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Principe du Bootstrap

|dée Fondamentale (Efron, 1979)
Le **Bootstrap** est une méthode de rééchantillonnage qui consiste a générer
des échantillons bootstrap a partir d'un échantillon observé Xi,..., X, ~ F en

utilisant **le rééchantillonnage avec remise**. Cela permet d’estimer la
distribution d'une statistique sans faire d'hypotheses fortes sur la distribution
sous-jacente F.

L'idée centrale est de générer des **échantillons bootstrap** XJ*,... X* a partir
de la **fonction de répartition empirique** F,:

Xr, .. Xt ~F,

ou F, est la fonction de répartition empirique de |'échantillon observé.

Applications
Les applications du bootstrap comprennent :
o Estimation de **biais** et **variance** de statistiques.

o Construction d'**intervalles de confiance**.

- to de KAln
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Algorithme Bootstrap de Base
Etapes Fondamentales

@ Echantillon original: Xy,..., X, ~ F

@ Estimateur: §, = T(X1,...,X,)

© Rééchantillonnage: X,... , X» ~ F,

@ Estimateur bootstrap: 0% = T(X;,..., X*)
@ Répéter B fois et approximer la distribution.

Distribution Bootstrap

La fonction de répartition empirique bootstrap de I'estimateur 0, est définie par :

S

1B
(t) = B Z l{é:“’)gt}

b=1

S

ou B est le nombre de répliques bootstrap, et éﬁ(b) est |'estimateur obtenu a
partir du b-eme échantillon bootstrap.

A

T = Ty
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Fonction de Répartition Empirique (FRE)

Definition (FRE)

La **fonction de répartition empirique** (FRE) pour un échantillon Xi, ..., X,
est définie par :

Cela donne la proportion des valeurs de I'échantillon inférieures ou égales a t.

Propriétés

e **Estimateur non biaisé** : E[F,(t)] = F(t), ou F(t) est la fonction de
répartition théorique.

o **Consistance forte** : F,(t) 225 F(t) (convergence presque siire).

e **Distribution** : nF,(t) ~ Binomial(n, F(t)), ce qui signifie que F,(t) suit
une distribution binomiale pour un échantillon de taille n.
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Processus Empirique

Definition (Processus Empirique Standard)

Le **processus empirique standard** est défini comme :
Gn(t) = V/n(Fa(t) — F(t))

ou F,(t) est la fonction de répartition empirique et F(t) la fonction de répartition
théorique.

Propriétés Ponctuelles

Pour un t fixé, G,(t) converge en loi vers une **distribution normale** :

Ga(t) D (0, F(£)(1 — F(1)))

ce qui signifie que le processus G, suit une **distribution gaussienne** pour
chaque point t.

Limitation

L’approche ponctuelle ignore la structure de corrélation du processus, ce
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Convergence Fonctionnelle

Espace des Fonctions

La convergence en loi des processus empiriques se fait dans |'espace des fonctions
D[0, 1] (espace des fonctions continues a gauche et discontinues a droite), avec la
**topologie de Skorokhod**.

Definition (Convergence en Loi Fonctionnelle)

On dit que G, 9, G dans D[0, 1] si pour toute fonction continue bornée ¢ :
E[®(G,)] — E[®(G)]

Cela signifie que la convergence des processus empiriques est mesurée sur
**toutes les trajectoires** du processus.
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Théoreme de Donsker

Theorem (Donsker, 1952)

Soit Xi,...,X, des variables aléatoires indépendantes et identiquement
distribuées (i.i.d.) de loi uniforme sur [0,1]. Alors :

G, 2 Bo

dans D[0, 1], ot B® est un **pont brownien**.

Pont Brownien
e B%(0) =B°(1) =0
o Cov(B(s),B°(t)) =sAt—st
o Trajectoires continues (presque siirement)
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Propriété d'Invariance

Universalité de la Limite

Le **pont brownien** B est une **loi limite universelle** pour les processus
empiriques, indépendamment de la loi F des données.

Theorem (Cas Général)

Pour toute fonction de répartition continue F, la transformation du processus
empirique donne :

G DB F
apres transformation probante U; = F(X;) ~ U[0,1].
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Processus Empirique Bootstrap

Definition (Processus Empirique Bootstrap)

Le **processus empirique bootstrap** est défini comme :
G, (t) = Vn(F; (t) = Fa(t))

ol Fr(t)=13>", 1(x-<s), et X est un échantillon bootstrap tiré de F,.

Interprétation

o G, est la version bootstrap de G,,.
@ F, est utilis€ comme approximation de la fonction de répartition F inconnue.

@ La normalisation reste similaire a celle de G,,.
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Consistance du Bootstrap

Theorem (Giné-Zinn, 1990)

Soit Xy,...,X, i.i.d. de loi F. Alors :

sup |E*[h(GH)] — E[h(B°o F)]| 20
heBLy

ou BL; est la classe des fonctions 1-Lipschitz bornées.
v

Interprétation

La loi bootstrap de G}, approxime la loi limite de G, :

L(G}| X1, ..., Xn) = L(B o F)
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Conditions de Consistance
Theorem (Conditions Suffisantes)

Le bootstrap est consistant sous les conditions suivantes :

@ F est continue.
o La classe {1{x<4,t € R} est Donsker.
@ Les observations sont I.i.d.

Cas Pathologiques

Le bootstrap peut échouer pour :
@ Distributions discretes.
o Statistiques non lisses.

o Tres petits échantillons.
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Test de Kolmogorov-Smirnov Bootstrap

Probleme
TeStel’HoiF:FoVSHliF#Fo

Algorithme Bootstrap

@ Calculer D, = sup, |Fa(t) — Fo(t)]
@ Générer B échantillons bootstrap sous Hp

@ Calculer D = sup, |F(t) — Fo(t)| pour chaque réplique

_ 1\B
Q pvalue = 53 1 por py

.

Theorem (Consistance)

Sous Hy: \/nD}; . sup, |BO(¢)|

§
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