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Exercice 01

1. Calcul de E(Y 4) pour Y ∼ N(0, 1)

Soit Y ∼ N(0, 1), une variable aléatoire suivant une loi normale centrée réduite.
Nous souhaitons calculer E(Y 4), c’est-à-dire l’espérance du quatrième moment
de Y .

Pour une variable aléatoire Y ∼ N(0, 1), on sait que les moments pairs sont
donnés par :

E(Y 2k) = (2k − 1)!! = 1 · 3 · 5 · · · · · (2k − 1)

Ainsi, pour k = 2, nous avons :

E(Y 4) = 3

2. Limite de la moyenne des X4
k

Soit Xk ∼ N(m,σ2) une suite de variables aléatoires indépendantes de même
loi normale de moyenne m et de variance σ2. Nous cherchons à démontrer que :

lim
n→∞

1

n

n∑
k=1

X4
k = m4 + 6m2σ2 + 3σ4 presque sûrement.

Par la **loi des grands nombres**, la moyenne desX4
k converge presque sûrement

vers l’espérance de X4
k , soit :

E(X4
k) = m4 + 6m2σ2 + 3σ4

Cela signifie que la moyenne des X4
k converge presque sûrement vers cette valeur

à mesure que n devient grand.

Exercice 02: Propriétés élémentaires de la fonc-
tion de répartition empirique

Soit Fn(x) la fonction de répartition empirique associée à un échantillon de taille
n.
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1. Biais de Fn(x)

La fonction de répartition empirique Fn(x) est un estimateur sans biais de F (x),
la fonction de répartition théorique. Cela signifie que :

E[Fn(x)] = F (x)

En effet, Fn(x) est la proportion d’observations inférieures ou égales à x, et en
moyenne, cette proportion correspond à F (x).

2. Consistance de Fn(x)

La fonction de répartition empirique Fn(x) converge en probabilité vers la fonc-
tion de répartition théorique F (x) lorsque n devient grand :

Fn(x)
P−→ F (x) lorsque n → ∞

Cela découle du **théorème de Glivenko-Cantelli**, qui garantit que Fn(x)
converge uniformément vers F (x) à mesure que n augmente.

3. Consistance forte de Fn(x)

La fonction de répartition empirique Fn(x) converge presque sûrement vers F (x)
lorsque n → ∞ :

Fn(x)
p.s.−−→ F (x) lorsque n → ∞

Cela signifie que Fn(x) converge vers F (x) pour presque tous les x, avec prob-
abilité 1.

4. Théorème de Glivenko-Cantelli

Le **théorème de Glivenko-Cantelli** stipule que :

sup
x∈R

|Fn(x)− F (x)| p.s.−−→ 0 lorsque n → ∞

Cela signifie que la différence maximale entre Fn(x) et F (x) converge presque
sûrement vers 0. En d’autres termes, Fn(x) devient de plus en plus proche de
F (x) de manière uniforme sur tout R.

5. Normalité asymptotique

Lorsque n → ∞, la différence entre Fn(x) et F (x), multipliée par
√
n, suit une

distribution normale :

√
n(Fn(x)− F (x))

d−→ N(0, F (x)(1− F (x)))

Cela montre que, pour de grandes valeurs de n, la différence Fn(x) − F (x) se
distribue normalement, ce qui permet des approximations normales pour des
tests statistiques.
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Exercice 03: Statistique d’ordre

Soit X1, X2, . . . , Xn une suite de variables aléatoires i.i.d. suivant une fonction
de répartition F . Nous définissons la statistique d’ordre (X(1), X(2), . . . , X(n)),
où les X(i) sont les valeurs de X1, X2, . . . , Xn triées dans l’ordre croissant.

1. Fonction de répartition de X(1) et X(n)

Les fonctions de répartition des variables X(1) (le minimum) et X(n) (le max-
imum) sont données par :

FX(1)(x) = P (X(1) ≤ x) = 1− (1− F (x))n

FX(n)(x) = P (X(n) ≤ x) = F (x)n

Cela montre que X(1) a une fonction de répartition croissante, et X(n) est
également croissante mais converge plus lentement vers 1.

2. Loi du couple (X(1), X(n)) et indépendance

Le couple (X(1), X(n)) n’est **pas indépendant**. La statistique du minimum
et du maximum dans un échantillon sont liées, car elles dépendent des mêmes
variables. La loi jointe de X(1) et X(n) peut être obtenue par le produit de
leurs distributions, mais elles ne sont pas indépendantes.

3. Loi de la statistique W = X(n)−X(1)

La statistique W , appelée **étendue**, est la différence entre le maximum et
le minimum dans un échantillon. Sa loi peut être obtenue à partir des lois de
X(1) et X(n), et elle dépend de la fonction de répartition F .

4. Calcul de P (X(k) < x)

La fonction de répartition de la k-ème statistique d’ordre X(k) est donnée par :

P (X(k) < x) =

n∑
i=k

(
n

i

)
F (x)i(1− F (x))n−i

Cela donne la probabilité que la k-ème plus petite valeur dans l’échantillon soit
inférieure à x.

5. Densité de X(k)

La fonction de densité de X(k) est :

fk(x) = n

(
n− 1

k − 1

)
F (x)k−1(1− F (x))n−kf(x)

Cela permet de calculer la densité de la k-ème statistique d’ordre dans un
échantillon i.i.d.
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Exercice 04: Convergence presque sûre de Fn

Soit X1, X2, . . . , Xn une suite de variables aléatoires i.i.d. et F la fonction de
répartition de X1. La fonction de répartition empirique est définie par :

Fn(t) =
1

n

n∑
i=1

I(Xi ≤ t)

où I(Xi ≤ t) est la fonction indicatrice qui est 1 si Xi ≤ t et 0 sinon.

1. Loi de nFn(t) et loi limite de
√
n(Fn(t)− F (t))

La loi de nFn(t) suit une loi binomiale, et la loi limite de
√
n(Fn(t)− F (t)) est

une loi normale centrée :

√
n(Fn(t)− F (t))

d−→ N(0, F (t)(1− F (t)))

2. Calcul de E[(Fn(t)− F (t))2]

On montre que :

E[(Fn(t)− F (t))2] → 0 lorsque n → ∞

Cela montre que Fn(t) converge en moyenne quadratique vers F (t).

3. Convergence presque sûre de Fn(t)

En utilisant le théorème de Borel-Cantelli, on montre que Fn(t) converge presque
sûrement vers F (t).

4. Calcul de Dn

La statistique de Kolmogorov-Smirnov Dn est donnée par :

Dn = max
0≤i≤n

max

(
i

n
− F (Xn;i),

i+ 1

n
− F (Xn;i+1)

)
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