Numerical Series 3

3.1 Numerical Series

3.1.1 Definitions and Basic Concepts

Definition 3.1.1 (Numerical Series) —

Let (u_n) be a sequence of real numbers. The **numerical series** $\sum u_n$ is defined through its partial sums:

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = \sum_{k=0}^n u_k$$

We say the series **converges** if $\lim_{n\to\infty} S_n = S$ exists and is finite, and write:

$$\sum_{n=0}^{\infty} u_n = S$$

Otherwise, the series diverges.

Example 3.1.1 (Telescoping Series) —

Consider $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$. Using partial fractions:

$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

The partial sum telescopes:

$$S_n = \frac{1}{2} \left[\left(1 - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) \right]$$
$$= \frac{1}{2} \left(1 - \frac{1}{2n + 1} \right)$$

Thus $\lim_{n\to\infty} S_n = \frac{1}{2}$, so the series converges to $\frac{1}{2}$.

Example 3.1.2 (Divergent Series) —

The series $\sum_{n=0}^{\infty} (-1)^n$ has partial sums:

$$S_n = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Since the limit doesn't exist, the series diverges.

3.1.2 Geometric Series

Definition 3.1.2 (Geometric Series) —

A series of the form $\sum_{n=0}^{\infty} a q^n$ where $a, q \in \mathbb{R}$.

- ► Partial sum: $S_n = a \frac{1-q^{n+1}}{1-q}$ for $q \neq 1$
- ► The series converges if and only if |q| < 1, with sum $\frac{a}{1-a}$
- ▶ Diverges if $|q| \ge 1$

Example 3.1.3 —

 $\sum_{n=0}^{\infty} \frac{1}{2^n}$ converges to 2 since a = 1, $q = \frac{1}{2}$, and $\frac{1}{1-1/2} = 2$.

3.1.3 Series with Positive Terms

Definition 3.1.3 —

A series $\sum u_n$ has **positive terms** if $u_n \geq 0$ for all n.

For positive term series, the sequence of partial sums (S_n) is increasing. Therefore:

Theorem 3.1.1 A positive term series converges if and only if its partial sums are bounded above.

3.1.4 Riemann Series and Comparison Tests

Definition 3.1.4 (Riemann Series) —

The series $\sum \frac{1}{n^{\alpha}}$ where $\alpha \in \mathbb{R}$.

Theorem 3.1.2 The Riemann series $\sum \frac{1}{n^{\alpha}}$ converges if and only if $\alpha > 1$.

► $\sum \frac{1}{n^2}$ converges ($\alpha = 2 > 1$) Example 3.1.4

- ► $\sum \frac{1}{n}$ diverges ($\alpha = 1 \le 1$) ► $\sum \frac{1}{\sqrt{n}}$ diverges ($\alpha = 0.5 < 1$)

Theorem 3.1.3 (Comparison Test) —

Let $0 \le u_n \le v_n$ for all sufficiently large n.

- ▶ If $\sum v_n$ converges, then $\sum u_n$ converges
- ▶ *If* $\sum u_n$ *diverges, then* $\sum v_n$ *diverges*

Example 3.1.5 —

- ► $\sum \frac{|\cos(n)^n|}{n^2} \le \sum \frac{1}{n^2}$ converges ► $\sum \sin(\frac{\pi}{2^n}) \le \sum \frac{\pi}{2^n}$ converges

3.1.5 Equivalent Sequences and Limit Comparison

Definition 3.1.5 (Equivalent Sequences) —

Two sequences (u_n) and (v_n) (with $v_n \neq 0$) are **equivalent** if:

$$\lim_{n\to\infty}\frac{u_n}{v_n}=1$$

We write $u_n \sim v_n$.

Theorem 3.1.4 —

If $u_n \sim v_n$ and both sequences are positive, then $\sum u_n$ and $\sum v_n$ have the same nature (both converge or both diverge).

Example 3.1.6 —

Since $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$ and $\sum \frac{1}{n^2}$ converges, then $\sum \frac{1}{n(n+1)}$ also converges.

3.1.6 Cauchy Criterion

Theorem 3.1.5 (Cauchy Criterion for Series) —

The series $\sum u_n$ *converges if and only if:*

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall m > n \geq N, \left| \sum_{k=n+1}^m u_k \right| < \varepsilon$$

Example 3.1.7 (Harmonic Series) —

The harmonic series $\sum \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n} = 0$. For m = 2n:

$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > n \cdot \frac{1}{2n} = \frac{1}{2}$$

So the Cauchy criterion is violated.

3.1.7 Ratio Test (d'Alembert's Rule)

Theorem 3.1.6 (Ratio Test) —

Let $\sum u_n$ be a series with positive terms and suppose $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=L$.

- ▶ *If* L < 1, the series converges
- ▶ If L > 1, the series diverges
- ▶ If L = 1, the test is inconclusive

Example 3.1.8 —

- ► $\sum \frac{x^n}{n!}$: $\frac{u_{n+1}}{u_n} = \frac{x}{n+1} \to 0$, so converges for all x► $\sum \frac{2^n}{n!}$: $\frac{u_{n+1}}{u_n} = \frac{2}{n+1} \to 0$, so converges

 ► $\sum \frac{n^2}{(2n)!}$: $\frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{(2n+2)(2n+1)n^2} \to 0$, so converges

3.1.8 Alternating Series Test

Definition 3.1.6 (Alternating Series)

A series of the form $\sum (-1)^n a_n$ or $\sum (-1)^{n+1} a_n$ where $a_n > 0$.

Theorem 3.1.7 (Leibniz Test for Alternating Series) —

If (a_n) is a decreasing sequence with $\lim_{n\to\infty} a_n = 0$, then the alternating series $\sum (-1)^n a_n$ converges.

Example 3.1.9 —

- ► $\sum \frac{(-1)^n}{n}$ converges (alternating harmonic series) ► $\sum \frac{(-1)^n n^2}{1+n}$ diverges since $\lim_{n\to\infty} \frac{n^2}{1+n} \neq 0$

3.1.9 Absolute and Conditional Convergence

Definition 3.1.7 —

A series $\sum u_n$ is:

- ▶ *Absolutely convergent* if $\sum |u_n|$ converges
- ▶ Conditionally convergent if $\sum u_n$ converges but $\sum |u_n|$ diverges

Theorem 3.1.8 Absolute convergence implies convergence.

Example 3.1.10 —

- ► $\sum \frac{\cos(n\pi)}{n^2} = \sum \frac{(-1)^n}{n^2}$ converges absolutely ► $\sum \frac{\cos(n\pi)}{n} = \sum \frac{(-1)^n}{n}$ converges conditionally

3.2 Function Series

3.2.1 Pointwise and Uniform Convergence

Definition 3.2.1 (Pointwise Convergence) —

A sequence of functions (f_n) converges **pointwise** to f on A if:

$$\forall x \in A, \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, |f_n(x) - f(x)| < \varepsilon$$

Definition 3.2.2 (Uniform Convergence) —

A sequence of functions (f_n) converges **uniformly** to f on A if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall x \in A, \forall n \geq N, |f_n(x) - f(x)| < \varepsilon$$

Remark 3.2.1 —

Uniform convergence means the convergence rate is the same for all $x \in A$, while pointwise convergence allows different rates at different points.

Example 3.2.1 —

Let $f_n(x) = x^n$ on [0, 1].

- Pointwise limit: $f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$
- \blacktriangleright Convergence is not uniform since all f_n are continuous but f is discontinuous

3.2.2 Properties Preserved by Uniform Convergence

Theorem 3.2.1 (Continuity) —

If f_n are continuous on A and $f_n \to f$ uniformly on A, then f is continuous on A.

Theorem 3.2.2 (Integration) —

If f_n *are integrable on* [a,b] *and* $f_n \rightarrow f$ *uniformly on* [a,b]*, then:*

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

Theorem 3.2.3 (Differentiation) —

If f_n are differentiable on I, $f_n \to f$ pointwise on I, and $f'_n \to g$ uniformly on I, then f is differentiable and f' = g.

Example 3.2.2 (Failure of Term-by-Term Differentiation) —

Let $f_n(x) = \frac{\sin(nx)}{n}$ on \mathbb{R} .

- ▶ $f_n \to 0$ uniformly since $|f_n(x)| \le \frac{1}{n}$
- $f'_n(x) = \cos(nx)$ does not converge
- ► So we cannot differentiate term-by-term

3.2.3 Series of Functions

Definition 3.2.3 (Function Series) —

A series of functions is an expression $\sum_{n=1}^{\infty} f_n(x)$.

Definition 3.2.4 (Normal Convergence) —

A function series $\sum f_n(x)$ converges **normally** on A if there exists a convergent numerical series $\sum M_n$ such that:

$$\forall x \in A, |f_n(x)| \leq M_n$$

Theorem 3.2.4 —

Normal convergence implies uniform convergence.

Example 3.2.3 —

 $\sum \frac{\sin(nx)}{n^2}$ converges normally on \mathbb{R} since:

$$\left| \frac{\sin(nx)}{n^2} \right| \le \frac{1}{n^2}$$
 and $\sum \frac{1}{n^2}$ converges

3.2.4 Power Series

Definition 3.2.5 (Power Series) —

A series of the form $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ where $a_n, z_0 \in \mathbb{C}$.

Theorem 3.2.5 (Radius of Convergence) —

For every power series $\sum a_n z^n$, there exists $R \in [0, \infty]$ (the radius of convergence) such that:

- ▶ The series converges absolutely for |z| < R
- ► The series diverges for |z| > R

Theorem 3.2.6 (Operations on Power Series) —

Within their common interval of convergence:

► Sum:

$$\sum (a_n + b_n)z^n = \sum a_n z^n + \sum b_n z^n$$

► Product:

$$(\sum a_n z^n)(\sum b_n z^n) = \sum c_n z^n$$

where $c_n = \sum_{k=0}^n a_k b_{n-k}$

► *Differentiation*:

$$\frac{d}{dz}(\sum a_n z^n) = \sum n a_n z^{n-1}$$

► *Integration*:

$$\int_0^z (\sum a_n t^n) dt = \sum \frac{a_n}{n+1} z^{n+1}$$

Example 3.2.4 (Common Power Series) —

► Exponential:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!},$$

$$R = \infty$$

► Sine:

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!},$$

$$R = \infty$$

► Cosine:

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!},$$

$$R = \infty$$

► Geometric:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n,$$

$$R = 1$$

► Logarithm:

$$\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n},$$

R = 1

3.2.5 Fourier Series

Definition 3.2.6 (Fourier Series) —

A series of the form:

$$a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega t) + b_n \sin(n\omega t)]$$

where $\omega = \frac{2\pi}{T}$ for some period T.

Theorem 3.2.7 (Fourier Coefficients) —

If f is a T-periodic function, its Fourier coefficients are:

$$a_0 = \frac{1}{T} \int_0^T f(t)dt$$

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt$$

Theorem 3.2.8 (Dirichlet Conditions) —

If f is piecewise smooth and periodic, then its Fourier series converges to:

$$\frac{1}{2}[f(t^+) + f(t^-)]$$

At points of continuity, it converges to f(t).

Theorem 3.2.9 (Parseval's Identity) —

For a square-integrable periodic function:

$$\frac{1}{T} \int_0^T |f(t)|^2 dt = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Example 3.2.5 (Square Wave) —

For the square wave
$$f(t) = \begin{cases} 1 & 0 \le t < \pi \\ -1 & \pi \le t < 2\pi \end{cases}$$
 with period 2π :

$$a_0 = 0$$
 $a_n = 0$ (since f is odd)
$$b_n = \begin{cases} \frac{4}{n\pi} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

So the Fourier series is: $\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin((2k+1)t)}{2k+1}$