعة الاهتزاز A^2 للنظام المهتز.

4.4.1 معامل الجودة

يمثل قدرة النظام على تخزين الطاقة حيث:

$$Q=2\pirac{1}{Ta}$$
 الطاقة العظمى المخزنة Ta الطاقة المتبددة خلال Ta الطاقة المتبددة خلال $E_{max}=T_{max}=rac{1}{2}m\dot{x}^2=rac{1}{2}mA^2\omega_a^2$ $Q=2\pirac{1}{2}mA^2\omega_a^2=rac{1}{\alpha}a^2\pi\omega_a=rac{\omega_a}{2\lambda}$

مثال: در اسة الدارة الكهربائية RLC على التسلسل

$$V_R+V_L+V_C=0\Rightarrow R_1i+L\frac{di}{dt}+\frac{1}{c}\int idt+ri=0$$
 خريقة كيرشوف:
$$(R_1+r)\frac{dq}{dt}+L\frac{d^2i}{dt^2}+\frac{1}{c}q=0$$
 خان $i=\frac{dq}{dt}$ خان $i=\frac{dq}{dt}$ خصيح المعادلة السابقة كالتالى:

$$L\frac{d^2i}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0 \Rightarrow \ddot{q} + \frac{L}{R}\dot{q} + \frac{1}{LC}q = 0$$

بالمطابقة مع المعادلة:

$$\ddot{q} + 2\lambda \dot{q} + \omega_0^2 q = 0$$

نجد:
$$\lambda = \frac{1}{2L}$$
 معامل التخامد و $\lambda = \frac{R}{2L}$ نجد:

الحل الرياضي المقترح لحل هذه المعادلة هو:

$$q(t) = Ae^{rt} \Rightarrow \dot{q} = rAe^{rt} \Rightarrow \ddot{q} = r^2Ae^{rt}$$

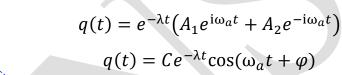
بعد الاشتقاق والتعويض نجد:

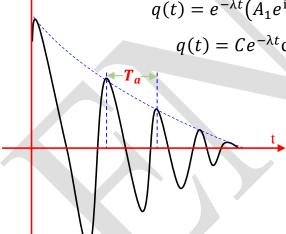
$$r^2 + 2\lambda r + \omega_0^2 = 0$$

$$\lambda < \omega_0 \Rightarrow rac{R}{2L} < \sqrt{rac{1}{LC}} \Rightarrow R < 2\sqrt{rac{L}{C}}$$
 الحالث الأولى: نخامد ضعبف

$$r_{1,2}=-\lambda\pm \mathrm{i}\sqrt{\omega_0^2-\lambda^2}=-\lambda\pm \mathrm{i}\omega_a$$
 في هذه الحالة:

الحل يكون في هذه الحالة من الشكل:

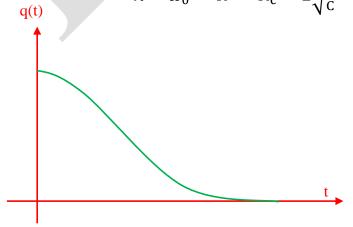




q(t)

 $\lambda=\omega_0 \Rightarrow R=\mathrm{R_c}=2\sqrt{rac{\mathrm{L}}{\mathrm{C}}}$ الحالث الثانبث: نخامد حرج

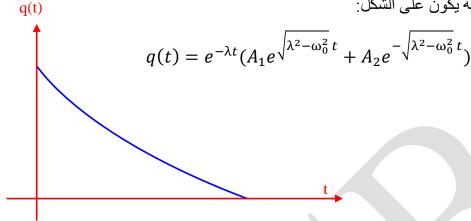
وهي القيمة الحرجة للمقاومة



$$\lambda>\omega_0\Rightarrow\,R>2\sqrt{rac{\mathrm{L}}{\mathrm{C}}}$$
 الحالث الثالثث: نخامد ثفيل

 $r_{1,2} = -\lambda \pm \sqrt{\lambda^2 - \omega_0^2}$ في هذه الحالة للمعادلة حلين حقيقيين:

ومنه حل المعادلة التفاضلية يكون على الشكل:



مثال: نحقق دارة كهربائية RLC على التسلسل لمقاومة $R=100\Omega$ و $R=10^{-3}$ و $R=10^{-3}$ و التي كانت مثلونة ابتدائيا بفرق جهد مقداره R=1000 التيار الابتدائي معدوم و تغلق القاطعة عند t=0.

- النظام حركة اهتزازية.
- 2. في حالة الاهتزاز ماهي قيمة شبه النبض.
- C. ماهي عبارة فرق الجهد بين طرفي المكثفة C.

الحل:

$$\omega_0 = \sqrt{\frac{1}{LC}} = 10^6 {
m rad/s}$$
 و معامل التخامد و $\lambda = \frac{R}{2L} = 5.\,10^4 \Omega/H$ النبض الطبيعي.

نلاحظ ان: $\lambda < \omega_0$ و منه النظام يؤدي حركة اهتزازية شبه دورية.

$$\omega_a = \sqrt{\omega_0^2 - \lambda^2} pprox \omega_0 = 10^6 \text{rad/s}$$
 . شبه النبض:

3. لدينا مما سبق:

$$q(t) = Ce^{-\lambda t}\cos(\omega_a t + \varphi)$$

$$V_C(t) = \frac{q(t)}{C} = V_0 e^{-\lambda t}\cos(\omega_a t + \varphi)$$

$$V_C(0) = V_0 \cos(\varphi) = 100V \Rightarrow \cos\varphi = 1 \Rightarrow V_0 = 100V$$

$$V_C(t) = 100 e^{-5.10^4 t}\cos(10^6 t)$$

ثماربن الفصل الرابع

التمرين الأول:

قرص كتلته $_{1}m$ و نصف قطره $_{1}m$ معلق في نهايته نابض $_{3}k$ يتصل من الاعلى بذراع ونابضين $_{1}k$ و $_{2}m$ كما هو موضح في الشكل. يتحرك القرص بصورة انسحابية عمودية $_{3}m$ وحركة دورانية $_{4}m$ حول مركزه، ويلتف حول محيطه خيط يتصل بالكتلة $_{2}m$ المرتبطة بوترين ومخمد. فإذا افترضنا لغرض تبسيط الحل:

- حركة الذراع العلوي والكتلة ₂m بإزاحات صغيرة.
- تحافظ قوة الشد الابتدائية T في كل من الوترين على مقدار ها اثناء الحركة.
 - . اهمال كتل الذراع، الخيط، الوترين والنوابض.
 - اهمال تأثير الاحتكاك.

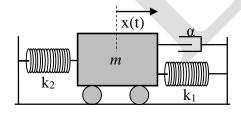
$$K_1 = k$$
. $k_2 = 2k$. $k_3 = 6k$. $m_1 = (8/3)m$. $m_2 = m$. $\alpha = \sqrt{km}$. $T_0 = kL$

- تبسيط النظام وإيجاد علاقة الإحداثيات ببعضها
 - اشتقاق معادلة الحركة بدلالة الاحداثي (t)x.
 - تحديد نوع التخامد وطبيعة الحركة.

التمرين الثاني:

عربة كتلتها m تتحرك على سطح افقي بدون احتكاك وترتبط بنابضين ومخمد كما في الشكل في حالة السكون كان النابض الأول $_{1k}$ محتفظا بطوله الطبيعي وبدون قوة توتر ابتدائية، في حين كان النابض الثاني $_{2k}$ منضغط بمقدار ثابت $_{0k}$.

- اشتق معادلة الحركة للعربة.
- ايجاد الحل (t)x الذي يعبر عن حركة الكتلة بدلالة الزمن.
 - حدد الموضع الذي تتوقف فيه الكتلة m عن الحركة.



y(t)

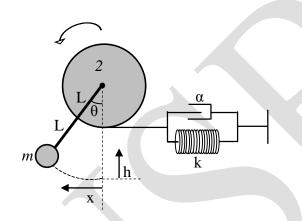
التمرين الثالث:

في الشكل المقابل، النظام يهتز حول مهتز ثابت يمر بمركز القرص، الساق ذات كتلة مهملة معلقة في نهايتها كتلة m، في وضع التوازن تكون الساق في الوضعية الافقية، نزيح النظام بزاوية θ عن وضع توازنه ثم نتركه حرا.

عبر عن الطاقة الكامنة U للنظام بدلالة θ .

- اوجد شرط التوازن واثبت ان تشوه النابض الابتدائي x_0 معدوم.
 - بسط عبارة U في هذه الحالة (من خلال شرط التوازن).
 - اعط عبارة الطاقة الحركية T للنظام.
 - اوجد عبارة لاغرانج، واشتق المعادلة التفاضلية للحركة.
- ماهو الشرط اللازم توفره حتى يخضع النظام الى حركة شبه دورية.
 - احسب القيمة العظمى التي من اجلها تبقى الحركة شبه دورية.

k=4N/M. m=0,1Kg. L=0,5m. $g=10m/s^2$. $J=(1/2)MR^2$



الفصل الخامس: الاهتزازات الفسربة لنظام ذي درجة حربة واحدة 5. الاهتزازات الفسربة

نمهبد:

تظهر الاهتزازات القسرية في المنظومات الديناميكية المختلفة نتيجة تسليط اشارة توافقية قسرية عليها وهذه الاشارة تكون على شكل قوة خارجية دورية او ازاحة دورية.

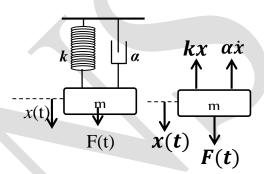
تكتب المعادلة التفاضلية للاهتزازات القسرية التوافقية على النحو التالي بصيغتها المعممة:

$$a\ddot{q}(t) + b\dot{q}(t) + cq(t) = F(t)$$

حيث: (f(t) هي قوة الاثارة الدورية (قوة خارجية دورية).

1.5 الاهنزازاك الفسربة بنأثبر فوة خارجبة دوربة

إذا اثرت قوة خارجية دورية توافقية F(t) على كتلة نظام ميكانيكي ذو درجة حرية واحدة كما في الشكل.



الشكل 1.5: حركة اهتزازية قسرية

وكانت قوة الاثارة التوافقية كالتالي:

$$F(t) = F_0 \cos \Omega t \implies F(t) = F_0 e^{i\Omega t}$$

حيث: F_0 هي سعة الاثارة.

 Ω : هو التواتر الزاوي للإثارة.

تكون المعادلة التفاضلية لحركة النظام كمايلي:

$$m\ddot{x}(t) + \alpha\dot{x}(t) + kx(t) = F(t)$$

$$m\ddot{x}(t) + \alpha \dot{x}(t) + kx(t) = F_0 e^{i\Omega t}$$

وهي معادلة تفاضلية خطية من الدرجة الثانية وبطرف ثان غير منعدم ومعاملات ثابتة.

2.5 حل المعادلة النفاضلية

حلها بتكون من شقبن هما:

الحل العام X_h حل المعادلة بدون طرف ثان اي:

$$m\ddot{x}(t) + \alpha\dot{x}(t) + kx(t) = 0$$

 $\mathbf{x}(t) = \mathbf{x}_h + \mathbf{x}_p$ الحل الخاص \mathbf{x}_p حل المعادلة بوجود الطرف الثان. ومنه الحل يكون:

ابجاد الحل العام Xh

لدبنا المعادلة التفاضلية التالية:

$$m\ddot{x}(t) + \alpha\dot{x}(t) + kx(t) = 0 \Rightarrow \ddot{x}(t) + \frac{\alpha}{m}\dot{x}(t) + \frac{k}{m}x(t) = 0$$

وحلها يتضمن ثلاث حالات:
$$\lambda < \omega_0$$
 عركة اهتزازية شبه دورية

$$x_h(t) = Ae^{-\lambda t} \cos(\omega_a t + \varphi)$$

نځامد حرج:
$$\lambda=\omega_0$$
 حرکة حرجة لا دورية

$$x_h(t) = (A_1 + A_2 t)e^{-\lambda t}$$

نځامډ ثفېل:
$$\lambda > \omega_0$$
 حرکة لا دورية

$$q(t) = e^{-\lambda t} (A_1 e^{\sqrt{\lambda^2 - \omega_0^2} t} + A_2 e^{-\sqrt{\lambda^2 - \omega_0^2} t}$$

ابداد الحل الخاص XD

$$m\ddot{x}(t) + \alpha \dot{x}(t) + kx(t) = F_0 e^{i\Omega t} \dots \dots 1$$

لإيجاد الحل الخاص نفرض ان الحل الرياضي يأخذ الشكل التالي:

$$x_{\rm p} = A. e^{i(\Omega t + \phi)} \Rightarrow \dot{x} = iAe^{i(\Omega t + \phi)} \Rightarrow \ddot{x} = -A^2 e^{i(\Omega t + \phi)}$$

$$(-m\Omega^2+\mathrm{i}lpha\Omega+\mathrm{k})\mathrm{A}\mathrm{e}^{\mathrm{i}(\Omega t+\phi)}=F_0\;e^{i\Omega t}$$
 و التعويض في المعادلة السابقة:

$$(-m\Omega^2+\mathrm{i}\alpha\Omega+\mathrm{k})\mathrm{A}=F_0\;e^{-i\phi}\Rightarrow (-m\Omega^2+\mathrm{i}\alpha\Omega+\;\;$$
بالقسمة على و $e^{i(\Omega t+\phi)}$ نجد

 $k)A = F_0(\cos\varphi + i\sin\varphi)$

بعد المطابقة نجد:

$$\begin{cases} cos\varphi = \frac{A}{F_0}(k - m\Omega^2) \\ sin\varphi = -\frac{A}{F_0}(\alpha\Omega) \end{cases}$$

$$\sin^2 + \cos^2 = 1$$
 نستعمل العلاقة الرياضية التالية: ومنه:

$$\frac{A^{2}}{F^{2}}(k-m\Omega^{2})^{2} + \frac{A^{2}}{F_{0}}(\alpha\Omega)^{2} = 1$$

$$A(\Omega) = \sqrt{\frac{F_0^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}}$$

A : هي سعة الحركة القسرية.

فرق الطور ٥:

$$tg\varphi = \frac{-\alpha\Omega}{k - m\Omega^2} \Rightarrow \varphi = arctg(\frac{-\alpha\Omega}{k - m\Omega^2})$$

ملاحظة: نلاحظ ان اشارة φ سالبة بمعنى ان الحركة القسرية للنظام متأخرة عن الاثارة الخارجية (F(t بزاوية طور مقدار ها ص

يصبح الحل الخاص x_p كمايلي:

$$x_p = \sqrt{\frac{F_0^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}} e^{i(\Omega t + \varphi)}$$

ملاحظة: في حالة ما إذا كانت الاثارة الخارجية التوافقية لها الشكل التالي:

فان الحل الخاص بكون:

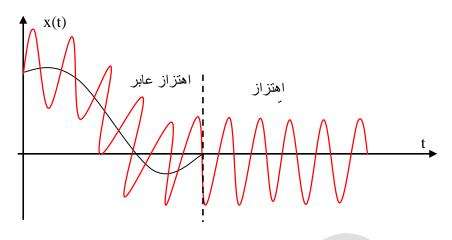
$$x_p = \sqrt{\frac{F_0^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}} \cos(\Omega t + \varphi)$$

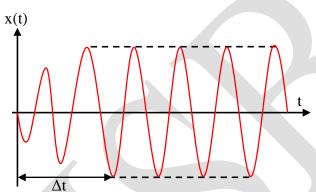
$$x_p = \sqrt{\frac{F_0^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}} \sin(\Omega t + \varphi)$$

على الترتبب

- يتكون الحل x_h من جزأين الأول x_h يمثل الأهتزازات الحرة المتخامدة للنظام بتواتر x_h الناتجة عن وضعية النظام من ازاحة و سرعة في اللحظة t=0. وهي التي تتناقص مع الزمن حتى تتلاشي بعد انقضاء زمن كاف. والثاني X_p يمثل الاهتزاز القسري بتواتر Ω وسعة ثابتة $A(\Omega)$ وهو النظام
 - بعد زمن معين يزول الاهتزاز العابر وتصبح الحركة الكلية:

$$x(t) = x_p(t)$$





الشكل 2.5: المنحنى البياني للحركة الاهتزازية القسرية

3.5 منافشة العوامل المؤثرة على سعة الاهنزاز الفسري

وجدنا ان الحركة الاهتزازية التوافقية تتواصل بسعة ثابتة A وتواتر Ω مادامت القوة F تؤثر على الكتلة m ونلاحظ من خلال معادلة السعة A ان مقدار السعة يتغير بدلالة m ، F_0 و K.

$$A(\Omega) = \sqrt{\frac{F_0^2}{(\mathbf{k} - \mathbf{m}\Omega^2)^2 + (\alpha\Omega)^2}} \Rightarrow A(\Omega) = \frac{F_0}{\sqrt{(1 - \frac{m}{k}\Omega^2)^2 + (\frac{\alpha}{k}\Omega)^2}}$$

$$\mathbf{\omega}_0 = \frac{k}{\mathbf{m}} \qquad \mathbf{A}_0 = \frac{F_0}{\mathbf{k}} \qquad \mathbf{E}_0$$

$$\frac{\alpha}{k} = \frac{\alpha}{\mathbf{m}} \cdot \frac{\mathbf{m}}{\mathbf{k}} = 2\lambda \frac{1}{\omega_0^2} = 2\xi \frac{1}{\omega_0}$$

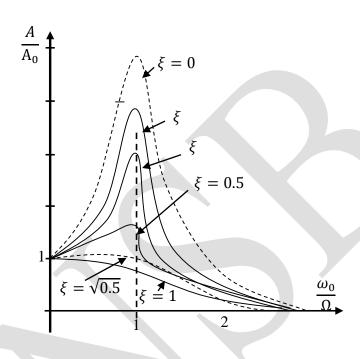
يصبح لدينا:

$$\frac{A(\Omega)}{F_0/k} = \frac{A}{A_0} \frac{1}{\sqrt{(1 - (\frac{\Omega}{\omega_0})^2)^2 + (2\xi \frac{\Omega}{\omega})^2}}$$

ونفس الشئ بالنسبة الى الطور φ:

$$tg\varphi = \frac{-2\xi \frac{\Omega}{\omega_0}}{1 - (\frac{\Omega}{\omega_0})^2}$$

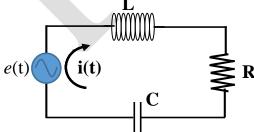
نلاحظ من خلال معادلة السعة A السابقة ان السعة A اصبحت تتناسب طرديا مع A_0 (اي مع سعة القوة الخارجية A_0) وتتغير لاخطيا بزيادة مقدار A0 وتتناقص بزيادة نسبة التخامد A5.



 $\frac{\omega_0}{\Omega}$ الشكل 3.5: علاقة $\frac{A}{A_0}$ بدلالة

4.5 الاهتزازات الفسربة لنظام تحهربائي

دارة كهربائية تتكون من وشيعة L ومقاومة R ومكثفة C على التسلسل مربوطة بمولد للذبذبات e(t) كما هو موضح في الشكل:



نأخذ قيمة ذبذبة توافقية لفارق جهد الاثارة : $e(t)=E_0 \ e^{i\Omega t}$ تكون معادلة فروق الجهد للدارة وفق قانون كير شوف.

$$V_R + V_L + V_C = e(t) \dots *$$

$$* \Rightarrow Ri + L \frac{di}{dt} + \frac{1}{C} \int i dt = e(t)$$

$$\Rightarrow Ri + L\frac{di}{dt} + \frac{1}{C}\int idt = e(t)$$

$$\Rightarrow L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = e(t)$$

$$\Rightarrow L\ddot{q} + R\dot{q} + \frac{1}{C}q = e(t)$$

$$q(t) = q_h + q_p : e(t)$$

$$e(t) = q_h + q_p : e(t)$$

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0$$

نأخذ : $q(t) = A e^{i(\Omega t + \varphi)}$ لإيجاد الحل الخاص.

بالاشتقاق والتعويض في المعادلة السابقة تنتج سعة الذبذبات القسرية.

$$A = \frac{E_0}{(\frac{1}{C} - L\Omega^2)^2 + (R\Omega)^2}$$

بضرب البسط والمقام في ${
m C}$ واعادة كتابتها تصبح المعادلة السابقة على الشكل التالي:

$$rac{A}{A_0} = rac{1}{(1 - (rac{\Omega}{\omega_0})^2)^2 + (2\xi rac{\Omega}{\omega_0})^2}$$
 $\xi = rac{R}{2} \sqrt{rac{C}{L}}$ و $\omega_0 = rac{1}{\sqrt{LC}}$ ، $A_0 = CE_0$

 $V_{\rm C}=1$ في التطبيقات العملية قياس فارق الجهد بين طرفي المكثف في دارة كهربائية يعطى بالشكل: $rac{1}{c} \ {
m q}(t) \Rightarrow V_{
m C} = V \ e^{i(\Omega t + arphi)}$

$$\frac{V}{E_0} = \frac{1}{(1 - (\frac{\Omega}{\omega_0})^2)^2 + (2\xi \frac{\Omega}{\omega_0})^2}$$

$$tg\varphi = -\frac{R\Omega}{\frac{1}{c} - L\Omega^2} = -\frac{2\xi \frac{\Omega}{\omega_0}}{1 - (\frac{\Omega}{\omega_0})^2}$$

في موقع الرنين تكون السعة وزاوية الطور الابتدائي:

$$A_r = \frac{E_0}{\omega_0} = \frac{CE_0}{2\xi}$$
$$\frac{V_r}{E_0} = \frac{1}{2\xi} = -\frac{\pi}{2}$$

5.5 ظاهرة الرنبن ومعامل الجودة

يحصل الرنين عندما يتطابق تواتر الاثارة Ω مع التواتر الطبيعي للنظام ω_0 هذه النظرية ذات اهمية نظرية وتطبيقية كبيرة، اذ تزداد سعة الاهتزازات القسرية للنظام بشكل حاد يؤدي في بعض الحالات الى تجاوز حدود المرونة وتحطم النظام المهتز.

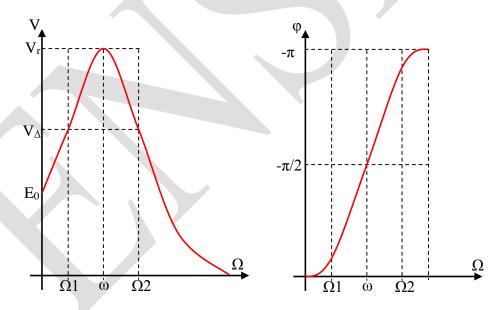
يتبين من خلال السعة ان السعة تكون قيمة عظمى عندما يكون $\Omega = \omega_0 \sqrt{1-2\xi^2}$ ، عندما تصبح قيم التخامد $0 \leq 3$ (المنحنى البياني) تتناقص السعة و منه يكون:

$$\frac{A}{F_0/K} = \frac{1}{2\xi\sqrt{1-\xi^2}}$$
 . $\frac{V_R}{E_0} = \frac{1}{2\xi\sqrt{1-\xi^2}}$

الحالات التي تكون فيها قيم التخامد صغيرة، يمكن اهمال ξ^2 في العلاقتين السابقتين ومنه:

$$\frac{V_R}{E_0} = \frac{1}{2\xi}$$
 $\frac{A}{F_0/K} = \frac{1}{2\xi}$

هذه القيمة التقريبية تستخدم لإيجاد معامل الجودة Q، حيث تعبر عن ظاهرة تكبير السعة في موقع الرنين، وتزداد قيمة معامل الجودة بازدياد مقدار السعة العظمى.



 $oldsymbol{\Omega}$ الشكل 4.5: علاقة كل من $oldsymbol{\phi}$ و $oldsymbol{V}$ بدلالة

Q يتم ايجاد معامل الجودة Q بقسمة فارق الجهد في موقع الرنين V_r على فارق جهد المدخل Q، وبذلك تعبر Q على تضخيم الدارة الكهربائية Q الدخول:

$$Q = \frac{V_r}{E_0} = \frac{1}{2\xi}$$

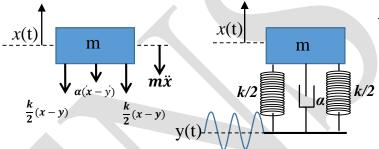
و الطريق الثانية لإيجاد معامل الجودة نبدأ بقسمة V_r على V_r ينتج قيمة للسعة V_Δ) تعطي تو اترين على المنحنى البياني هما Ω_2 ومنه:

$$Q = \frac{\omega_0}{\Omega_2 - \Omega_1} = \frac{\omega_0}{\Delta\Omega}$$
$$\xi = \frac{\Delta\Omega}{2\omega_0} = \frac{1}{2Q}$$

"ישהט "מרט ועמת מ $\Omega=\Omega_2-\Omega_1$

6.5 الاهنزازاك الفسربة بنأثبر حركة المسند

يهتز النظام بتأثير حركة الذبذبية الدورية لمسنده او احدى نقاطه مثال ذلك اهتزاز البنايات بتأثير الزلازل الارضية والذبذبات التي يحس بها ركاب السيارات اثناء تحركها على الطرق، ولغرض دراسة هذا النوع من الاهتزازات نأخذ نوعا مبسط يتمثل بكتلة تستند الى نابض ومخمد مثبتين على سطح مستو يتحرك حركة ذبذبية بتواتر اثارة Ω كما يبين الشكل.



الشكل 4.5: اهتزازات قسرية بتأثير حركة المسند

يمثل x(t) المتزازات المسند باتجاه عمودي. يمثل x(t) المتزازات المسند باتجاه عمودي. لغرض الحل الرياضي نفرض ان: x(t)>y(t) ونشتق المعادلة التفاضلية لحركة الكتلة x(t)>y(t)

$$m\ddot{x} + \alpha(\dot{x} - \dot{y}) + k(x - y) = 0$$

بإعادة ترتيب الحدود تصبح المعادلة على الشكل التالي:

$$m\ddot{x} + \alpha\dot{x} + kx = \alpha\dot{y} + ky$$

يتضح من هذه المعادلة ان قوى الاثارة المسببة لاهتزاز m تنتقل لها من خلال المخمد والنابض.

$$y(t) = B e^{i\Omega t}$$
 :

ومنه تصبح المعادلة السابقة كمايلي:

$$m\ddot{x} + \alpha\dot{x} + kx = (i\Omega\alpha + k)Be^{i\Omega t}$$

 $x(t)=x_h+x_p$ معادلة تفاضلية خطية من الدرجة الثانية بطرف ثان غير منعدم، ومنه الحل يتكون من جزأين: $x_h+x_p=x_h+x_p=x_h+x_p$ لإيجاد الحل الخاص نأخذ: $x_p(t)=A\ e^{i(\Omega t+\phi)}$ بعد الاشتقاق نعوض في المعادلة الرئيسية.

$$[(k-m\Omega^2)A+i(\alpha\Omega)A]e^{i(\Omega t+\varphi)}=[kB+i(\alpha\Omega)B]e^{i(\Omega t)}$$
بالقسمة على $e^{i(\Omega t+\varphi)}$ نجد:

$$[(k - m\Omega^2) + i(\alpha\Omega)]A = [kB + i(\alpha\Omega)B](\cos\varphi - i\sin\varphi)$$

ومنه ينتج لدينا:

$$\begin{cases} (k - m\Omega^2)A = [k\cos\varphi - (\alpha\Omega)\sin\varphi]B \\ (\alpha\Omega)A = [(\alpha\Omega)\cos\varphi - k\sin\varphi]B \end{cases}$$

$$\left(\frac{A}{B}\right)^2 = \frac{k^2 + (\alpha\Omega)^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}$$

$$\left|\frac{A}{B}\right| = \sqrt{\frac{k^2 + (\alpha\Omega)^2}{(k - m\Omega^2)^2 + (\alpha\Omega)^2}}$$

وهي سعة الاهتزاز القسري

اما زاوية الطور فهي تنتج كمايلي:

$$tag \varphi = \frac{-\alpha m\Omega^2}{k(k - m\Omega^2)^2 + (\alpha\Omega)^2}$$

7.5 العوامل المؤثرة على سعت الاهنزاز الفسري

من خلال المعادلة السابقة لسعة الاهتزاز القسرى تصبح المعادلة:

$$\left|\frac{A}{B}\right| = \sqrt{\frac{1 + (2\xi \frac{\Omega}{\omega_0})^2}{\left(1 - \left(\frac{\Omega}{\omega_0}\right)^2\right)^2 + \left(2\xi \frac{\Omega}{\omega_0}\right)^2}}$$

$$tag \varphi = \frac{-2\xi \left(\frac{\Omega}{\omega_0}\right)^2}{\left(1 - \left(\frac{\Omega}{\omega_0}\right)^2\right)^2 + \left(2\xi \frac{\Omega}{\omega_0}\right)^2}$$

يبين الشكل البياني التالي سعة الاهتزاز القسري A وزاوية الطور ϕ بدلالة تواتر الاثارة Ω عند دراسة هاتين المعادلتين بالارتباط مع الشكل نجد ان سعة الاهتزاز القسري تتساوى مع سعة اهتزاز المسند، وتكون بنفس اتجاهها.

$$\Omega o 0$$
, $\left| rac{A}{B}
ight| o 1$ بالنسبة للتواترات الصغيرة: - بالنسبة للتواترات الصغيرة:

$$\Omega \to \infty$$
, $\left| \frac{A}{B} \right| \to 0$... Lating it is a point of $\Omega \to 0$.

$$\Omega=\omega_0$$
 عندما یکون:

$$\left|\frac{A}{B}\right| = \sqrt{\frac{1 + 4\xi^2}{4\xi^2}}$$

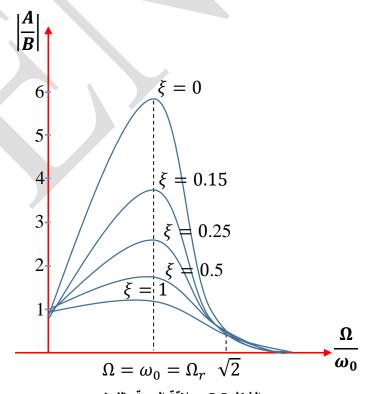
 $\Omega=\omega_0$ عند الرنين: -

$$tag \ \varphi = \frac{-1}{2\xi}$$

$$\left|\frac{A}{B}\right| = \sqrt{\frac{1 + 4\xi^2}{4\xi^2}}$$

من خلال الرسم نلاحظ انه عندما یکون $1=\left|\frac{A}{B}\right|$ توجد قیمتین لـ Ω :

$$\frac{1 + (2\xi \frac{\Omega}{\omega_0})^2}{\left(1 - \left(\frac{\Omega}{\omega_0}\right)^2\right)^2 + \left(2\xi \frac{\Omega}{\omega_0}\right)^2} = 1 \implies \begin{cases} \Omega = 0\\ \Omega = \sqrt{2} \omega_0 \end{cases}$$



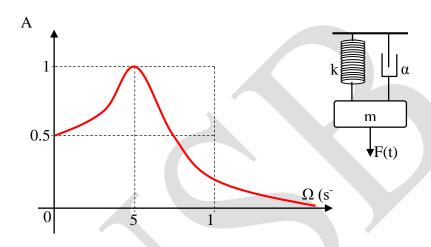
الشكل 5.5: علاقة السعة بالنبض

نماربن الفصل الخامس:

التمرين الأول:

نظام ميكانيكي يتكون من كتلة و نابض و مخمد تؤثر عليه قوة خارجية توافقية مقدار ها $F(t)=10\sin\Omega t$ فإذا اعطيت سعة الاهتزاز القسري A للكتلة و تواتر الاثارة الخارجية Ω بيانيا كما هو موضح في الشكل المقابل.

 $(\alpha \)$ و $k \cdot m \cdot A_0$ و $k \cdot m \cdot A_0$

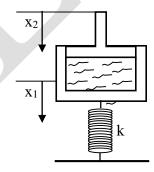


التمرين الثاني:

مكبس يتحرك داخل اسطوانة حركة انسحابية توافقية (x)t) كما هو موضح في الشكل، مكن اعتباره مخمدا معامله α ، فإذا كانت الكتلة الكلية المهتزة توافق m و احداثي حركتها الاهتزازية الانسحابية (x)

- اوجد النموذج الاهتزازي المبسط للنظام.
- اشتقاق سعة الاهتزاز القسري A للكتلة الكلية اذا كان:

$$x_1(t) = A e^{i(\Omega t + \phi)}$$
. $x_2(t) = B e^{i(\Omega t + \phi)}$



التمرين الثالث:

 $F(t) = F_0 \sin \Omega t$ نظام ميكانيكي يتكون من كتلة و نابض و مخمد و تؤثر عليه قوة خارجية توافقية افقية مقدار ها Ω نبض الأثارة كما هو موضح في الشكل.

. X عبر عن الطاقة الكامنة X للنظام بدلالة

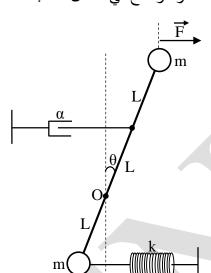
- اوجد شرط التوازن، ثم بسط عبارة U في هذه الحالة (من خلال شرط التوازن).
 - اعط عبارة الطاقة الحركية T للنظام.

- ماهو الشرط اللازم توفره حتى يخضع النظام الى حركة شبه دورية.
 - احسب السعة A و الطور الابتدائي φ.

التمرين الرابع:

نظام ميكانيكي يتكون من كتلتين تفصل بينهما ساق مهملة الكتلة طولها (الساق) L3، و نابض و مخمد تؤثر على احدى الكتلتين قوة خارجية توافقية مقدار ها $F(t) = F_0 \sin \Omega t$ كما هو موضح في الشكل ادناه.

- اوجد عبارة الطاقة الكامنة U للنظام
- اوجد شرط التوازن، ثم بسط عبارة U.
 - اعط عبارة الطاقة الحركية T للنظام.
- اوجد المعادلة التفاضلية للحركة بتطبيق معادلة لاغرانج.



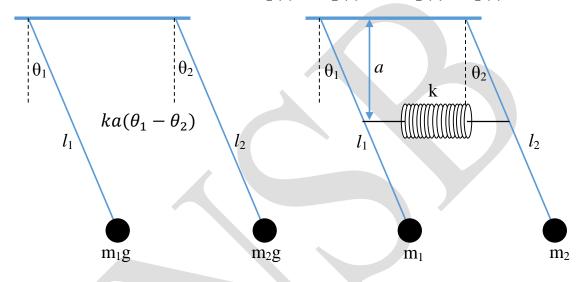
الفصل السادس: الحركة الاهتزازية لانظمة متعددة درجات الحرية 6. الأنظمة ذات درجنين من الحرية

 q_2 و q_1 و الأنظمة التي تمكن من وصف تطور ها في الزمن بواسطة احداثيين q_1 و q_2

1.6. دراسه الاهنزازات الحرة لنواسبن منرابطبن

a: البعد بين محور الدوران و نقطة تعليق النابض.

 $heta_1(t)> heta_2(t)$ درجتا الحرية: $heta_1(t)> heta_2(t)$ درجتا الحرية:



الشكل 1.6: النواسان المترابطان

طربفك لاغرانج

الطاقة الحركية للنظام:

$$T = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2$$

الطاقة الكامنة:

$$U=rac{1}{2}Ka^2(sin heta_1-sin heta_2)^2+m_1g(l_1-l_1cos heta)+m_2g(l_2-l_2cos heta)$$
 $.cos heta_2pprox 1-rac{ heta_2}{2}$ $.sin heta_1pprox heta_1$. $sin heta_2pprox heta_2$ $pprox heta_2$ $pprox heta_2$ $cos heta_1pprox 1-rac{ heta_1}{2}$

$$U = \frac{1}{2}Ka^{2}(\theta_{1} - \theta_{2})^{2} + \frac{1}{2}m_{1}gl_{1}\theta_{1}^{2} + \frac{1}{2}m_{2}gl_{2}\theta_{2}^{2}$$

دالة لاغرانج: $\mathcal{L} = T - U$ ومنه المعادلتان التفاضليتان للحركة وفق طريق لاغرانج هما:

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} \right) - \left(\frac{\partial \mathcal{L}}{\partial \theta_1} \right) = 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_2} \right) - \left(\frac{\partial \mathcal{L}}{\partial \theta_2} \right) = 0 \end{cases}$$

بعد الاشتقاق و التعويض في المعادلات السابقة نحصل على:

$$\begin{cases} m_1 l_1^2 \ddot{\theta}_1 + m_1 g l_1 \theta_1 + K a^2 (\theta_1 - \theta_2) = 0 \\ m_2 l_2^2 \ddot{\theta}_2 + m_2 g l_2 \theta_2 + K a^2 (\theta_2 - \theta_1) = 0 \end{cases}$$

او على الشكل:

$$\begin{cases} m_1 l_1^2 \ddot{\theta}_1 + (m_1 g l_1 + K a^2) \theta_1 - K a^2 \theta_2 = 0 \\ m_2 l_2^2 \ddot{\theta}_2 + (m_2 g l_2 + K a^2) \theta_2 - K a^2 \theta_1 = 0 \end{cases}$$

2.6 إبحاد النوائربن الطبيعبين

لغرض التبسيط نعتمد نواسين متماثلين و منه:

$$l_1 = l_2 = l$$
. $m_1 = m_2 = m$

نعوض هذه القيم في المعادلتين التفاضليتين للحركة (المعادلتين السابقتين).

$$\begin{cases} ml^2\ddot{\theta}_1 + mgl\theta_1 + Ka^2(\theta_1 - \theta_2) = 0\\ ml^2\ddot{\theta}_2 + mgl\theta_2 + Ka^2(\theta_2 - \theta_1) = 0 \end{cases}$$

لايجاد التواترين الطبيعيين 0 و 0 نقترح الحل الرياضي التالي.

$$\begin{cases} \theta_1(t) = A_1 \sin(\omega t + \varphi_1) \Rightarrow \ddot{\theta}_1 = -\omega^2 \theta_1 \\ \theta_2(t) = A_2 \sin(\omega t + \varphi_2) \Rightarrow \ddot{\theta}_2 = -\omega^2 \theta_2 \end{cases}$$

بالتعويض في المعادلتين السابقتين نجد:

$$\begin{cases} (-\omega^{2}l^{2}m + mgl + ka^{2})A_{1}\sin(\omega t + \varphi_{1}) - ka^{2}A_{2}\sin(\omega t + \varphi_{2}) = 0\\ (-\omega^{2}l^{2}m + mgl + ka^{2})A_{2}\sin(\omega t + \varphi_{2}) - ka^{2}A_{1}\sin(\omega t + \varphi_{1}) = 0 \end{cases}$$

في حالة اهتزاز النظام بأحد تواتريه الطبيعيين تتساوى زاويتا الطور $arphi_1=arphi_2$ لهذا النظام.

ومنه تصبح المعادلات السابقة كمايلي:

$$\begin{cases} (-\omega^2 l^2 m + mgl + ka^2) A_1 - ka^2 A_2 = 0 \dots \dots 1 \\ -ka^2 A_1 + (-\omega^2 l^2 m + mgl + ka^2) A_2 = 0 \dots \dots 2 \end{cases}$$

يمكن كتابة المعادلتين السابقتين على النحو التالي:

$$\begin{bmatrix} -\omega^2 l^2 m + mgl + ka^2 & -ka^2 \\ -ka^2 & -\omega^2 l^2 m + mgl + ka^2 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = 0$$

يلاحظ من خلال ما سبق تماثل المصفوفة حول محوريها، و هذه الصفة تنتج من تشابه النواسين المترابطين (تماثل النظام الميكانيكي المهتز حول محوره العمودي).

$$(-\omega^2 l^2 m + mgl + ka^2)^2 - (ka^2)^2 = 0$$

ومنها نحصل على مقداري التواترين:

$$\omega_1 = \sqrt{\frac{g}{l}}$$
 التواتر الزاوي الأول:

$$\omega_2 = \sqrt{\frac{g}{l} + \frac{2ka^2}{ml^2}}$$
 التواتر الزاوي الثاني:

3.6 إبداد النمطين الأساسيين للحركة

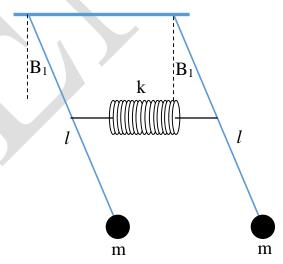
ن*ع*ربف:

يعرف النمط لكونه الحالة التي تؤدي فيها عناصر النظام اهتزازات توافقية بسيطة بتواتر موحد، و هو يساوي احد التوترين الطبيعيين.

• لإيجاد النمط الأساسي الأول للحركة نأخذ المعادلة 1 و 2 السابقة و نعوض $_{0}=_{0}$ فينتج لدينا:

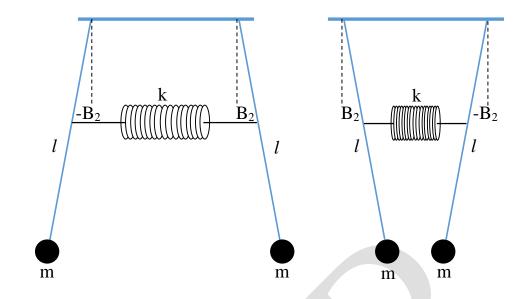
$$1 \Rightarrow (-mgl + mgl + ka^2)A_1 - ka^2A_2 = 0$$
$$1 \Rightarrow A_1 = A_2 = B_1$$

في هذه الحالة النواسان يهتزان بنفس التواتر $\omega_1=\omega_1$ و بنفس السعة ω_1 ولا يحدث للنابض أي تغير اثناء الحركة.



• اما النمط الأساسي الثاني للحركة فيتم ايجاده بتعويض $\omega=0$ في احدى المعادلتين السابقتين 1 او 2 فنجد : $A_1=-A_2=B_2$

 $A_1 = -A_2$ و بسعتين متعاكستين ϕ و بنفس فرق الطور و بنفس فرق النواسان بنفس التواتر و ω



4.6 حل معادلتي الحركة

يتكون الحل الذي يعبر عن حركة النظام للحالة العامة من تداخل حركتين جيبيتين كل منهما تعبر عن أحد النمطين الأساسيين و منه:

$$\begin{cases} \theta_1 = A_{11} \sin(\omega_1 t + \varphi_1) + A_{12} \sin(\omega_2 t + \varphi_2) \\ \theta_2 = A_{21} \sin(\omega_1 t + \varphi_1) + A_{22} \sin(\omega_2 t + \varphi_2) \end{cases}$$

حيث:

الطور و سعة الاهتزاز في التواتر الطبيعي الأول، و A_{21} و A_{22} و تمثل الطور و سعة الاهتزاز في التواتر الطبيعي الثاني.

$$A_{11}=A_{21}=B_1$$
: النمط الأول $A_{12}=-A_{22}=B_2$: النمط الثاني

نعوض في المعادلة السابقة فنجد:

$$\begin{cases} \theta_1 = B_1 \sin(\omega_1 t + \varphi_1) + B_2 \sin(\omega_2 t + \varphi_2) \\ \theta_2 = B_1 \sin(\omega_1 t + \varphi_1) - B_2 \sin(\omega_2 t + \varphi_2) \end{cases} \dots \Delta$$

الثوابت B_2 ، B_2 و ϕ_2 ، ϕ_2 يتم إيجاد مقادير ها من تطبيق الشروط الابتدائية.

$$\begin{cases} \dot{\theta}_{1} = B_{1}\omega_{1}\cos(\omega_{1}t + \varphi_{1}) + B_{2}\omega_{2}\cos(\omega_{2}t + \varphi_{2}) \\ \dot{\theta}_{2} = B_{1}\omega_{1}\cos(\omega_{1}t + \varphi_{1}) - B_{2}\omega_{2}\cos(\omega_{2}t + \varphi_{2}) \end{cases}$$

$$t = 0 \Rightarrow \begin{cases} \theta_{1} = \theta_{0}, & \theta_{2} = 0 \\ \dot{\theta}_{1} = \theta_{2} = 0 \end{cases} :$$

$$\begin{cases} \theta_{1} = \theta_{0} \Rightarrow B_{1}\sin(\varphi_{1}) + B_{2}\sin(\varphi_{2}) = \theta_{0} \\ \theta_{2} = 0 \Rightarrow B_{1}\sin(\varphi_{1}) - B_{2}\sin(\varphi_{2}) = 0 \end{cases}$$

$$\begin{cases} \dot{\theta}_1 = 0 \Rightarrow B_1 \omega_1 \cos(\varphi_1) + B_2 \omega_2 \cos(\varphi_2) = 0 \\ \dot{\theta}_2 = 0 \Rightarrow B_1 \omega_1 \cos(\varphi_1) - B_2 \omega_2 \cos(\varphi_2) = 0 \end{cases}$$

من خلال هذه المعادلات الأربعة ينتج لدينا:

$$\begin{cases} B_1 = B_2 = \frac{\theta_0}{2} \\ \varphi_1 = \varphi_2 = \frac{\pi}{2} \end{cases}$$

بالتعويض في المعادلتين السابقتين (Δ) نجد الحل الذي يعبر عن حركة النواسين بدلالة الزمن.

$$\sin\left(\omega t + \frac{\pi}{2}\right) = \cos(\omega t)$$

$$\begin{cases} \theta_1 = \frac{\theta_0}{2}\cos(\omega_1 t) + \frac{\theta_0}{2}\cos(\omega_2 t) \\ \theta_2 = \frac{\theta_0}{2}\cos(\omega_1 t) - \frac{\theta_0}{2}\cos(\omega_2 t) \end{cases}$$

$$\begin{cases} \theta_1 = \frac{\theta_0}{2}[\cos(\omega_1 t) + \cos(\omega_2 t)] \\ \theta_2 = \frac{\theta_0}{2}[\cos(\omega_1 t) - \cos(\omega_2 t)] \end{cases}$$

$$\begin{cases} \theta_1 = \theta_0 \cos\left(\frac{\omega_2 + \omega_1}{2}\right)t \cdot \cos\left(\frac{\omega_2 - \omega_1}{2}\right)t \\ \theta_2 = \theta_0 \sin\left(\frac{\omega_2 + \omega_1}{2}\right)t \cdot \sin\left(\frac{\omega_2 - \omega_1}{2}\right)t \end{cases}$$

في الحالة التي يكون فيها التواترات الزاويان مختلفين قليلا يكون:

$$\Delta\omega = \omega_2 - \omega_1$$

يكون صغيرا أيضا و ينتج عن الدالتين ظاهرة الخفقان (النبضات) كما يبين الشكل المقابل. حيث يتم تبادل الطاقة بين النواسين و انتقالهما اثناء الحركة من نواس الى اخر و يهتز كل نواس بتواتر ش مساو الى معدل التواترين الطبيعيين و بزمن دوري مقداره T.

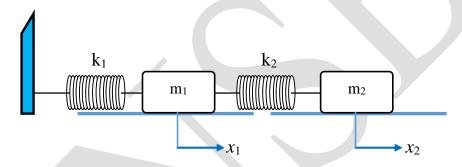
$$\omega=rac{1}{2}(\omega_2+\omega_1)$$
 $T=rac{4\pi}{\omega_2+\omega_1}$
اما تواتر الخفقان فهو Ω ، و الزمن الدوري T_b و مقدار هما $\Omega=rac{1}{2}(\omega_2-\omega_1)$
 $T_b=rac{4\pi}{\omega_2-\omega_1}$

نماربن الفصل السادس:

التمرين الأول:

 m_2 و m_1 و يتكون من كتلتين m_1 و m_2 و يا الشكل المقابل. الذي يتكون من كتلتين m_1 و يابضين ثابت مرونتيهما m_2 و m_1 و نابضين ثابت مرونتيهما m_2 و m_1

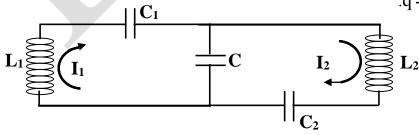
- 1- اوجدعبارة الطاقة الحركية لهذا النظام.
 - 2- اوجد عبارة الطاقة الكامنة U.
 - 3- استنتج عبارة دالة لاغرانج.
- $m_1 = \frac{m_2}{2} = m$ ، $k_1 = k_2 = k$: اوجد معادلتي الحركة حيث -4
 - 5- اوجد التواترين الطبيعيين للحركة



التمرين الثاني:

ليكن لدينا التركيب التجريبي الموضح في الشكل المقابل. الذي يتكون من دارة كهربائية L مربوطة بواسطة L مكثفة L مع دارة أخرى L حيث: L حيث: L حيث L حيث L

- $q_2(t)$ و $q_1(t)$ و اوجد معادلتي الاهتزاز لكل من
- C1 فقط t=0 كانت فقط t=0 كانت فقط t=0 كانت فقط t=0 مشحونة بـ q.

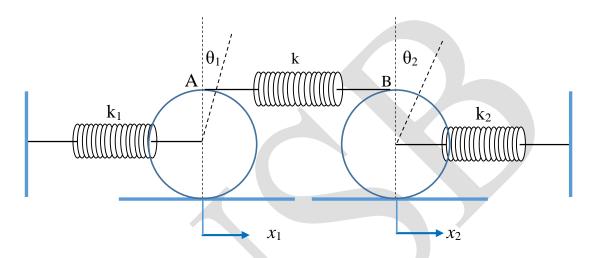


التمرين الثالث:

ليكن لدينا التركيب الموضح في الشكل. الذي يتكون من دو لابان متماثلان (كتلة M، نصف القطر R)، يدوران بدون احتكاك على المستوي الافقي. θ_1 و θ_2 زاويتا الازاحة عن وضع التوازن للدو لابين. في حالة الراحة $\theta_1=\theta_2=0$) لا يحدث تشوه للنابضين.

- 1- اوجدعبارة الطاقة الحركية لهذا النظام T.
 - 2- اوجد عبارة الطاقة الكامنة U.
- x_2 و x_1 استنتج عبارة دالة لاغرانج \mathcal{L} ، بدلالة و x_1
- $k_1 = k_2 = \hat{k} \neq k$: و استنتج التواترين الطبيعيين حيث عبارة معادلتي الحركة، و استنتج التواترين الطبيعيين عبارة معادلتي الحركة و استنتج التواترين الطبيعيين عبارة معادلتي الحركة و الحركة و المتنتج التواترين الطبيعيين عبارة معادلتي الحركة و المتنتج التواترين الطبيعيين عبارة معادلتي الحركة و المتنتج التواترين الطبيعيين عبارة معادلتي المتنتج التواترين الطبيعيين عبارة معادلتي المتنتج التواترين الطبيعيين عبارة معادلتي الحركة و المتنتج التواترين الطبيعيين عبارة معادلتي المتنتج التواترين الطبيعيين عبارة المتنتج التواترين الطبيعيين عبارة المتنازل المتنتج المتنازل ال
 - 5- اكتب دالة لاغرانج على الشكل:

$$\mathcal{L} = \frac{3}{4}M[\dot{x}_1^2 + \dot{x}_2^2 - \omega_0^2(x_1^2 + x_2^2 - 2kx_1x_2)]$$



المحور الثاني: الأمواج المبلانبلبن

1. الامــواج

1.1 عمومبات

تعتبر أمواج الماء التي تتشكل عند سقوط أي جسم صلب في بركة ماء ساكنة مثالا بسيطا وواضحا للأمواج التي تظهر في مجالات شتى في الطبيعة. فهناك الأمواج الصوتية التي تبدأ في الأوتار الصوتية للإنسان عندما يتكلم فتنتشر بواسطة ذرات الهواء المجاورة لتصل لأذن المستمع او شخص يضرب على وتر العود، وهناك الأمواج الكهرومغناطيسية (الضوء) كالتي تصدر عن هوائي محطة إرسال ناقلة برامج الإذاعة والتلفاز، وغيرها. وفي كل الحالات فهناك مصدر للموجة. أما ضرورة وجود وسط ناقل (ذرات الهواء أو مادة وتر العود) فتعتمد على نوع الموجة، فبعضها لا ينتقل من نقطة لأخرى إلا إذا وجد من يحملها وتدعى أمواجا ميكانيكية (mechanical waves) ، وهناك أمواج لا تحتاج لوسط ناقل هي الأمواج الكهرومغناطيسية (electromagnetic waves)

2.1 تعريف الموجدة

الحركة الموجبة: هي الحركة التي يصنعها الجسم المهتز على جانبي موضع سكونه او اتزانه الأصلي، مثل حركة البندول البسيط أو هي الاضطراب أو الحركة التي تحدث في الوسط عندما يتحرك كل جزء من أجزائه حركة اهتزازية تسري بالتتابع من نقطة إلى أخرى. وتسمى الحركة الاهتزازية في أنقى صورها بالحركة التوافقية البسيطة.

الموجئ: هي انتشار لاضطراب أو تشوه في وسط مادي مرن مصحوب بانتقال للطاقة دون حدوث انتقال للمادة، وينتقل من نقطة الى بقية نقاط الوسط بسرعة ثابتة V، نسميها سرعة الانتشار قد تكون الامواج ذات بعد واحد مثل موجة تنتشر في حبل، او ذات بعدين كالأمواج المائية، او ثلاثة ابعاد كالأمواج الصوتية و تنقسم الى:

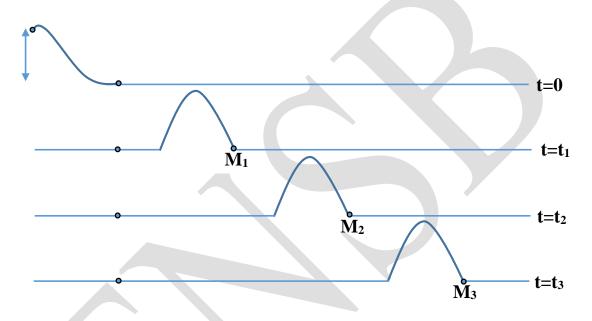
- الأمواج العرضبن: هي الأمواج التي يكون فيها منحى التموج متعامدا مع منحى انتشار الموجة مثل موجات الماء او موجة اهتزاز الحبل، وتكون على شكل قمه وقاع تنتقل الموجات العرضية (المستعرضة) في الوسط المرن (مثل الجسم الصلب والسطح الحر للسائل) الذي تتوافر بين جزيئاته قوى تماسك كافية ليتمكن الجزيء المهتز من تحريك الجزيئات المجاورة له باتجاه عمودي على اتجاه انتشار الموجة.
- الأمواج الطولبة: يكون منحى التموج موافقا لمنحى الانتشار في الأمواج الطولية مثل امواج النابض وامواج الصوت. تنتقل في الأوساط المختلفة (صلب وسائل و غاز) لأنها لا تحتاج إلى قوى تماسك كبيرة بين الجزيئات.

2.2 خصائص الموجن

1.2.2 سرعة انتشار الموجة

ينتشر الاضطراب المكون للموجة بسرعة ثابتة، مثلا لو أخذنا ثلاثة نقاط على مستوى الحبل المستعمل في التجربة (شكل المقابل) والتي هي $M_1,\,M_2,\,M_3$ و الزمنة التي يصل فيها الاضطراب الى هاته النقاط هي $t_1,\,t_2,\,t_1$ فنجد ان:

$$\frac{\overline{M_1 M_2}}{t_2 - t_1} = \frac{\overline{M_2 M_3}}{t_3 - t_2} = cont = v$$



الشكل 1.7: الأمواج المنتشرة على مستوى الحبل

نستنتج أن سرعة انتشار موجة v هي النسبة بين المسافة d التي تقطعها الموجة و المدة الزمنية اللازمة لقطع هذه المسافة، ونعبر عنها كمايلي:

$$v = \frac{d}{\Delta t}$$

d: هي المسافة التي وصلت اليها مقدمة الموجة.

 Δt : هي المدة الزمنية المستغرقة

v: سرعة الانتشار و تحسب بـ v

ملاحظات:

- تختلف سرعة انتشار الاضطراب المنتج للموجة باختلاف الوسط.
- ينتشر الاضطراب العرضي في وسطما، بغير السرعة الثابتة التي ينتشر بها الاضطراب الطولي في الوسط نفسه.

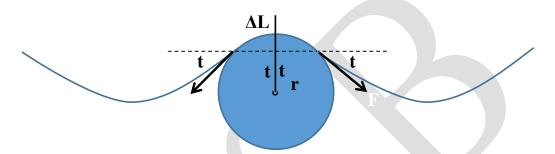
- سرعة الانتشار لا تتعلق، لا بشكل و لا بسعة الاضطراب بشرط ان لا يكون التشوه كبير جدا، وبالعكس فإن سرعة الانتشار تتعلق بطبيعة وحالة الوسط المادي ويعبر عنها بدلالة قوة الشد و الكثافة الطولية للكتلة.

$$v = \sqrt{\frac{F}{\rho}}$$

F: قوة الشد ويعبر عنها بالنيوتن N.

ρ: الكتلة الطولية وحدتها Kg/m.

m=ρΔL حيث:



- كما يمكن التعبير عن سرعة انتشار موجة ميكانيكية (صوتية مثلا) في غاز بالعلاقة التالية:

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

P: ضغط الغاز وحدته الباسكال.

 γ : بدون وحدة ثابت γ

 $ho = rac{m}{V} \ [Kg/m^3]$ الكتلة الحجمية للغاز وحدتها: ho

وإذا كان الوسط صلبا تصبح السرعة:

$$v = \sqrt{\frac{Y}{\rho}}$$

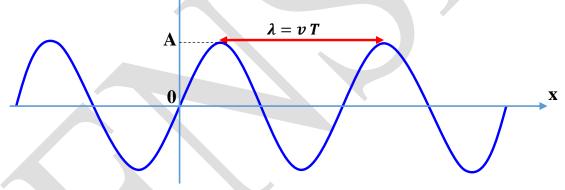
حيث Y يمثل معامل يانغ للمرونة.

ونلاحظ من العلاقات السابقة أن سرعة انتشار الصوت في أي وسط تعتمد على خواصه فقط. ونعطى في الجدول التالي سرعة انتشار الصوت في أوساط مختلفة.

السرعة (m/s)	(m/s)	الملدة	السرعة (m/s)
331 (0°)		الرصاص	1190
343 (20°)		النحاس	3810
وجين 1330		الالمنيوم	5000
المقطر 1486		الفولاذ	5170
بحر 1519		زجاج بايركس	5200

2.2.2 طول الموجدة

هو المسافة التي تقطعها الحركة الاهتزازية في دور واحد وتعتبر أقصر مسافة تربط بين نقطتين متوافقتين انظر شكل المقابل.



نحسب الطول الموجى بالعلاقة التالية:

$$\lambda = v.T = \frac{v}{f}$$

هذه العلاقة تبين أن طول الموجة λ الذي يميز انتشار ظاهرة اهتزازية يرتبط في آن واحد بالدور T او التردد f ثابت يميز الاهتزاز لوحده و الثابت v الذي يميز الوسط الذي ينشأ فيه الانتشار.

3.2 الانتشار الحر للأمواج العرضية في وتر

نأخذ لهذا الغرض نموذج انتشار الاهتزازات الحرة غير المخمدة في وتر متجانس مشدود من طرفيه بقوة شد ابتدائية. للحصول على المعادلة التي تصف اهتزازات أي نقطة من وسط تنتشر فيه موجة ما نكتب أو لا معادلة الاهتزازات للمنبع S الذي نفترض أنه يهتز بشكل بسيط وفق العلاقة التالية:

$$y_s = A \sin(\omega t)$$

حيث ترتبط السرعة الزاوية α بدور الحركة T و ترددها f بالعلاقتين المعروفتين:

$$\omega = \frac{2\pi}{T} = 2\pi f$$

ومن ثم نكتب معادلة اهتزازات أي نقطة من الوسط مثل p في الشكل التالي. التي تبعد مسافة x عن المنبع، بملاحظة أنها ستتحرك مثل x تماما. أي حركة اهتزازية بسيطة، لكن متأخرة عنها بزمن يساوي المدة اللازمة للحركة لتصل إليها من هناك، أي أن:

$$y_p = A \sin[\omega(t - \acute{t})]$$

عندئذ يكون الزمن اللازم لها لتنتقل من S الى p هو:

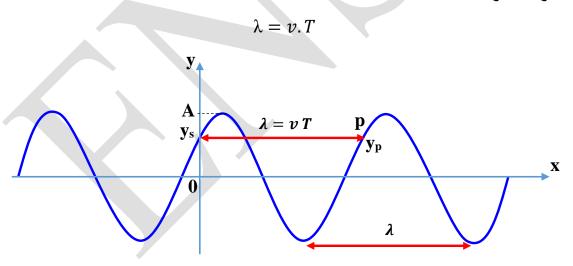
$$\dot{t} = \frac{x}{v}$$

أي ان:

$$y_p = A \sin[\omega \left(t - \frac{x}{v}\right)]$$

$$y_p = A \sin\left(\omega t - \frac{2\pi x}{v.T}\right)$$

مي المسافة التي تقطعها الموجة خلال دور كامل لاهتزازة أي نقطة من الوسط ونسمي هذه المسافة v.T



نلاحظ من خلال الشكل السابق ان طول الموجة يساوي المسافة الفاصلة بين أي نقطتين متتاليتين تتحركان بنفس الشكل والاتجاه في كل لحظة.

نسمي المقدار $\frac{2\pi}{\lambda}$ العدد الموجي، و نرمز له بالرمز κ حيث:

$$\kappa = \frac{2\pi}{\lambda}$$

نعوض في المعادلة السابقة نجد:

$$y_p = A \sin(\omega t - \kappa x)$$

تسمى هذه العلاقة بالمعادلة الموجية المنتشرة في الوسط، أي أنها تصف حركة أي ذرة منه في أي لحظة من الزمن.

بما ان الشكل العام لحركة اهتزازية بسيطة هو:

$$y = A \sin(\omega t + \varphi)$$

بالمقارنة بين المعادلتين الأخيرتين نلاحظ ان، κx يمثل فرق الطور بين نقطتين. و يمكن الاستفادة من هاته النتيجة لمعرفة حركة نقطة من وسط مهتز بمقارنتها مع منبع الاهتزازات (أو أي نقطة أخرى من الوسط). فإذا كان فرق الطور يساوي عددا زوجيا من π عندئذ تصير معادلة المنبع و النقطة متكافئتين تماما، أي أنه إذا كانت سعة واحدة أكبر ما يمكن فستكون الثانية كذلك، وإذا كانت سعة الأولى معدومة تكون الثانية مثلها، وهكذا دواليك ونقول في هذه الحالة إن الحركتين متوافقتين بالطور. أما إذا كان فرق الطور يساوي عددا فرديا من π عندئذ تكون سعتاهما متعاكستين دوما ونقول إنهما متعاكستين في الطور. فاذا كانت إحداهما في لحظة ما Λ_1 تكون سعة الثانية Λ_2 ، وتتحرك كل واحدة بعكس الأخرى دوما. ولربط مفهوم فرق الطور بمعادلة الحركة الموجية لنقطة نفترض أن أمواجا تنتشر في وسط متجانس وتصل لنقطتين تقعان في الموضعين π .

$$y_1 = A \sin(\omega t - \kappa x_1)$$
$$y_2 = A \sin(\omega t - \kappa x_2)$$

فيكون فرق الطور بينهما كمايلي:

$$\Delta \varphi = \kappa(x_2 - x_1) = \kappa \Delta x = \frac{2\pi}{\lambda} \Delta x$$

فحتى تكونا متو افقتين في الطور يجب أن يكون:

$$\Delta \phi = 2n\pi$$
 $n = 1, 2, 3, ...$

أي يجب أن يكون:

$$\Delta x = n\lambda$$

أي عندما تكون المسافة بين النقطتين تساوي عددا صحيحا من طول الموجة.

أما عندما تكون النقطتان متعاكستين في الطور، أي أن:

$$\Delta \varphi = (2n+1)\pi$$
 $n = 1, 2, 3, ...$
$$\Delta x = (2n+1)\frac{\lambda}{2}$$

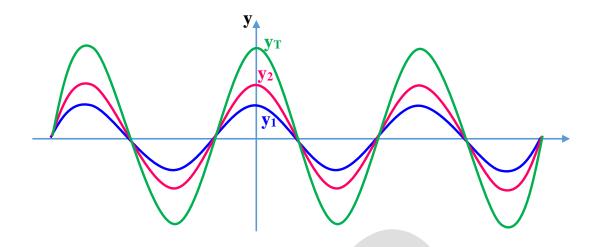
أي أنه عندما تكون المسافة الفاصلة بينهما تساوي عددا فرديا من نصف طول الموجة فإنهما تتحركان باتجاهين متعاكسين دوما.

4.2 نركبب الأمواج (مبدأ النراكب)

لو أمسك شخصان بحبل مشدود بينهما وقام كل واحد بهز الطرف الذي يمسك به للأعلى والأسفل، فكيف تتحرك أي نقطة من الحبل عندما تصلها الموجتان المتولدتان في هذه الحالة؟ إن الإجابة على هذا السؤال هو ما يسمى مبدأ التراكب وينص على أن السعة الكلية لنقطة من وسط تنتشر فيه عدة أمواج عرضية فقط (أو طولية فقط) في أي لحظة من الزمن هي حاصل الجمع لسعات الاهتزازات الواصلة إليها من كل موجة ويكتب هذا المبدأ رياضيا بفرض أن سعة موجة أولى هي y_1 و سعة الموجة الثانية y_2 ، عندئذ تكون السعة الكلية بغض النفس التردد والسعة ولكن باختلاف بالطور بمقدار y_1 .

$$y_1 = A \sin(\omega t - \kappa x)$$
 $y_2 = A \sin(\omega t - \kappa x - \varphi)$
عندئذ تكون الموجة الكلية المؤثرة على النقطة المعتبرة هي:
 $y_T = y_1 + y_2 = A \sin(\omega t - \kappa x) + A \sin(\omega t - \kappa x - \varphi)$
 $y_T = \left[2A\cos\left(\frac{\varphi}{2}\right)\right] \sin(\omega t - \kappa x - \frac{\varphi}{2})$
 $y_T = A_{max} \sin(\omega t - \kappa x - \frac{\varphi}{2})$
 $y_T = A_{max} \sin(\omega t - \kappa x - \frac{\varphi}{2})$
حيث:
 $A_{max} = 2A\cos\left(\frac{\varphi}{2}\right)$

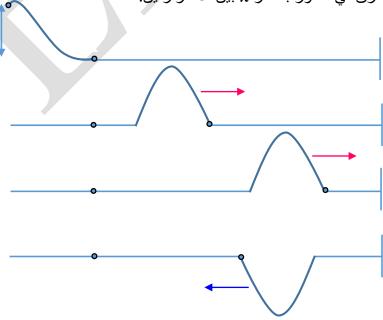
ونلاحظ أن الحركة الناتجة هي اهتزازية بسيطة لكن سعتها تعتمد على الزاوية ϕ فيمكن أن تكون أكبر ما يمكن إذا كانت $\phi = 2n\pi$ ونقول إن الموجتين المتداخلتين متوافقتان بالطور، أي أن اهتزاز تيهما الواصلتين لنقطة ما تتحركان بنفس الشكل و في نفس الاتجاه دوما. أو يمكن أن تكون $A_{max} = 0$ إذا كانت $A_{max} = 0$ ونقول إن الموجتين متعاكستان بالطور. الشكل التالي يمثل موجتين متوافقتين بالطور بسعتين مختلفتين.



الشكل 2.7: تراكب الامواج

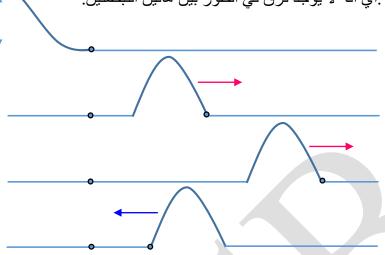
5.2 الانعكاس والأمواج المسنفرة

لو أمسكنا بطرف حبل مربوط بالحائط ومشدود بقوة ما، ثم قمنا بهزه من طرفه الآخر بشكل متواصل إما باليد أو بواسطة رنانة كهربائية مثلا، عندئذ تنتشر موجة على امتداده إلى أن تصل لطرفه المثبت بالحائط فتنعكس عنه وترتد بالاتجاه المعاكس لتتداخل مع الموجة الأصلية. وتشاهد نفس الظاهرة عند انتشار أمواج دائرية في بحيرة ماء عندما تصل لمانع أو حاجز فتنعكس عنه وتتداخل الأمواج القادمة مع المرتدة بشكل جميل وأخاذ. وفي كلا الحالتين يأخذ الوسط شكلا ثابتا متميزا إذ تهتز أجزاء منه بسعة كبيرة بينما تبقى نقاط أخرى ساكنة تماما. ويطلق على هذا المنظر اسم أمواج مستقرة. ويمكن فهم ظاهرة انعكاس الأمواج بمتابعة نبضة تنتشر على امتداد الحبل لليمين، كما في الشكل المقابل فعندما تصل النبضة للحائط تؤثر على الحبل بقوة للأعلى فير دعليها بقوة للأسفل مما يولد نبضة معاكسة تتحرك لليسار. ونلاحظ من الشكل أن شكل النبضة لا يتغير لكنها تصير مقلوبة. فهناك فرق في الطور بمقدار π بين الاهتزازتين.



الشكل 3.7: انعكاس الأمواج المستقرة على الحبل مشدود

وبنفس الشكل نتابع حركة نبضة تنتشر على امتداد حبل نهايته حرة، كما في الشكل اسفله. فنلاحظ أن وصولها لآخر الحبل يدفعه للأعلى مسافة معينة وعندما يعود لوضعه الأصلي يولد نبضة مضادة غير مقلوبة لكنها تتحرك بالاتجاه المعاكس أي أنه لا يوجد فرق في الطور بين هاتين النبضتين.



الشكل 4.7: انعكاس الأمواج المستقرة على الحبل نهايته حرة

لنفترض الآن أن موجة تنتشر في الحبل نحو اليمين لتصل لنهايته المربوطة بالحائط فتتولد عندها موجة منعكسة تتحرك لليسار وتتداخل مع الأولى مشكلة أمواجا مستقرة. ويمكن الحصول على المعادلة التي تصف هذه الأمواج بفرض أن الأولى تكتب بالشكل:

$$y_1 = A\sin(\omega t - \kappa x)$$

بينما تنتشر الموجة المنعكسة باتجاه محور السينات السالب وتكتب بالشكل:

$$y_2 = -A\sin(\omega t + \kappa x)$$

حيث أضفنا الإشارة السالبة لأنها تختلف عن الموجة الأولى بالطور بمقدار π . فإذا وصلت هاتان الموجتان لنفس النقطة من الوسط المهتز تصير معادلة الحركة لها:

$$y_T = y_1 + y_2 = A\sin(\omega t - \kappa x) + A\sin(\omega t + \kappa x)$$

بعد النشر و التبسيط نجد:

$$y_T = -[2A\sin(\kappa x)]\cos\omega t$$

او نكتب على الشكل:

$$y_T = A(x) \cos \omega t$$

حيث:

$$A(x) = -2A\sin(\kappa x)$$

فالنقطة ستتحرك حركة اهتزازية بسرعة زاوية $_{0}$ كالموجتين الأصليتين تماما، إلا أن سعتها تعتمد على بعدها عن بداية الحبل فهناك نقاط سعتها العظمى أكبر ما يمكن وتساوي A(x)=-2A إذا كان بعدها عن منبع الاهتزازات يحقق العلاقة:

$$\sin(\kappa x) = \pm 1 \implies \kappa x = (2n+1)\frac{\pi}{2} \implies \frac{2\pi}{\lambda} x = (2n+1)\frac{\pi}{2}$$

$$\vdots$$

$$x = (2n+1)\frac{\lambda}{4}$$
 $n = 0, 1, 2, 3, ...$

أي أن كل النقاط التي تبعد عن بداية الحبل بهذا المقدار، ستهتز للأعلى والأسفل بسعة 2A وتسمى كل واحدة ذروة.

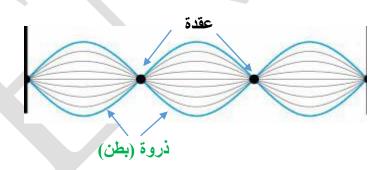
وبنفس المنطق ستكون هناك نقاط سعتها معدومة دائما لأنها تحقق العلاقة:

$$\sin(\kappa x) = 0 \implies \kappa x = 2n \implies \frac{2\pi}{\lambda} x = 2n$$

أي عندما تكون:

$$x = n\frac{\lambda}{2}$$
 $n = 0, 1, 2, 3, ...$

أي أن كل النقاط التي تبعد عن بداية الحبل بالمقدار الأخير. ستبقى ساكنة تماما، وتسمى كل واحدة عقدة. ويوضح الشكل التالي مواضع الذروات والعقد في حبل مشدود.



6.2 النجاوب

سندرس في هذه الفقرة شرط تشكل أمواج مستقرة في حبل طوله L، وكثافته الطولية μ ، ومشدود بقوة F في الحالتين التاليتين:

1.6.2 الانعلاس عن نهابه ثابنه

إذا انتشرت موجة في حبل مشدود من طرفيه، فإنها تنعكس عن نهايته الثابتة وتتداخل مع الموجة القادمة من المنبع. فحتى تتشكل أمواج مستقرة في الحبل يجب أن يكون طوله مساويا لعدد صحيح من نصف طول الموجة، أي:

$$L = (n+1)\frac{\lambda}{2}$$
 $n = 0, 1, 2, 3, ...$

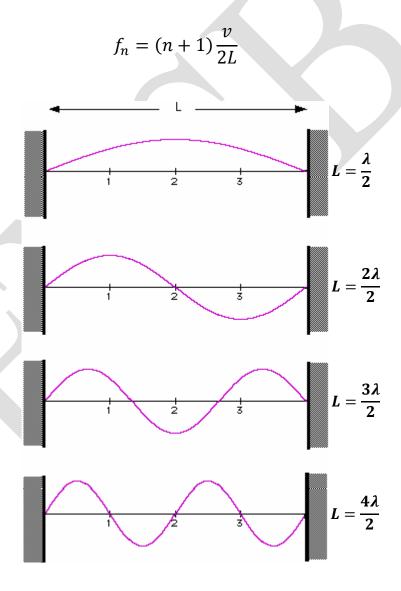
ويوضح الشكل التالي شكل الحبل من أجل عدة قيم لـ n. وإذا افترضنا أن تردد الحركة الاهتزازية التي تبدأ عند بداية الحبل هي f، عندئذ نكتب طول الموجة:

$$\lambda = \frac{v}{f}$$

وبتعويض ذلك في معادلة L نجد:

$$L = (n+1)\frac{v}{2f}$$
 $n = 0, 1, 2, 3, ...$

ومنه:



الشكل 5.7: تشكل أمواج مستقرة في الحبل مشدود

أي أنه إذا انتشرت موجة في حبل طوله L فإن الأمواج المستقرة لا تتشكل إلا إذا كان تردد الحركة الاهتزازية من المنبع يحقق المعادلة السابقة، أو إذا غيرنا طول الحبل أو سرعة الانتشار ليتوافق مع التردد المفروض. ونلاحظ من العلاقة السابقة أن أقل تردد ممكن في حبل مشدود هو:

$$f_0 = \frac{v}{2L}$$

ويسمى التردد الأساس ونكتب معادلة f السابقة بالشكل:

$$f_n = (n+1)f_0$$

وتدعى أمتوافقات (harmonics).

2.6.2 الانعلاس عن نهابه حرة

نفترض الآن أن الموجة تنتشر في حبل ذو نهاية حرة لتصل لآخره وتنعكس عنها فتتداخل مع الأمواج القادمة وتتشكل أمواج مستقرة ونلاحظ أن شرط تشكل هذه الأمواج هو أن يكون طول الحبل محققا للعلاقة:

$$L = (2n+1)\frac{\lambda}{4}$$
 $n = 0, 1, 2, 3, ...$

بعد تعویض λ بما یساویها نجد:

$$L = (2n+1)\frac{v}{4f}$$

ومنه:

$$f_n = (2n+1)\frac{v}{2L}$$

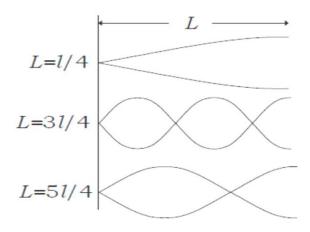
يصبح تردد الأساس في هذه الحالة هو:

$$f_0 = \frac{v}{4L}$$

و المتوافقات هي:

$$f_n = (2n+1)f_0$$

ويوضح الشكل التالي تشكل أمواج مستقرة في حبل مشدود.



الشكل 6.7: تشكل أمواج مستقرة في الحبل نهايته حرة

7.2 الصوب

يعتبر الصوت من أهم أشكال الأمواج الطولية التي نتعامل معها في حياتنا اليومية. وتنتشر الأمواج الصوتية نتيجة تغير الضغط في الهواء مما يسبب تضاغط وتخلخل ذراته بشكل مستمر فتهتز لليمين و اليسار فتنتقل اهتزازات الذرات بشكل طولي من واحدة لأخرى بنفس الاتجاه الذي تنتشر فيه الموجة الصوتية. وتعتمد سرعة الصوت في الهواء بحسب العلاقة على الضغط والكثافة:

$$v = \sqrt{\frac{F}{\rho}}$$

ونظر الأن الضغط يعتمد على درجة الحرارة فيمكن البرهان أن سرعة الصوت في الغازات تكتب بالشكل:

$$v = \sqrt{\frac{\gamma RT}{m}}$$

حيث:

γ: نسبة الحرارة النوعية للغاز.

R: ثابت الغازات العام و يساوي R=8.314 J/mol.K:

T: درجة حرارة الغاز بالكلفن.

 $ho = \frac{nm}{n}$.n فهي الكتلة الجزيئية للغاز وترتبط بكثافته و حجمه و عدد المولات :m

وتساوي سرعة الصوت في الهواء حوالي $\frac{340 \text{ m/s}}{120 \text{ m/s}}$ تحت الشروط الطبيعية من ضغط جوي واحد $\frac{340 \text{ m/s}}{120 \text{ m/s}}$ ودرجة حرارة $\frac{20 \text{ m/s}}{120 \text{ m/s}}$

1.7.2 شدة الصوب ومسنوى الشدة

وجدنا سابقا أن كل موجة تنتشر تحمل قدرة تتناسب طردا مع مربع سعتها وترددها .ونعرف شدة الموجة I بالقدرة المنتشرة عبر واحدة المساحة، أي أن:

$$I = \frac{p}{A}$$

ووحدتها في النظام الدولي w/m².

ويستخدم الحد الأدنى من الشدة ويرمز له بـ I_0 كأساس لمقارنة الأصوات ببعضها حيث نعرف مستوى الشدة بالعلاقة:

$$\beta = 10log_{10} \left(\frac{I}{I_0}\right)$$

وتعطى وحدتها بـ "البل" (Bel)، وهذه الوحدة كبيرة، بالمقارنة مع معظم الأصوات الطبيعية، ولذلك تعطى شدة الأصوات عادة ب "الديسبل" (dB). وتتوزع شدة الصوت الصادرة عن منبع في أي وسط متجانس بشكل كروي بتناسب عكسي مع مربع البعد عنه، أي أن شدة الصوت عند نقطة تبعد مسافة r عن منبع شدته I بالعلاقة التالية:

$$I_r = \frac{I}{4\pi r^2}$$

2.7.2 الأمواج الصونبث المسنفرة

تتشكل الأمواج الصوتية المستقرة في أي أنبوب هوائي بنفس الطريقة التي تتشكل بحبل مشدود. و هذا ما نسمعه عند العزف على ناي أو في الأبواق الهوائية المعروفة. فإذا افترضنا أن لدينا أنبوبا هوائيا ناي مثلا (طوله L) ونفخنا فيه فإن أمواجا صوتية مستقرة يمكن أن تتشكل فيه، ونميز هنا حالتين:

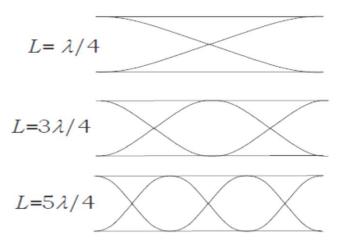
1.2.7.2 الأنبوب مفنوح الطرفين

كما في الشكل المقابل، عندئذ تكون الذرات عند الطرفين حرة الحركة ولذلك تكون سعتها أكبر ما يمكن. ويكون شرط تكون أمواج مستقرة في الأنبوب هو:

$$L = (n+1)\frac{\lambda}{2}$$
 $n = 0, 1, 2, 3, ...$

ونحصل على الترددات الممكنة في الأنبوب من العلاقة:

$$f_n = (2n+1)\frac{v}{2L}$$



الشكل 7.7: تشكل أمواج الصوتية في انبوب مفتوح الطرفين

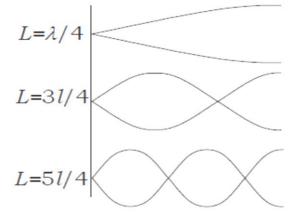
2.2.7.2 الأنبوب مغلق من طرف واحد:

كما هو موضح في الشكل التالي. عندئذ تكون الذرات عند الطرف المغلق محدودة الحركة ولذلك تكون سعتها صفر، أي عندها عقدة .ويكون شرط تكون أمواج مستقرة في الأنبوب هو:

$$L = (2n+1)\frac{\lambda}{4}$$
 $n = 0, 1, 2, 3, ...$

ونحصل على الترددات الممكنة في الأنبوب من العلاقة:

$$f_n = (2n+1)\frac{v}{4L}$$



الشكل 8.7: تشكل أمواج الصوتية في انبوب مفتوح من طرف واحد

8.2 الخففان

من المعروف لكل من يستمع للراديو أن هناك بعض المحطات التي يصعب سماعها بوضوح سبب تغير شدة الصوت صعودا و هبوطا باستمرار وبشكل دوري واضح ويمكن تعليل هذه الظاهرة بأنه تداخل بين موجتين صوتيتين متقاربتين بالتردد فإذا افترضنا أن موجتين تصلان لنفس النقطة من الشكل:

$$y_1 = A \sin(\omega_1 t)$$

$$y_2 = A \sin(\omega_2 t)$$

وتكون الموجة الكلية عند تلك النقطة:

$$y_T = y_1 + y_2 = A\sin(\omega_2 t) + A\sin(\omega_1 t)$$

$$y_T = y_1 + y_2 = A\sin(\omega_2 t) + A\sin(\omega_1 t)$$

وبفرض أن $\omega_1=\omega_2=\omega$ بحيث أن $\omega_1=\omega_2=\omega$ و $\omega_1+\omega_2=\omega$ تؤول المعادلة السابقة السابقة المي:

$$y_T = \left[2A\cos\left(\frac{\Delta\omega}{2}t\right)\right]\sin\omega t$$

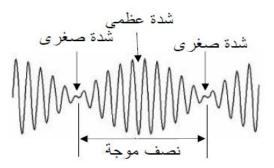
او تكتب على الشكل:

$$y_T = A(t) \sin \omega t$$

حيث:

$$A(t) = 2A\cos\left(\frac{\Delta\omega}{2}t\right)$$

فالحركة الكلية اهتزازية إلا أن سعتها تتغير مع الزمن مما يغير من شدتها، كما في الشكل الموالي. ونلاحظ من الشكل ايضا أن شدة الصوت تصير أكبر ما يمكن (أو أصغر ما يمكن) مرتين خلال كل نصف موجة، أي أن تردد الخفقان هو ضعف تردد الغلاف والمساوي إلى $\frac{\Delta \omega}{2}$ ولذا نعرف تردد الخفقان (beat frequency) بالعلاقة: $\omega_{beat} = \omega_1 - \omega_2$



الشكل 9.7: منحنى بياني يوضح حالة الخفقان

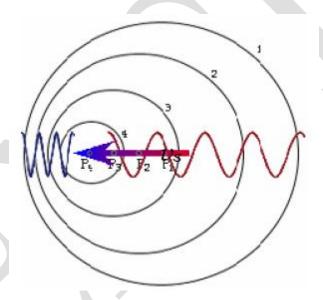
9.2 تأثير دوبلر

تعتمد سرعة الصوت على خصائص الوسط الذي تنتشر فيه بغض النظر عن طبيعة المصدر و نوعه. إلا أن حركة منبع الصوت أو المستمع تؤثر على ما نسمعه بشكل واضح. مثلا كل من استمع إلى صوت الطائرة ينتبه لتغير شدة صوتها عندما تقترب منه و عندما تبتعد عنه. ويمكن تفسير هذه الظاهرة التي تسمى تأثير دوبلر بفرض أن لدينا منبعا صوتيا يقترب من مستمع ساكن بسرعة v_s مصدرا صوتا تردده t فخلال دور كامل يكون المنبع قد تحرك مسافة t ويكون طول الموجة الواصل للمستمع عندئذ هو:

$$\lambda' = \lambda - v_s T = v T - v_s T \Longrightarrow \lambda' = (v - v_s) T$$

ومن ثم يكون التردد المسموع هو:

$$f' = \frac{v}{\lambda'} = \frac{v}{v - v_{\rm s}} f$$



وبنفس الطريقة نستنتج أنه لو كان المصدر يبتعد عن المستمع لكانت المسافة التي يقطعها خلال دور واحد هي x، لكن طول الموجة الواصل للمستمع يصبح:

$$\lambda' = \lambda + v_s T = v T + v_s T \Longrightarrow \lambda' = (v + v_s) T$$

ومنه التردد المسموع:

$$f' = \frac{v}{\lambda'} = \frac{v}{v + v_s} f$$

ومن جهة أخرى، إذا تحرك المستمع بسرعة v_L نحو منبع صوتي ساكن يصدر صوتا تردده f فإن سرعة الصوت بالنسبة للمستمع تكون:

$$v' = v + v_I$$

ولذلك يسمع صوتا طول موجته χ إلا أن تردده يعطى بالعلاقة:

$$f' = \frac{v'}{\lambda} = \frac{v + v_L}{\lambda} \Rightarrow f' = \frac{v + v_L}{v} f$$

وإذا تحرك المستمع بعيدا عن المنبع تؤول العلاقة السابقة إلى:

$$f' = \frac{v - v_L}{v} f$$

ويمكن اختصار النتائج السابقة بكتابة التردد المسموع في الحالة العامة لحركة كل من المنبع والمستمع بالشكل:

$$f' = \frac{v \pm v_L}{v \mp v_S} f$$

حيث نعتبر الإشارة الموجبة عندما يقترب المستمع أو يبتعد المنبع، والإشارة السالبة عندما يبتعد المستمع أو يقترب المنبع. يجب الانتباه إلى أن حركة المنبع تؤدي لتغيير طول موجة الصوت المسموع، بينما تؤدي حركة المستمع لتغيير تردده.

تماربن الفصل السابع:

التمرين الأول:

تعطى معادلة موجة كما يلي:

$$y(x,t) = 10 \sin \pi (2t - 0.01x)$$

.s عيث y و x بالسنتيمتر x و y حيث

1- أحسب قيم طول الموجة، التواتر (التردد) و سرعة انتشار الموجة.

 $x=2\,{
m cm}$ عند اللحظة واقعة على طريق الموجة عند $x=2\,{
m cm}$ عند اللحظة $x=0.05\,{
m s}$

التمرين الثاني:

cmتتشر موجة وفق خط مستقيم، بسر عة $v=350\,$ m/s إذا كان التردد $f=500\,$ Hz تتشر موجة وفق خط مستقيم، بسر عة $v=350\,$ m/s . $a=5\,$

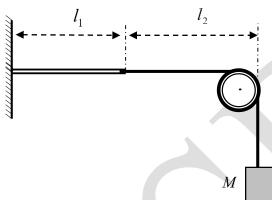
- 1- أكتب معادلة هذه الموجة.
- $_{2}$ أحسب المسافة $_{2}$ الفاصلة بين نقطتين، بينهما فرق في الطور يساوي $_{2}$
- $_{-}$ 10-3 عبين انتقالين لنفس الموقع، بينهما فارق زمني يساوي $_{-}$ 3-3 مني يساوي $_{-}$ 3

التمرين الثالث:

حبلان مصنوعان من نفس المادة. أو جد النسبة v_2/v_1 بين سرعتي انتشار موجة عرضية على طولي الحبلين، إذا كان قطر الحبل 1 يساوي ضعف قطر الحبل 2، و يخضع لتوتر شدته نصف نظيره في الحبل 2

التمرين الرابع:

حبل من الألمنيوم طوله $l_1=60\,$ cm وفق الشكل أدناه، حيث $A=10^{-2}\,$ cm وفق الشكل أدناه، حيث $I_2=86.6\,$ يتم إحداث أمواج المقطع. يربط الحبل المركب بمكعب كتلته $M=10\,$ kg وفق الشكل أدناه، حيث $I_2=86.6\,$ يتم إحداث أمواج عرضية بواسطة منبع خارجي ذو تردد متغير.



1- أوجد أصغر قيمة لتردد المنبع الخارجي، تمكن من الحصول على أمواج مستقرة، بحيث تكون نقطة اتصال الحبلين عبارة عن عقدة.

2- أوجد عدد العقد التي تظهر عند هذا التردد.

المعطيات:

. $\rho_{Al} = 2.60 \text{ g/cm}^3$ الكتلة الحجمية للألمنيوم

التمرين الخامس:

يتم تغيير ارتفاع عمود من الهواء، عن طريق تغيير مستوى الماء في قاع أنبوب. نضع إبرة رنانة مباشرة فوق النهاية المفتوحة. عندما يشرع مستوى الماء في الهبوط، يتم سماع أول رنين لما يكون ارتفاع عمود الهواء m/s عندما يشرع مستوى الماء في الهبوط، يتم سماع أول رنين لما يكون ارتفاع عمود الهواء m/s ثم يليه رنين ثاني عند $h_1 = 57.5$ cm ذا كانت قيمة سرعة الصوت في الهواء v = 340.

- أوجد تردد الإبرة الرنانة.

التمرين السادس:

 I_{1} يصل الصوت الصادر عن منبع، إلى نقطة معينة من الفضاء بشدة

- أوجد الزيادة في الشدة بالديسيبل dB عند نفس النقطة في حالة وضع منبع صوتي ثاني مماثل للأول إلى جانبه.

التمرين السابع:

مكبر صوت استطاعته W 0.8 ، نعتبره منبع نقطي يصدر الصوت في كل الاتجاهات. - أوجد المسافة الفاصلة بين مكبر الصوت و نقطة من الفضاء حيث تكون الشدة مقابلة للقيمة dB 85.

المراجع المعنمدة

<u>بالعريب</u>

- 1- فريدريك ج. بوش، دافيد ا. جيرد، اساسيات الفيزياء، الدار الدولية للاستثمارات الثقافية، مصر.
- 2- هشام جبر، نظرية الاهتزازات و الأمواج الميكانيكية، ديوان المطبوعات الجامعية، الطبعة الثانية، 2006.
 - 3- طاهر تربدار، ترجمة، الاهتزازات، الانتشار والانتثار، ديوان المطبوعات الجامعية، 1979.
 - 4- محمد حسن احمد سنادة، مقدمة في العلوم- اساسيات الفيزياء، منشورات جامعة السودان، 2008.
 - 5- عبد الكاظم ماجود، دراسة في النظرية الاهتزازية، ديوان المطبوعات الجامعية، الجزائر.
- 6- حمدادو نصر الدين، الاهتزازات و الأمواج دروس، المدرسة العليا لأساتذة التعليم التقني، وهران، 2007.
 - 7- محمد قيصرون ميرزا، مبادئ الفيزياء الجامعية الميكانيك و خواص المادة، جامعة البحرين، 2006.

<u>بالأجنبين</u>

- 8- H. Djelouah, Vibrations et Ondes Mécaniques-Cours & Exercices, Université des Sciences et de la Technologie Houari Boumediene, Année Universitaire 2011-2012.
- 9- Clarence W. de Silva, Vibration and Shock Handbook, Taylor & Francis Group, LLC, 2005.
- 10- Thomson William, theory of vibration applications, george Allen et Unwin, London, 1981.
- 11- Mathieu J. P, vibration et phenomenes de vibrations, Maison, Paris, 1974.

<u>موافع</u>

https://www.physics-pdf.com/2019/03/Book-Basics-of-waves-in-physics-pdf.html

https://www.researchgate.net/publication/330508083

https://www.researchgate.net/publication/325158021