# People's Democratic Republic of Algeria University Med Khider of Biskra Faculty of SNVSTU

# Protocol 04 – One way ANOVA

Dr. Ben Gherbal Hanane

Data Analysis in Biosciences — Level: L3 Biology Email: hanane.bengherbal@univ-biskra.dz

#### Objective

Our objective is to perform a one-way analysis of variance (ANOVA-1) using the SPSS software. Then we will explore the steps for testing the homogeneity of variances through a practical example.

**Example 1 (ANOVA 1).** We aim to compare three types of feed based on their effect on milk production. We randomly assign 15 cows as follows:

- $A_1$  to the first 5 cows,
- $A_2$  to the next 5 cows,
- $A_3$  to the last 5 cows.

| $A_2$ | $A_3$                |
|-------|----------------------|
| 42    | 30                   |
| 45    | 32                   |
| 43    | 41                   |
| 44    | 34                   |
| 39    | 33                   |
|       | 42<br>45<br>43<br>44 |

At a significance level  $\alpha = 5\%$ , test the hypothesis that the feeds have no effect on milk production.

#### Solution Using SPSS

1. Data Entry:. Enter all values into a single variable called "Production", and create a second variable named "Feed" to indicate group membership.

|    | Production | feed |
|----|------------|------|
| 1  | 38,00      | 1,00 |
| 2  | 40,00      | 1,00 |
| 3  | 41,00      | 1,00 |
| 4  | 35,00      | 1,00 |
| 5  | 36,00      | 1,00 |
| 6  | 42,00      | 2,00 |
| 7  | 45,00      | 2,00 |
| 8  | 43,00      | 2,00 |
| 9  | 44,00      | 2,00 |
| 10 | 39,00      | 2,00 |
| 11 | 30,00      | 3,00 |
| 12 | 32,00      | 3,00 |
| 13 | 41,00      | 3,00 |
| 14 | 34,00      | 3,00 |
| 15 | 33,00      | 3,00 |
| 40 | 4          |      |
|    |            |      |

Figure 1: Data entry in SPSS

2. Running the Test:. Navigate in SPSS through:

 $\texttt{Analyze} \to \texttt{Compare Means} \to \texttt{One-Way ANOVA}$ 

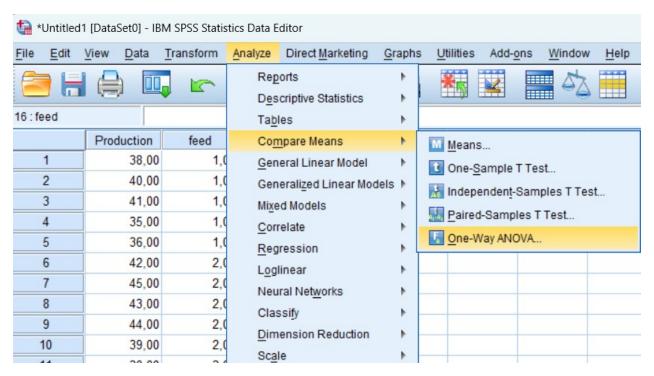



Figure 2: One-Way ANOVA menu in SPSS

#### 3. Assigning Variables:.

- Dependent List: This space is reserved for the quantitative variable that we want to analyze. In our example, it corresponds to the variable "Production".
- Factor: This box is reserved for the qualitative variable (the factor) that indicates the grouping of the observations. In our example, this box is reserved for the grouping variable "feed".

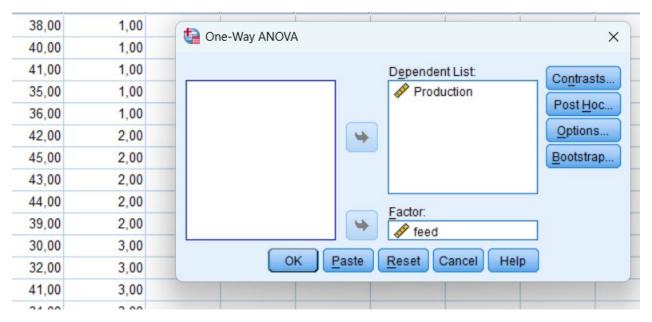



Figure 3: Variable assignment window

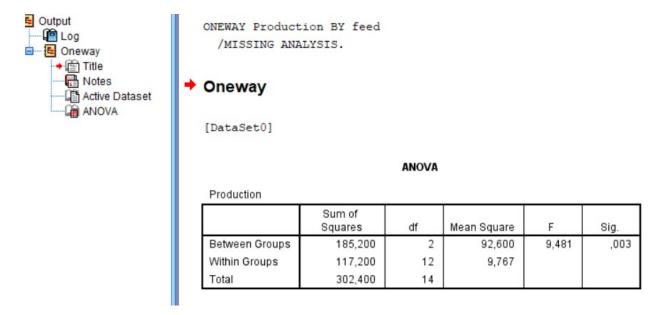



Figure 4: ANOVA results in SPSS

# 4. Results Output:. Interpretation of the results:

Compare the significance value (p-value) with  $\alpha = 0.05$ :

$$\begin{cases} \alpha < \text{p-value: } H_0 \text{ accepted (no significant effect)} \\ \alpha \ge \text{p-value: } H_0 \text{ rejected (significant effect)} \end{cases}$$

Thus, in our example, the feed type has a significant effect on milk production.

#### Test of Homogeneity of Variances

**Example 2.** Using the previous example, test whether there is a significant difference between group variances at the 5% level.

Repeating steps 2 and 3 of the one-factor ANOVA mentioned earlier, before displaying the results. That is, before clicking the **OK** button the following steps must be carried out:

- Select the **Options** button located on the right side of the window.
- After clicking this button, a new window will appear in which you must check the box "Test of homogeneity of variance".
- Click the **Continue** button.
- Then, click **OK** to display the results.

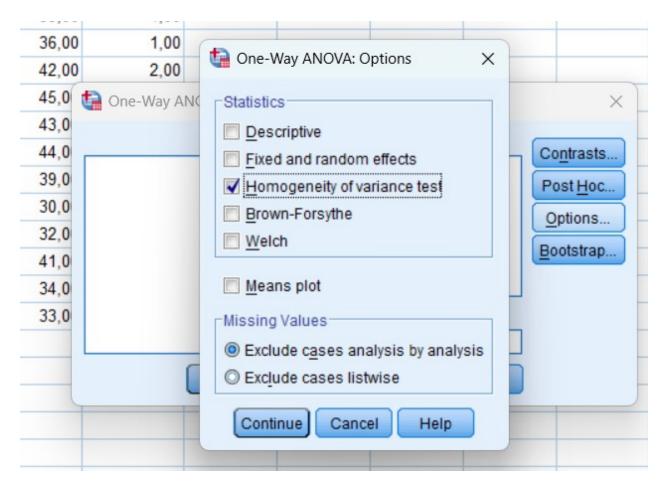



Figure 5: Enabling the homogeneity of variance test

#### Test of Homogeneity of Variances

#### Production

| Levene<br>Statistic | df1 | df2 | Sig. |
|---------------------|-----|-----|------|
| ,455                | 2   | 12  | ,645 |

#### **ANOVA**

#### Production

|                | Sum of<br>Squares | df | Mean Square | F     | Sig. |
|----------------|-------------------|----|-------------|-------|------|
| Between Groups | 185,200           | 2  | 92,600      | 9,481 | ,003 |
| Within Groups  | 117,200           | 12 | 9,767       |       |      |
| Total          | 302,400           | 14 |             |       |      |

Figure 6: Final output: ANOVA + homogeneity test

### Interpretation of the results:

To decide whether the variances are equal or not, we proceed as follows:

- If the p-value is **greater than** the significance level, the variances are equal.
- If the p-value is **less than** the significance level, the variances are unequal.

Based on the results obtained in our example, we observe that for a risk level  $\alpha = 0.05$ , the variances are equal because the p-value (0.645) is greater than the significance level.

We conclude that there is **no significant difference** between the variances, i.e., we accept  $H_0$ .

## Exercises (Manual then Verified in SPSS)

**Example 3.** We compare two types of seeds in terms of germination percentage:

At a 1% significance level, test whether the two samples come from populations with the same standard deviation.

**Example 4.** We aim to compare four fertilizers (A, B, C, D) based on tomato plant height  $(in \ cm)$ :

| A  | В  | C  | D  |
|----|----|----|----|
| 42 | 47 | 38 | 45 |
| 44 | 50 | 40 | 48 |
| 41 | 46 | 37 | 52 |
| 43 | 49 | 39 | 54 |
| 45 | 51 | 41 | 57 |

- Test whether the fertilizer type has a significant effect on plant height.
- Test the equality of variances (using SPSS only).