
Chapter I: Long-Span Structures

Table des matières

Obj	jectifs	3
I - Long-Span buildings		4
	1. Introduction	4
	2. Definition	5
	3. History	7
	4. Material used	9
	5. Classification	10
	6. Basic Geometries	10

Objectifs

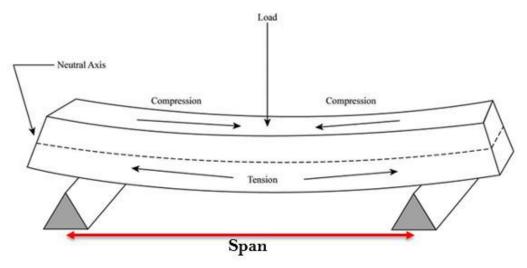
- Identify the long-span structures, their history, classification, area of use, the materials used
- Identify various basic geometries of long-span buildings such as beams, trusses, arches, cables, plates, membranes, shells, and domes.

E 2 2

• Analysis of beams, trusses, arches, and cables.

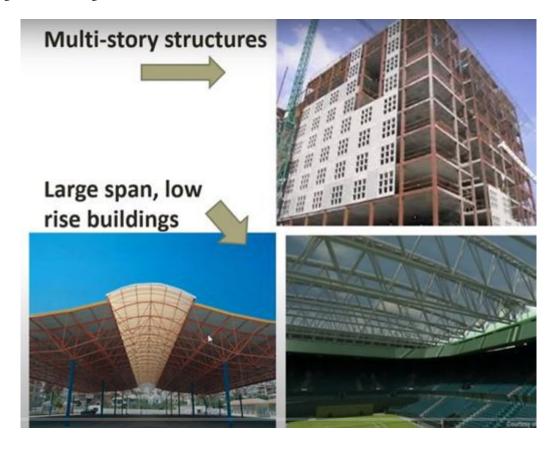
Long-Span buildings

1. Introduction


Définition

A roof should help in protecting the building against external conditions in order to provide comfort and safety for the building occupants.

Roof of Barcelona airport


When a beam spans between two simple supports and carriers a uniformly distributed load (such as a roof covering) it tends to bend in the centre.

A span of a beam

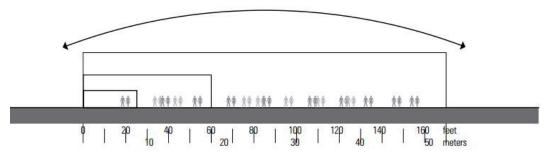
Long span roof construction:

Categories of buildings

🐲 Fondamental

Can a simple span roof support be used for distance in excess of ex. 15m?

In essence, we want to:


- Increase a beam's resistance to bending
- Whilst minimizing the self weight of structural member
- Maximizing its efficiency both economically and structurally

2. Definition

Définition

Long-span buildings create unobstructed, column-free spaces greater than 18 meters for a variety of functions/ activities.

Long-span structure definition


Examples of relevant activities:

- ...where visibility is important: i.e. auditoriums and covered stadiums
- ...where flexibility is important: i.e. exhibition halls and certain types of manufacturing facilities
- ...where large movable objects are housed: i.e. aircraft hangars

6

Exemple: Spectacular long span structures in late 20th century

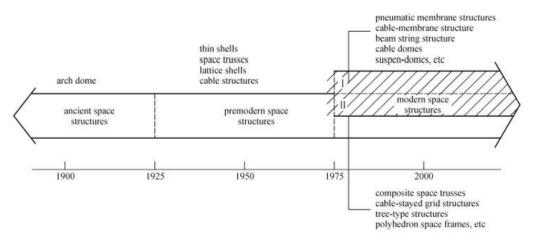
Largest covered stadium > 300 m Span

Awe-Inspiring stadium (Singapore)

Cf. "Construction of Awe-Inspiring Stadium (Singapore) by Total Architecture approach – the integration of Arup's architecture"

Largest exhibition hall = 216 m Span

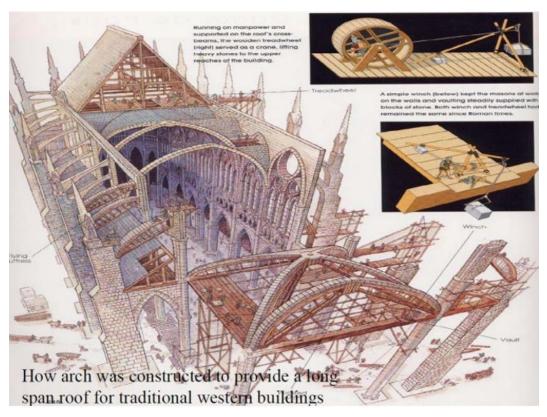
National exhibition and conventional centre (Shanghai-China)


Largest hangar = 75-80 m span (to fit largest commercial fixed-wing aircraft with a wingspread of 69,4 m)

Aerium hangar (Brandenburg-Germany)

3. History

Proposed periods of the history of long-span space structures (by the authors Dong et al, 2012):

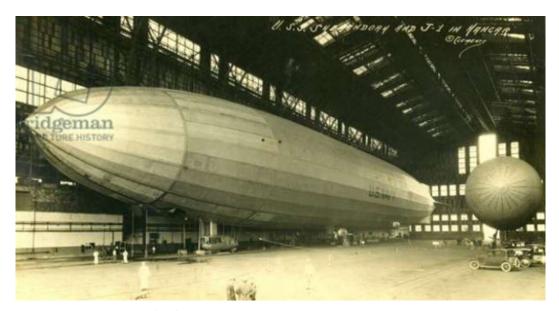


Age partition of space structures

Ancient long span structures (before 1925):

The only materials available in ancient times:

- Timber
- Masonry made of stone (vulnerable in tension and bending)
- Masonry of bricks made of clay (also vulnerable in tension and bending)


Construction of an arch system

🔑 Remarque

Reaching long spans in such constructions = EXTREMELY DIFFICULT!

ONLY POSSIBILITY: via the arch-and-vault systems (i.e., palaces) working in compression only

Later ancient space structures (between 1920 and 1975)

Airship hangar US Navy-New Jersey -79 m span in 1922

Modern space structures (after 1970)

Comprehensive Gymnasium of Seoul Olympic Games = first cable-dome in the world designed by the American engineer Geiger in 1975

4. Material used

Material used for long-span structures:

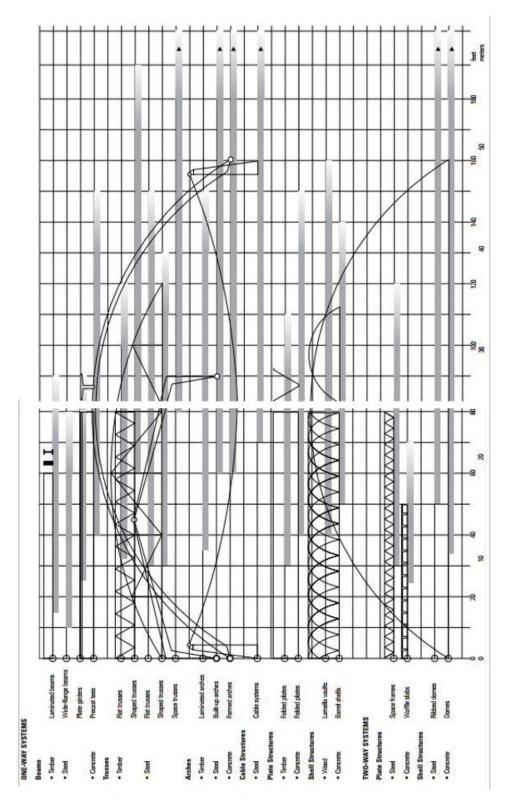
- All reinforced concrete (RC) including precast
- All metal (e.g. mild-steel, structural steel, stainless steel or alloyed aluminium)
- All timber
- Laminated timber
- Metal + RC (combined)
- Plastic coated textile material (fabric) for roofing / cladding
- Fiber reinforced plastic for roofing / cladding

5. Classification

Classified into two groups:

- Bending structures :have both tensile and compressive forces such as (plate girder, trusses)
- Funicular structures: work either in pure tension (cable-stayed roof, the bicycle wheel) or in pure compression (parabolic arch, dome)

6. Basic Geometries


The span ranges for the basic types of long-span structures as shown in figure below are:

One-way System:

- Beams
- Trusses
- Arches
- Cable structures
- Plate structures
- Shell structures

Two-way System:

- Plate structures
- Shell structures

Listed of span ranges for the basic types of long-span structures