

Worksheet N°1: Descriptive Statistics

Exercise 01:

A neurologist at the Paris Brain Institute records the **clinical stage** of Alzheimer's Disease (AD) for a cohort of 120 patients to understand the distribution of pathology in their clinic.

Stage of Alzheimer's Disease	Number of Patients (n_i)
Pre-symptomatic	18
Mild Cognitive Impairment (MCI)	42
Mild AD	30
Moderate AD	20
Severe AD	10
Total (n)	120

1. What is the variable studied in this exercise and what is its specific type (Nature)?
2. Complete the distribution table by calculating the **relative frequencies** (f_i) and the **cumulative frequencies**.
3. Identify the **Mode** of this distribution.
4. Represent this statistical data by the **appropriate graph**. Justify your choice of graph type.

Exercise 02:

A researcher measures **fasting blood glucose levels** (mg/dL) from a sample of 25 laboratory mice to study biological variability.

Measurements: 85, 85, 85, 92, 92, 92, 93, 93, 93, 93, 100, 100, 100, 100, 107, 107, 110, 110, 110, 122, 122, 122, 122.

1. Identify the variable and its nature (Discrete or Continuous).
2. Create the statistical table (frequency, relative frequency, cumulative frequency).
3. Calculate the **Mean** (\bar{X}) and the **Quartiles**. Compare the Mean and the Median to determine the symmetry of the distribution.

4. Calculate the **Range** and the **Coefficient of Variation (CV)**. (Note: Assume the standard deviation $s = 16 \text{ mg/dL}$).
5. Calculate the **Interquartile Range (IQR)**.
6. Represent this statistical data by the **appropriate graphs** (frequencies, and cumulative frequencies).

Exercise 03:

A botanist measures the **shoot length** (in cm) of 30 *Arabidopsis thaliana* plants grown under controlled conditions.

Class (Length in cm)	Midpoint (x_i)	Frequency (n_i)
[10, 12[..	4
[12, 14[..	12
[14, 16[..	9
[16, 18]	..	5

Questions:

1. Determine the nature of this variable.
2. Calculate the mean (\bar{X}) for this distribution.
3. Represent the frequencies of this distribution via a graph.
4. Calculate the **Central Tendency Parameters** for this distribution.
5. Calculate the **Dispersion Parameters** for this distribution.
6. Represent the cumulative frequencies of this distribution via a graph.