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Exercice 1 : Application Directe

a) Formulation des hypothèses

H0 : X ∼ U [0, 1] (les données suivent une loi uniforme sur [0,1])

H1 : X ̸∼ U [0, 1] (les données ne suivent pas une loi uniforme sur [0,1])

b) Calcul de la fonction de répartition empirique Fn(t)

Pour un échantillon de taille n, la fonction de répartition empirique est définie par :

Fn(t) =
nombre d’observations ≤ t

n
=

1

n

n∑
i=1

⊮{xi≤t}

Pour notre échantillon de n = 12 observations ordonnées :

i (rang) X(i) (valeur ordonnée) Fn(X(i)) =
i
12

1 0.15 0.0833
2 0.22 0.1667
3 0.31 0.2500
4 0.42 0.3333
5 0.48 0.4167
6 0.53 0.5000
7 0.61 0.5833
8 0.67 0.6667
9 0.72 0.7500
10 0.79 0.8333
11 0.85 0.9167
12 0.93 1.0000

c) Calcul de la statistique de Kolmogorov-Smirnov Dn

Sous H0, la fonction de répartition théorique de la loi uniforme sur [0, 1] est :

FU(t) =


0 si t < 0

t si 0 ≤ t ≤ 1

1 si t > 1

La statistique de Kolmogorov-Smirnov est définie comme le suprémum des écarts ab-
solus :

Dn = sup
t∈R
|Fn(t)− FU(t)|

Méthode pratique de calcul :
Le suprémum est atteint soit juste avant un saut de Fn, soit juste après. On calcule

deux séries d’écarts :

1. D+
n = max

1≤i≤n

(
i
n
− FU(X(i))

)
(écarts à droite des points)

2. D−
n = max

1≤i≤n

(
FU(X(i))− i−1

n

)
(écarts à gauche des points)
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3. Dn = max(D+
n , D

−
n )

i X(i) Fn(X(i)) =
i
12

FU(X(i)) = X(i)
i
12
−X(i) X(i) − i−1

12

1 0.15 0.0833 0.15 -0.0667 0.1500
2 0.22 0.1667 0.22 -0.0533 0.1367
3 0.31 0.2500 0.31 -0.0600 0.1433
4 0.42 0.3333 0.42 -0.0867 0.1700
5 0.48 0.4167 0.48 -0.0633 0.1467
6 0.53 0.5000 0.53 -0.0300 0.1133
7 0.61 0.5833 0.61 -0.0267 0.1100
8 0.67 0.6667 0.67 -0.0033 0.0867
9 0.72 0.7500 0.72 0.0300 0.0533
10 0.79 0.8333 0.79 0.0433 0.0400
11 0.85 0.9167 0.85 0.0667 0.0167
12 0.93 1.0000 0.93 0.0700 0.0133

Calcul des maxima :

D+
n = max(0, 0.0300, 0.0433, 0.0667, 0.0700) = 0.0700

D−
n = max(0.1500, 0.1367, 0.1433, 0.1700, 0.1467, 0.1133, 0.1100, 0.0867, 0.0533, 0.0400, 0.0167, 0.0133) = 0.1700

Dn = max(D+
n , D

−
n ) = 0.1700

Le suprémum est atteint à x = 0.42, juste avant le saut de Fn :

|Fn(0.42
−)− FU(0.42)| = |0.2500− 0.42| = 0.1700

d) Calcul de la statistique de Cramer-von Mises W 2
n

La statistique de Cramer-von Mises est définie par :

W 2
n = n

∫ +∞

−∞
[Fn(t)− F0(t)]

2dF0(t)

Formule pratique pour le calcul :

W 2
n =

1

12n
+

n∑
i=1

[
F0(X(i))−

2i− 1

2n

]2
Pour la loi uniforme, FU(X(i)) = X(i), donc :

W 2
n =

1

12× 12
+

12∑
i=1

(
X(i) −

2i− 1

24

)2
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i X(i) FU(X(i)) = X(i)
2i−1
24

X(i) − 2i−1
24

(
X(i) − 2i−1

24

)2
1 0.15 0.15 0.0417 0.1083 0.01173
2 0.22 0.22 0.1250 0.0950 0.00903
3 0.31 0.31 0.2083 0.1017 0.01034
4 0.42 0.42 0.2917 0.1283 0.01647
5 0.48 0.48 0.3750 0.1050 0.01103
6 0.53 0.53 0.4583 0.0717 0.00514
7 0.61 0.61 0.5417 0.0683 0.00467
8 0.67 0.67 0.6250 0.0450 0.00203
9 0.72 0.72 0.7083 0.0117 0.00014
10 0.79 0.79 0.7917 -0.0017 0.00000
11 0.85 0.85 0.8750 -0.0250 0.00063
12 0.93 0.93 0.9583 -0.0283 0.00080

Somme des carrés :

12∑
i=1

(
X(i) −

2i− 1

24

)2

= 0.01173+0.00903+0.01034+0.01647+0.01103+0.00514+0.00467+0.00203+0.00014+0.00000+0.00063+0.00080 = 0.07200

Calcul final :

1

144
= 0.006944

W 2
n = 0.006944 + 0.07200 = 0.078944

e) Valeurs critiques pour α = 5%

Pour le test de Kolmogorov-Smirnov :
La valeur critique peut être obtenue de plusieurs manières :
1. Table exacte pour n = 12 : Dcrit(0.05) ≈ 0.375

2. Approximation asymptotique : Dcrit ≈ 1.36√
n
= 1.36√

12
≈ 0.3927

3. Interpolation dans la table :
— Pour n = 10 : Dcrit = 0.409

— Pour n = 15 : Dcrit = 0.338

— Pour n = 12 : Dcrit ≈ 0.409 + 12−10
15−10

× (0.338− 0.409) = 0.3806

On retient généralement : Dcrit ≈ 0.3927
Pour le test de Cramer-von Mises :
La valeur critique asymptotique est W 2

crit ≈ 0.461

f) Conclusion et comparaison

Test de Kolmogorov-Smirnov :

Dn = 0.1700 < 0.3927 ⇒ On ne rejette pas H0 au seuil de 5%

Test de Cramer-von Mises :

W 2
n = 0.0789 < 0.461 ⇒ On ne rejette pas H0 au seuil de 5%

Comparaison :
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— Les deux tests conduisent à la même conclusion : non-rejet de H0

— La statistique KS (0.1700) est plus proche de sa valeur critique (0.3927) que la
statistique CvM (0.0789 vs 0.461)

— Le test CvM donne une marge plus confortable pour le non-rejet
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Exercice 2 : Test de Normalité

a) Estimation des paramètres µ et σ2

Les données représentent la taille (en cm) de 15 étudiants :

168.2 172.5 175.1 169.8 178.3 171.6 174.2 167.9
173.4 170.7 176.1 169.3 172.8 175.9 171.1

Calcul de la moyenne x̄

x̄ =
1

15

15∑
i=1

xi =
168.2 + 172.5 + 175.1 + 169.8 + 178.3 + 171.6 + 174.2 + 167.9 + 173.4 + 170.7 + 176.1 + 169.3 + 172.8 + 175.9 + 171.1

15

x̄ =
2592.9

15
= 172.86

Calcul de la variance s2 (estimateur non biaisé)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Calcul détaillé des écarts au carré :

(168.2− 172.86)2 = (−4.66)2 = 21.7156

(172.5− 172.86)2 = (−0.36)2 = 0.1296

(175.1− 172.86)2 = (2.24)2 = 5.0176

(169.8− 172.86)2 = (−3.06)2 = 9.3636

(178.3− 172.86)2 = (5.44)2 = 29.5936

(171.6− 172.86)2 = (−1.26)2 = 1.5876

(174.2− 172.86)2 = (1.34)2 = 1.7956

(167.9− 172.86)2 = (−4.96)2 = 24.6016

(173.4− 172.86)2 = (0.54)2 = 0.2916

(170.7− 172.86)2 = (−2.16)2 = 4.6656

(176.1− 172.86)2 = (3.24)2 = 10.4976

(169.3− 172.86)2 = (−3.56)2 = 12.6736

(172.8− 172.86)2 = (−0.06)2 = 0.0036

(175.9− 172.86)2 = (3.04)2 = 9.2416

(171.1− 172.86)2 = (−1.76)2 = 3.0976

Somme des écarts au carré :

15∑
i=1

(xi − x̄)2 = 134.28
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Variance :
s2 =

134.28

14
= 9.5914

s =
√
9.5914 = 3.0968

b) Calcul de la statistique de Kolmogorov-Smirnov Dn pour le test
de normalité

La fonction de répartition théorique estimée est :

F0(x) = Φ

(
x− x̄

s

)
où Φ est la fonction de répartition de la loi normale centrée réduite.

Données ordonnées :

167.9, 168.2, 169.3, 169.8, 170.7, 171.1, 171.6, 172.5, 172.8, 173.4, 174.2, 175.1, 175.9, 176.1, 178.3

Tableau de calcul détaillé :

i X(i)
i
15

zi =
X(i)−x̄

s
F0(X(i)) = Φ(zi)

∣∣ i
15

− F0

∣∣ ∣∣∣ i−1
15

− F0

∣∣∣
1 167.9 0.0667 -1.602 0.0545 0.0122 0.0545
2 168.2 0.1333 -1.506 0.0660 0.0673 0.0660
3 169.3 0.2000 -1.150 0.1251 0.0749 0.0584
4 169.8 0.2667 -0.988 0.1615 0.1052 0.0382
5 170.7 0.3333 -0.698 0.2425 0.0908 0.0908
6 171.1 0.4000 -0.569 0.2843 0.1157 0.1177
7 171.6 0.4667 -0.407 0.3421 0.1246 0.1246
8 172.5 0.5333 -0.116 0.4538 0.0795 0.0871
9 172.8 0.6000 -0.019 0.4924 0.1076 0.0924
10 173.4 0.6667 0.174 0.5691 0.0976 0.1024
11 174.2 0.7333 0.433 0.6673 0.0660 0.0660
12 175.1 0.8000 0.724 0.7657 0.0343 0.0990
13 175.9 0.8667 0.982 0.8365 0.0302 0.1032
14 176.1 0.9333 1.046 0.8524 0.0809 0.0857
15 178.3 1.0000 1.757 0.9605 0.0395 0.0272

Calcul de D+
n et D−

n :

D+
n = max(0.0122, 0.0673, 0.0749, 0.1052, 0.0908, 0.1157, 0.1246, 0.0795, 0.1076, 0.0976, 0.0660, 0.0343, 0.0302, 0.0809, 0.0395) = 0.1246

D−
n = max(0.0545, 0.0660, 0.0584, 0.0382, 0.0908, 0.1177, 0.1246, 0.0871, 0.0924, 0.1024, 0.0660, 0.0990, 0.1032, 0.0857, 0.0272) = 0.1246

Dn = max(D+
n , D

−
n ) = 0.1246

Le maximum est atteint à i = 7 (valeur x = 171.6).

c) Détermination de la p-value avec la table de Lilliefors

La table de Lilliefors pour n = 15 donne les valeurs critiques suivantes :

Dn p-value approximative
0.125 0.15
0.134 0.10
0.144 0.05
0.166 0.01

Pour Dn = 0.1246 :
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— Comparaison directe : 0.1246 < 0.125⇒ p-value > 0.15

— Interpolation pour estimation plus précise :

p-value ≈ 0.15− 0.1246− 0.125

0.134− 0.125
× (0.15− 0.10) ≈ 0.15 + 0.0022 ≈ 0.1522

Donc p-value ≈ 0.15 (15%).

d) Effectuer le test de normalité au niveau α = 5%

Valeur critique de Lilliefors pour n = 15 et α = 0.05 :

Dcrit = 0.144

Comparaison :
Dn = 0.1246 < 0.144

Conclusion : On ne rejette pas H0 au seuil de 5%. Les données sont compatibles avec
une distribution normale.

e) Limitations du test KS lorsque les paramètres sont estimés

1. Modification de la distribution de Dn : La distribution de la statistique Dn

n’est plus celle de Kolmogorov lorsqu’on estime les paramètres. Il faut utiliser la
table spécifique de Lilliefors.

2. Perte de puissance : Le test est moins puissant (plus conservateur) car l’estimation
des paramètres "ajuste" la distribution théorique aux données.

3. Tables spécifiques nécessaires : Pour chaque loi et chaque méthode d’estimation,
il faut des tables spécifiques. La table de Lilliefors est spécifique au test de normalité
avec paramètres estimés par maximum de vraisemblance.

4. Approximations asymptotiques différentes : La distribution asymptotique de√
nDn change lorsqu’on estime les paramètres.

5. Validité limitée pour petits échantillons : Pour les très petits échantillons, les
approximations peuvent être médiocres.

6. Alternatives plus puissantes : Pour le test de normalité, d’autres tests comme
Shapiro-Wilk sont généralement plus puissants.
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Exercice 3 : Test à Deux Échantillons

a) Formulation des hypothèses

Test d’homogénéité de Kolmogorov-Smirnov :

H0 : FA(x) = FB(x) pour tout x (les deux échantillons proviennent de la même distribution)

H1 : FA(x) ̸= FB(x) pour au moins un x (les distributions sont différentes)

b) Calcul des fonctions de répartition empiriques Fn(x) et Gm(x)

Groupe A (Méthode traditionnelle, n = 8) :

12.3, 14.7, 11.8, 13.5, 15.2, 12.9, 14.1, 13.8

Groupe B (Nouvelle méthode, m = 9) :

13.8, 15.6, 14.3, 16.1, 12.7, 15.9, 14.8, 16.3, 15.1

Étape 1 : Trier toutes les données ensemble

Valeur Groupe Rang global
11.8 A 1
12.3 A 2
12.7 B 3
12.9 A 4
13.5 A 5
13.8 A 6
13.8 B 6
14.1 A 8
14.3 B 9
14.7 A 10
14.8 B 11
15.1 B 12
15.2 A 13
15.6 B 14
15.9 B 15
16.1 B 16
16.3 B 17

Étape 2 : Calculer Fn(x) pour le groupe A

Fn(x) =
nombre d’observations dans A ≤ x

8
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x Nombre A ≤ x Fn(x) Explication
11.8 1 0.125 Seulement 11.8
12.3 2 0.250 Ajout de 12.3
12.7 2 0.250 Aucun nouveau A
12.9 3 0.375 Ajout de 12.9
13.5 4 0.500 Ajout de 13.5
13.8 5 0.625 Ajout de 13.8 (celui du groupe A)
14.1 6 0.750 Ajout de 14.1
14.3 6 0.750 Aucun nouveau A
14.7 7 0.875 Ajout de 14.7
14.8 7 0.875 Aucun nouveau A
15.1 7 0.875 Aucun nouveau A
15.2 8 1.000 Ajout de 15.2 (dernier de A)
15.6 8 1.000 Tous les A ≤ 15.6
15.9 8 1.000 Tous les A ≤ 15.9
16.1 8 1.000 Tous les A ≤ 16.1
16.3 8 1.000 Tous les A ≤ 16.3

Étape 3 : Calculer Gm(x) pour le groupe B

Gm(x) =
nombre d’observations dans B ≤ x

9

x Nombre B ≤ x Gm(x) Explication
11.8 0 0.000 Aucun B ≤ 11.8
12.3 0 0.000 Aucun B ≤ 12.3
12.7 1 0.111 Ajout de 12.7
12.9 1 0.111 Aucun nouveau B
13.5 1 0.111 Aucun nouveau B
13.8 2 0.222 Ajout de 13.8 (celui du groupe B)
14.1 2 0.222 Aucun nouveau B
14.3 3 0.333 Ajout de 14.3
14.7 3 0.333 Aucun nouveau B
14.8 4 0.444 Ajout de 14.8
15.1 5 0.556 Ajout de 15.1
15.2 5 0.556 Aucun nouveau B
15.6 6 0.667 Ajout de 15.6
15.9 7 0.778 Ajout de 15.9
16.1 8 0.889 Ajout de 16.1
16.3 9 1.000 Ajout de 16.3 (dernier de B)

c) Calcul de la statistique de Kolmogorov-Smirnov à deux échan-
tillons

Dn,m = sup
x
|Fn(x)−Gm(x)|

Tableau complet des écarts :
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x Fn(x) Gm(x) |Fn(x)−Gm(x)| Maximum local
11.8 0.125 0.000 0.125
12.3 0.250 0.000 0.250
12.7 0.250 0.111 0.139
12.9 0.375 0.111 0.264
13.5 0.500 0.111 0.389
13.8 0.625 0.222 0.403
14.1 0.750 0.222 0.528 ← Maximum
14.3 0.750 0.333 0.417
14.7 0.875 0.333 0.542
14.8 0.875 0.444 0.431
15.1 0.875 0.556 0.319
15.2 1.000 0.556 0.444
15.6 1.000 0.667 0.333
15.9 1.000 0.778 0.222
16.1 1.000 0.889 0.111
16.3 1.000 1.000 0.000

Dn,m = 0.528

Le maximum absolu est atteint à x = 14.1.

d) Détermination de la valeur critique pour un niveau α = 5%

Pour le test de Kolmogorov-Smirnov à deux échantillons, la valeur critique dépend de
n, m et α.

Formule approximative pour n,m ≥ 4 :

Dcrit(α) = c(α)

√
n+m

n×m

avec c(0.05) = 1.36.
Application avec n = 8, m = 9, α = 0.05 :

Dcrit = 1.36×
√

8 + 9

8× 9
= 1.36×

√
17

72
= 1.36×

√
0.2361 = 1.36× 0.4859 = 0.661

Table exacte pour n = 8, m = 9 : La table de Smirnov donne Dcrit(0.05) ≈ 0.638.
On utilise la valeur de la table : Dcrit = 0.638.

e) Effectuer le test et conclure

Comparaison :
Dn,m = 0.528 < 0.638 = Dcrit

Décision : On ne rejette pas H0 au seuil de 5%.
Conclusion : Il n’y a pas de preuve statistique suffisante pour affirmer que les deux

méthodes d’apprentissage produisent des distributions de résultats différentes.
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f) Proposer une interprétation pédagogique des résultats

1. Résultat statistique : Aucune différence significative n’a été détectée entre les
distributions des résultats des deux méthodes au seuil de 5%.

2. Analyse descriptive :

— La nouvelle méthode semble donner des résultats légèrement supérieurs en
moyenne

— Mais la variabilité est également plus grande dans le groupe B
— Les écarts observés ne sont pas statistiquement significatifs avec ces effectifs

3. Limitations :

— Effectifs modestes (n = 8, m = 9)
— Test peu puissant avec petits échantillons
— Risque d’erreur de type II (ne pas détecter une différence réelle)

4. Recommandations pédagogiques :

— Répéter l’expérience avec un échantillon plus large (au moins 30 étudiants par
groupe)

— Considérer d’autres critères d’évaluation : coût, temps d’apprentissage, satis-
faction des étudiants

— Analyser si la nouvelle méthode profite davantage à certains types d’étudiants
5. Conclusion pratique : Avec les données actuelles, on ne peut pas recommander

l’adoption généralisée de la nouvelle méthode basée sur des critères statistiques de
performance.
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Exercice 4 : Test d’adéquation à la loi uniforme

a) Calcul de la fonction de répartition théorique FU(t) de la loi
uniforme sur [0,1]

Pour la loi uniforme sur [0, 1], la fonction de répartition est :

FU(t) =


0 si t < 0

t si 0 ≤ t ≤ 1

1 si t > 1

b) Tableau contenant pour chaque observation

Les 20 observations ordonnées sont :

0.278, 0.452, 0.464, 0.494, 0.496, 0.505, 0.576, 0.592, 0.602, 0.608, 0.661, 0.683, 0.690, 0.696, 0.704, 0.728, 0.754, 0.850, 0.902, 0.949

Tableau complet des calculs :

i x(i) Fn(x(i)) =
i
20

FU (x(i)) = x(i) |Fn(x(i))− FU (x(i))| D+ = i
20

− x(i) D− = x(i) − i−1
20

1 0.278 0.05 0.278 0.228 -0.228 0.228
2 0.452 0.10 0.452 0.352 -0.352 0.352
3 0.464 0.15 0.464 0.314 -0.314 0.314
4 0.494 0.20 0.494 0.294 -0.294 0.294
5 0.496 0.25 0.496 0.246 -0.246 0.246
6 0.505 0.30 0.505 0.205 -0.205 0.205
7 0.576 0.35 0.576 0.226 -0.226 0.226
8 0.592 0.40 0.592 0.192 -0.192 0.192
9 0.602 0.45 0.602 0.152 -0.152 0.152
10 0.608 0.50 0.608 0.108 -0.108 0.108
11 0.661 0.55 0.661 0.111 -0.111 0.111
12 0.683 0.60 0.683 0.083 -0.083 0.083
13 0.690 0.65 0.690 0.040 -0.040 0.040
14 0.696 0.70 0.696 0.004 -0.004 0.004
15 0.704 0.75 0.704 0.046 0.046 -0.046
16 0.728 0.80 0.728 0.072 0.072 -0.072
17 0.754 0.85 0.754 0.096 0.096 -0.096
18 0.850 0.90 0.850 0.050 0.050 -0.050
19 0.902 0.95 0.902 0.048 0.048 -0.048
20 0.949 1.00 0.949 0.051 0.051 -0.051

c) Détermination de la statistique Dn = sup |Fn(t)− FU(t)|
Calcul de D+

n et D−
n :

D+
n = max(0, 0.046, 0.072, 0.096, 0.050, 0.048, 0.051) = 0.096

D−
n = max(0.228, 0.352, 0.314, 0.294, 0.246, 0.205, 0.226, 0.192, 0.152, 0.108, 0.111, 0.083, 0.040, 0.004) = 0.352

Dn = max(D+
n , D

−
n ) = 0.352

Le suprémum est atteint à x = 0.452 (vérification à gauche du point) :

|Fn(0.452
−)− FU(0.452)| = |0.05− 0.452| = 0.402
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Note : Dans notre tableau, nous avons 0.352, mais le calcul exact donne 0.402. Corrigeons :
À i = 2, x(2) = 0.452 : - Fn(0.452

−) = 0.05 - FU(0.452) = 0.452 - Écart = |0.05 −
0.452| = 0.402

Donc Dn = 0.402.

d) Calcul de la statistique de Cramer-von Mises W 2
n

W 2
n =

1

12n
+

n∑
i=1

(
FU(x(i))−

2i− 1

2n

)2

=
1

12× 20
+

20∑
i=1

(
x(i) −

2i− 1

40

)2

Tableau de calcul (extrait) :

i x(i)
2i−1
40

x(i) − 2i−1
40

(
x(i) − 2i−1

40

)2
1 0.278 0.025 0.253 0.064009
2 0.452 0.075 0.377 0.142129
3 0.464 0.125 0.339 0.114921
...

...
...

...
...

18 0.850 0.875 −0.025 0.000625
19 0.902 0.925 −0.023 0.000529
20 0.949 0.975 −0.026 0.000676

Somme des carrés :
20∑
i=1

(
x(i) −

2i− 1

40

)2

≈ 0.752616

Calcul final :
1

240
= 0.004167

W 2
n = 0.004167 + 0.752616 = 0.756783

e) Conclusion avec les valeurs critiques données

Valeurs critiques fournies : - KS : cKS ≈ 1.36√
n
= 1.36√

20
≈ 0.304 - CvM : cCvM ≈ 0.461

Comparaison :
Test de Kolmogorov-Smirnov :

Dn = 0.402 > 0.304 ⇒ Rejet de H0

Test de Cramer-von Mises :

W 2
n = 0.7568 > 0.461 ⇒ Rejet de H0

Conclusion : Les deux tests rejettent l’hypothèse que les données proviennent d’une
loi uniforme sur [0,1] au seuil de 5%.
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f) Comparer les sensibilités des deux tests pour cet échantillon

1. Sensibilité du test de Kolmogorov-Smirnov :

— Détecte le suprémum des écarts absolus
— Ici : Dn = 0.402, valeur critique = 0.304
— Rapport : 0.402/0.304 = 1.32 (32% au-dessus du seuil)
— Sensible aux écarts localisés importants

2. Sensibilité du test de Cramer-von Mises :

— Intègre tous les écarts au carré
— Ici : W 2

n = 0.7568, valeur critique = 0.461
— Rapport : 0.7568/0.461 = 1.64 (64% au-dessus du seuil)
— Sensible aux écarts répartis sur tout l’intervalle

3. Analyse comparative :

— Le test CvM montre une déviation plus forte par rapport à sa valeur critique
— Cela suggère que les écarts sont répartis sur tout l’intervalle plutôt que concen-

trés en un point
— Les données semblent montrer une concentration vers le milieu de l’intervalle

[0,1]
— Manque relatif de données près des extrêmes (0 et 1)

4. Conclusion sur la sensibilité : Pour cet échantillon, le test de Cramer-von Mises
est plus sensible que le test de Kolmogorov-Smirnov, indiquant que les écarts à la
loi uniforme sont de nature globale plutôt que locale.
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Exercice 5 : Synthèse Théorique

a) Propriétés d’invariance

i) Démontrer que la statistique de Kolmogorov-Smirnov est invariante par
transformation monotone croissante

Démonstration :
Soient : - X1, X2, ..., Xn un échantillon i.i.d. de loi FX - g : R → R une fonction

strictement croissante et continue - Yi = g(Xi) pour i = 1, ..., n

1. Fonction de répartition de Y :

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g
−1(y))

2. Fonction de répartition empirique de Y : Pour les Yi ordonnés y(1) ≤ ... ≤ y(n) :

F Y
n (y) =

1

n

n∑
i=1

⊮{Yi≤y} =
1

n

n∑
i=1

⊮{Xi≤g−1(y)} = FX
n (g−1(y))

3. Statistique KS pour Y :

DY
n = sup

y∈R
|F Y

n (y)− FY (y)| = sup
y∈R
|FX

n (g−1(y))− FX(g
−1(y))|

4. Changement de variable : Posons t = g−1(y). Comme g est strictement crois-
sante, la transformation y 7→ t est bijective et préserve l’ordre. De plus, quand y
parcourt R, t parcourt R aussi.

DY
n = sup

t∈R
|FX

n (t)− FX(t)| = DX
n

Conclusion : La statistique de Kolmogorov-Smirnov est invariante par transformation
monotone croissante.

ii) Montrer que cette propriété s’applique également au test de Cramer-von
Mises

Démonstration :

W 2,Y
n = n

∫ +∞

−∞
[F Y

n (y)− FY (y)]
2dFY (y)

Par changement de variable y = g(t), on a dy = g′(t)dt et :

dFY (y) = fY (y)dy = fX(g
−1(y)) · |(g−1)′(y)|dy

= fX(t) ·
1

g′(t)
· g′(t)dt = fX(t)dt

Donc :

W 2,Y
n = n

∫ +∞

−∞
[FX

n (t)− FX(t)]
2fX(t)dt = W 2,X

n

Conclusion : Le test de Cramer-von Mises est également invariant par transformation
monotone croissante.
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iii) Expliquer l’importance pratique de cette invariance

1. Flexibilité d’application : Permet de tester l’adéquation sur différentes échelles
sans changer la conclusion.

— Exemple : Tester la log-normalité en testant la normalité des données transfor-
mées par logarithme

— Exemple : Transformation pour stabiliser la variance avant test
2. Utilisation des tables : Les mêmes tables de valeurs critiques s’appliquent aux

données transformées.
3. Robustesse : Le test reste valide après transformation monotone des données.
4. Applications courantes :

— En économétrie : tests sur échelles logarithmiques
— En fiabilité : tests sur données transformées par fonction de hasard
— En biostatistique : transformations pour normaliser les données

5. Simplicité : On peut choisir l’échelle la plus pratique pour les calculs ou l’inter-
prétation.

b) Consistance des tests

i) Démontrer que le test de Kolmogorov-Smirnov est consistant contre toute
alternative fixe

Démonstration :
Soit H1 : F ̸= F0. Il existe alors au moins un point t0 tel que :

|F (t0)− F0(t0)| = δ > 0

Par le théorème de Glivenko-Cantelli :

sup
t∈R
|Fn(t)− F (t)| p.s.−−→ 0 quand n→∞

Donc, pour n assez grand, avec probabilité tendant vers 1 :

|Fn(t0)− F0(t0)| ≈ |F (t0)− F0(t0)| = δ

Ainsi :
Dn = sup

t
|Fn(t)− F0(t)| ≥ δ > 0

La puissance du test :

πn = PH1(Dn > cα)→ 1 quand n→∞

Conclusion : Le test de Kolmogorov-Smirnov est consistant contre toute alternative
fixe.
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ii) Montrer que le test de Cramer-von Mises est également consistant

Démonstration :
Sous H1 : F ̸= F0, on a :∫

[F (t)− F0(t)]
2dF0(t) = ∆ > 0

Par convergence de Fn vers F (Glivenko-Cantelli) :

W 2
n = n

∫
[Fn(t)− F0(t)]

2dF0(t)
p.s.−−→∞

Donc :
PH1(W

2
n > cα)→ 1 quand n→∞

Conclusion : Le test de Cramer-von Mises est également consistant.

iii) Comparer la puissance asymptotique des deux tests

1. Test de Kolmogorov-Smirnov :
— Plus sensible aux alternatives présentant des écarts localisés importants
— Moins sensible aux alternatives avec des écarts faibles mais répartis
— Puissance élevée contre les alternatives avec discontinuités

2. Test de Cramer-von Mises :
— Plus sensible aux alternatives présentant des écarts faibles mais répartis
— Intègre tous les écarts, pas seulement le maximum
— Généralement plus puissant contre les alternatives régulières

3. Comparaison théorique :
— Pour des alternatives de la forme F (t) = t+ ϵh(t) avec h régulière :

— Le test CvM est localement plus puissant
— L’efficacité relative de Pitman est plus élevée pour CvM

— Pour des alternatives avec sauts localisés :
— Le test KS peut être plus puissant
— KS détecte mieux les discontinuités

4. Résultats pratiques :
— En général, CvM est plus puissant que KS contre la plupart des alternatives
— Mais KS est plus simple à comprendre et à mettre en œuvre
— Le choix dépend de la nature des alternatives attendues

c) Distribution asymptotique

i) Établir que sous H0 :

√
nDn

L−→ sup
0≤t≤1

|B(t)|

où B(t) est un pont brownien.
Démonstration :
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1. Théorème de Donsker (principe d’invariance) : Si X1, ..., Xn ∼ F0 continue,
alors : √

n(Fn(t)− F0(t))
L−→ B(F0(t))

où B(·) est un pont brownien sur [0,1].
2. Cas particulier F0(t) = t (loi uniforme) :

√
n(Fn(t)− t)

L−→ B(t)

3. Application au suprémum : Par continuité de la fonctionnelle "suprémum" :
√
nDn =

√
n sup

t
|Fn(t)− t| L−→ sup

0≤t≤1
|B(t)|

4. Cas général : Pour une loi F0 continue quelconque, par transformation de la va-
riable : √

nDn
L−→ sup

0≤t≤1
|B(t)|

ii) Donner l’expression de la fonction de répartition limite de
√
nDn

Pour K = sup0≤t≤1 |B(t)|, la fonction de répartition est donnée par :

P (K ≤ x) = 1− 2
∞∑
k=1

(−1)k−1e−2k2x2

pour x > 0

Développement alternatif :

P (K ≤ x) =

√
2π

x

∞∑
k=1

e−(2k−1)2π2/(8x2)

Approximation pratique :
Pour les calculs, on utilise souvent :

P (
√
nDn ≤ x) ≈ 1− 2e−2x2

+ 2e−8x2 − 2e−18x2

+ · · ·

Cette série converge rapidement, surtout pour x modéré.

iii) Expliquer comment cette distribution est utilisée pour construire les tables
du test KS

1. Pour les grands échantillons (n > 50) :
— On utilise directement la distribution asymptotique
— Les quantiles xα vérifiant P (K ≤ xα) = 1− α sont tabulés
— Puis on déduit Dcrit = xα/

√
n

2. Valeurs critiques asymptotiques courantes :

α xα

0.20 1.073
0.10 1.224
0.05 1.358
0.025 1.480
0.01 1.628
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3. Pour les petits échantillons :
— La distribution exacte de Dn pour n fini est connue
— Formule de Birnbaum et Tingey (1951) :

P (Dn ≤ d) = 1− d

⌊n(1−d)⌋∑
j=0

(
n

j

)(
j

n
+ d

)j−1(
1− d− j

n

)n−j

— Ces valeurs exactes sont tabulées pour différents n et α

4. Méthode de construction des tables :
(a) Pour chaque n (de 1 à 50 généralement)
(b) Calculer la distribution exacte de Dn sous H0

(c) Déterminer les quantiles correspondant aux seuils α usuels
(d) Présenter sous forme de tableau

5. Approximation pour n intermédiaire :

Dcrit(α) ≈
xα√

n+ 0.12 + 0.11√
n

Cette formule de Stephens (1974) donne une bonne approximation.

d) Extensions et généralisations

i) Proposer une extension du test KS pour des données censurées

Problème : Avec des données censurées à droite, la fonction de répartition empirique
Fn n’est pas directement observable.

Solution : Utiliser l’estimateur de Kaplan-Meier Ŝ(t) :
1. Estimateur de Kaplan-Meier :

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
où di est le nombre d’événements au temps ti et ni est le nombre d’individus à risque
juste avant ti.

2. Fonction de répartition estimée :

F̂n(t) = 1− Ŝ(t)

3. Statistique KS modifiée :

Dcens
n = sup

t
|F̂n(t)− F0(t)|

4. Difficultés :
— La distribution de Dcens

n sous H0 est complexe
— Doit être déterminée par simulation
— Dépend du schéma de censure

5. Variantes :
— Test de Fleming-Harrington
— Test de log-rank modifié
— Tests basés sur les processus de martingales
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ii) Discuter des adaptations nécessaires pour le test CvM dans le cas de don-
nées groupées

Problème : Pour des données groupées en k classes, Fn est une fonction en escalier.
Adaptations :

1. Formulation discrète :

W 2 = n
k∑

j=1

pj

(
Fn(xj)− F0(xj)

pj

)2

où :
— pj = F0(bj)− F0(aj) est la probabilité théorique de la classe j

— Fn(xj) est la fréquence cumulée observée jusqu’à la classe j

— F0(xj) est la probabilité cumulée théorique jusqu’à la classe j

2. Formulation alternative :

W 2 =
k∑

j=1

(Oj − Ej)
2

Ej

+ termes correctifs

où Oj et Ej sont les effectifs observés et théoriques.
3. Modifications nécessaires :

— Utiliser les centres de classe pour le calcul
— Adapter la formule d’intégration 4cm→ Remplacer l’intégrale par une somme

discrète
— Ajuster les valeurs critiques 4cm→ Tables spécifiques ou simulation

4. Limitations :
— Perte d’information due au regroupement
— Puissance réduite
— Dépendance au choix des classes

5. Alternative : Test du chi-deux, plus adapté aux données groupées.

iii) Mentionner d’autres tests d’adéquation non paramétriques et situer KS et
CvM dans ce paysage

1. Principaux tests d’adéquation non paramétriques :

— Test d’Anderson-Darling :

A2
n = n

∫ +∞

−∞

[Fn(t)− F0(t)]
2

F0(t)[1− F0(t)]
dF0(t)

— Pondère les queues de distribution
— Plus puissant que KS et CvM pour détecter des écarts dans les queues
— Particulièrement utile pour les tests de normalité

— Test de Shapiro-Wilk :
— Spécifique au test de normalité
— Basé sur les statistiques d’ordre et les coefficients optimaux
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— Généralement le plus puissant pour détecter la non-normalité
— Limitée à la normalité

— Test du chi-deux :

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

∼ χ2
k−p−1

— Pour données discrètes ou groupées
— Nécessite des effectifs suffisants par classe
— Moins puissant que les tests basés sur la fonction de répartition pour don-

nées continues
— Test de Kuiper :

Vn = D+
n +D−

n

— Invariant aux transformations circulaires
— Utile pour les données angulaires ou périodiques
— Moins sensible aux écarts au centre de la distribution

— Test de Watson :

U2
n = n

∫ +∞

−∞

[
Fn(t)− F0(t)−

∫
(Fn(u)− F0(u))dF0(u)

]2
dF0(t)

— Modifié pour être invariant par changement d’origine
— Utile pour les données circulaires

2. Position des tests KS et CvM :

Test Simplicité Puissance Généralité Usage courant
Kolmogorov-Smirnov Tests généraux
Cramer-von Mises Alternatives lisses
Anderson-Darling Tests de normalité
Shapiro-Wilk Normalité seulement
Chi-deux Données groupées

3. Recommandations pour le choix :

— Pour un test général simple : KS
— Pour plus de puissance contre alternatives lisses : CvM ou Anderson-

Darling
— Pour tester spécifiquement la normalité : Shapiro-Wilk ou Anderson-

Darling
— Pour données groupées : Chi-deux
— Pour données circulaires : Kuiper ou Watson

4. Avantages de KS et CvM :

— Applicables à toute loi continue
— Invariants par transformation monotone
— Tables largement disponibles

22



— Interprétation graphique intuitive (surtout pour KS)
— Consistants contre toute alternative

5. Limitations de KS et CvM :

— Moins puissants que des tests spécialisés
— Sensibles aux arrondis ou discrétisations
— Pour KS : moins sensible aux écarts dans les queues
— Pour CvM : calcul plus complexe que KS
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