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Théorème de Donsker

Bootstrap du Processus Empirique

Consistance du Bootstrap

Applications aux Tests Statistiques

Bootstrap Lisse et Extensions
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Principe du Bootstrap

Idée Fondamentale (Efron, 1979)

Le **Bootstrap** est une méthode de rééchantillonnage qui consiste à générer
des échantillons bootstrap à partir d’un échantillon observé X1, . . . ,Xn ∼ F en
utilisant **le rééchantillonnage avec remise**. Cela permet d’estimer la
distribution d’une statistique sans faire d’hypothèses fortes sur la distribution
sous-jacente F .
L’idée centrale est de générer des **échantillons bootstrap** X ∗

1 , . . . ,X
∗
n à partir

de la **fonction de répartition empirique** Fn:

X ∗
1 , . . . ,X

∗
n ∼ Fn

où Fn est la fonction de répartition empirique de l’échantillon observé.

Applications

Les applications du bootstrap comprennent :

Estimation de **biais** et **variance** de statistiques.

Construction d’**intervalles de confiance**.

Tests d’**hypothèses** (ex : test de Kolmogorov-Smirnov).

**Validation de modèles** en statistiques et machine learning.
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Algorithme Bootstrap de Base

Étapes Fondamentales

1 Échantillon original: X1, . . . ,Xn ∼ F

2 Estimateur: θ̂n = T (X1, . . . ,Xn)

3 Rééchantillonnage: X ∗
1 , . . . ,X

∗
n ∼ Fn

4 Estimateur bootstrap: θ̂∗n = T (X ∗
1 , . . . ,X

∗
n )

5 Répéter B fois et approximer la distribution.

Distribution Bootstrap

La fonction de répartition empirique bootstrap de l’estimateur θ̂n est définie par :

F̂ ∗
θ̂
(t) =

1

B

B∑
b=1

1{θ̂∗(b)
n ≤t}

où B est le nombre de répliques bootstrap, et θ̂
∗(b)
n est l’estimateur obtenu à

partir du b-ème échantillon bootstrap.
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Fonction de Répartition Empirique (FRE)

Definition (FRE)

La **fonction de répartition empirique** (FRE) pour un échantillon X1, . . . ,Xn

est définie par :

Fn(t) =
1

n

n∑
i=1

1{Xi≤t}

Cela donne la proportion des valeurs de l’échantillon inférieures ou égales à t.

Propriétés

**Estimateur non biaisé** : E[Fn(t)] = F (t), où F (t) est la fonction de
répartition théorique.

**Consistance forte** : Fn(t)
p.s.−−→ F (t) (convergence presque sûre).

**Distribution** : nFn(t) ∼ Binomial(n,F (t)), ce qui signifie que Fn(t) suit
une distribution binomiale pour un échantillon de taille n.
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Processus Empirique

Definition (Processus Empirique Standard)

Le **processus empirique standard** est défini comme :

Gn(t) =
√
n(Fn(t)− F (t))

où Fn(t) est la fonction de répartition empirique et F (t) la fonction de répartition
théorique.

Propriétés Ponctuelles

Pour un t fixé, Gn(t) converge en loi vers une **distribution normale** :

Gn(t)
(d)−−→ N (0,F (t)(1− F (t)))

ce qui signifie que le processus Gn suit une **distribution gaussienne** pour
chaque point t.

Limitation
L’approche ponctuelle ignore la structure de corrélation du processus, ce qui peut
être problématique pour des processus plus complexes.
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Convergence Fonctionnelle

Espace des Fonctions

La convergence en loi des processus empiriques se fait dans l’espace des fonctions
D[0, 1] (espace des fonctions continues à gauche et discontinues à droite), avec la
**topologie de Skorokhod**.

Definition (Convergence en Loi Fonctionnelle)

On dit que Gn
(d)−−→ G dans D[0, 1] si pour toute fonction continue bornée Φ :

E[Φ(Gn)] → E[Φ(G)]

Cela signifie que la convergence des processus empiriques est mesurée sur
**toutes les trajectoires** du processus.
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Théorème de Donsker

Theorem (Donsker, 1952)

Soit X1, . . . ,Xn des variables aléatoires indépendantes et identiquement
distribuées (i.i.d.) de loi uniforme sur [0, 1]. Alors :

Gn
(d)−−→ B0

dans D[0, 1], où B0 est un **pont brownien**.

Pont Brownien

B0(0) = B0(1) = 0

Cov(B0(s),B0(t)) = s ∧ t − st

Trajectoires continues (presque sûrement)
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Propriété d’Invariance

Universalité de la Limite

Le **pont brownien** B0 est une **loi limite universelle** pour les processus
empiriques, indépendamment de la loi F des données.

Theorem (Cas Général)

Pour toute fonction de répartition continue F , la transformation du processus
empirique donne :

Gn
(d)−−→ B0 ◦ F

après transformation probante Ui = F (Xi ) ∼ U[0, 1].
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Processus Empirique Bootstrap

Definition (Processus Empirique Bootstrap)

Le **processus empirique bootstrap** est défini comme :

G∗
n(t) =

√
n(F ∗

n (t)− Fn(t))

où F ∗
n (t) =

1
n

∑n
i=1 1{X∗

i ≤t}, et X
∗
i est un échantillon bootstrap tiré de Fn.

Interprétation

G∗
n est la version bootstrap de Gn.

Fn est utilisé comme approximation de la fonction de répartition F inconnue.

La normalisation reste similaire à celle de Gn.
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Consistance du Bootstrap

Theorem (Giné-Zinn, 1990)

Soit X1, . . . ,Xn i.i.d. de loi F . Alors :

sup
h∈BL1

|E∗[h(G∗
n)]− E[h(B0 ◦ F )]| P−→ 0

où BL1 est la classe des fonctions 1-Lipschitz bornées.

Interprétation

La loi bootstrap de G∗
n approxime la loi limite de Gn :

L(G∗
n|X1, . . . ,Xn) ≈ L(B0 ◦ F )
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Conditions de Consistance

Theorem (Conditions Suffisantes)

Le bootstrap est consistant sous les conditions suivantes :

F est continue.

La classe {1{x≤t}, t ∈ R} est Donsker.

Les observations sont i.i.d.

Cas Pathologiques

Le bootstrap peut échouer pour :

Distributions discrètes.

Statistiques non lisses.

Très petits échantillons.
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Test de Kolmogorov-Smirnov Bootstrap

Problème
Tester H0 : F = F0 vs H1 : F ̸= F0

Algorithme Bootstrap
1 Calculer Dn = supt |Fn(t)− F0(t)|
2 Générer B échantillons bootstrap sous H0

3 Calculer D∗
n = supt |F ∗

n (t)− F0(t)| pour chaque réplique

4 p-value = 1
B

∑B
b=1 1{D∗(b)

n >Dn}

Theorem (Consistance)

Sous H0:
√
nD∗

n

(d)−−→ supt |B0(t)|
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