TP # 6: Differential Perceptron (Sigmoid) Molecular Descriptor Classification

Dr. Samir Kenouche – November 15, 2025

Abstract

This document presents an advanced matrix formulation of a differentiable (sigmoid) perceptron applied to molecular descriptor classification. We give full symbolic derivations of forward, backward, and parameter-update formulae, then compute every arithmetic step for the **first four** gradient-descent iterations on a small, concrete molecular dataset. All steps are presented in matrix form and expanded into elementwise arithmetic to ensure reproducibility by the students.

Contents

L	Problem statement and notation	T
2	Differential (analytic) gradients — full derivation	2
3	Numerical worked example: molecular descriptors 3.1 Perceptron Scheme	
4	Summary and meaning	6
5	Python Code	7
6	Meaning of Binary Cross-Entropy Loss and Comparison with Mean Squared Error 6.1 Comparison with Mean Squared Error (MSE / RMSE)	8

1 Problem statement and notation

We consider binary classification of molecules using a single logistic neuron (sigmoid perceptron). Each molecule i has a descriptor vector $\mathbf{x}^{(i)} \in \mathbb{R}^d$ and a binary label $y^{(i)} \in \{0,1\}$. The dataset with N samples is written as the matrix

$$\mathbf{X} = \begin{bmatrix} (\mathbf{x}^{(1)})^{\top} \\ (\mathbf{x}^{(2)})^{\top} \\ \vdots \\ (\mathbf{x}^{(N)})^{\top} \end{bmatrix} \in \mathbb{R}^{N \times d}, \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix} \in \{0, 1\}^{N}.$$

Parameters: weight column vector $\mathbf{W} \in \mathbb{R}^{d \times 1}$ and scalar bias $b \in \mathbb{R}$. For compactness we will sometimes write bias as a separate scalar added to each row. Model (vectorised over the batch):

$$\mathbf{z} = \mathbf{X} \mathbf{W} + b \mathbf{1}_N, \quad \mathbf{a} = \sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$
 (elementwise).

Loss (average binary cross-entropy):

$$\mathcal{L}(\mathbf{W}, b) = -\frac{1}{N} \left(\mathbf{y}^{\top} \log \mathbf{a} + (\mathbf{1} - \mathbf{y})^{\top} \log(\mathbf{1} - \mathbf{a}) \right).$$

2 Differential (analytic) gradients — full derivation

We derive gradients symbolically before numerical evaluation.

For a single sample index i,

$$z^{(i)} = \mathbf{x}^{(i)\top} \mathbf{W} + b, \qquad a^{(i)} = \sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}.$$

Single-sample loss:

$$\ell^{(i)} = -(y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})).$$

Derivative of $\ell^{(i)}$ w.r.t. (with respect to) $z^{(i)}$ (use chain rule and $\frac{d}{dz}\sigma(z) = \sigma(z)(1-\sigma(z))$):

$$\begin{split} \frac{d\ell^{(i)}}{dz^{(i)}} &= -\left(y^{(i)} \frac{1}{a^{(i)}} \frac{da^{(i)}}{dz^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - a^{(i)}} \frac{da^{(i)}}{dz^{(i)}}\right) \\ &= -\frac{da^{(i)}}{dz^{(i)}} \left(\frac{y^{(i)}}{a^{(i)}} - \frac{1 - y^{(i)}}{1 - a^{(i)}}\right) \\ &= -a^{(i)} (1 - a^{(i)}) \left(\frac{y^{(i)} (1 - a^{(i)}) - (1 - y^{(i)}) a^{(i)}}{a^{(i)} (1 - a^{(i)})}\right) \\ &= -(y^{(i)} - a^{(i)}) = a^{(i)} - y^{(i)}. \end{split}$$

Thus the convenient simplification holds (batch form):

$$\nabla_{\mathbf{z}} \mathcal{L} = \frac{1}{N} (\mathbf{a} - \mathbf{y}).$$

Then by matrix calculus,

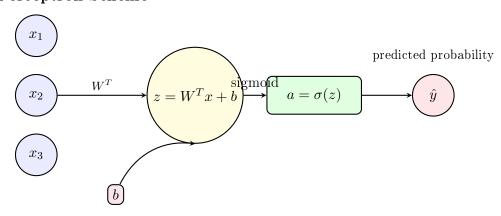
$$\nabla_{\mathbf{W}} \mathcal{L} = \mathbf{X}^{\top} (\nabla_{\mathbf{z}} \mathcal{L}) = \frac{1}{N} \mathbf{X}^{\top} (\mathbf{a} - \mathbf{y}), \qquad \nabla_{b} \mathcal{L} = \mathbf{1}_{N}^{\top} (\nabla_{\mathbf{z}} \mathcal{L}) = \frac{1}{N} \mathbf{1}_{N}^{\top} (\mathbf{a} - \mathbf{y}).$$

These are exact analytic (differential) gradients used for gradient descent.

3 Numerical worked example: molecular descriptors

We now apply the above to a small molecular dataset and show all computations for the first four iterations.

3.1 Perceptron Scheme



3.2 Dataset and initialisation

We use N=3 molecules and d=3 descriptors per molecule (e.g. hydrophobicity, polar surface, partial charge). The feature matrix, labels, and initial parameters are:

$$\mathbf{X} = \begin{bmatrix} 1.00 & 0.50 & 0.20 \\ 1.50 & -0.30 & 0.80 \\ 0.30 & 0.70 & -0.50 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Initial weights and bias (column vector):

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.10 \\ -0.20 \\ 0.30 \end{bmatrix}, \qquad b^{(0)} = 0.0, \qquad \eta = 0.1.$$

We will compute: $\mathbf{z}^{(t)}$, $\mathbf{a}^{(t)}$, $\mathcal{L}^{(t)}$, $\nabla_{\mathbf{W}}\mathcal{L}^{(t)}$, $\nabla_{b}\mathcal{L}^{(t)}$, and updates for t = 0, 1, 2, 3 (four iterations index starting at 0).

Iteration 0 (initial parameters)

Forward: pre-activation and activation

Compute pre-activations (matrix multiplication):

$$\mathbf{z}^{(0)} = \mathbf{X}\mathbf{W}^{(0)} + b^{(0)}\mathbf{1}_3 = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 1.5 & -0.3 & 0.8 \\ 0.3 & 0.7 & -0.5 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.2 \\ 0.3 \end{bmatrix} = \begin{bmatrix} 0.06 \\ 0.45 \\ -0.26 \end{bmatrix}.$$

Elementwise sigmoid:

$$\mathbf{a}^{(0)} = \sigma(\mathbf{z}^{(0)}) = \begin{bmatrix} \sigma(0.06) \\ \sigma(0.45) \\ \sigma(-0.26) \end{bmatrix} = \begin{bmatrix} 0.51499550 \\ 0.61063923 \\ 0.43536371 \end{bmatrix}.$$

Loss and backward: BCE and gradients

Loss (average BCE):

$$\mathcal{L}^{(0)} = -\frac{1}{3} \sum_{i=1}^{3} \left[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)}) \right] = 0.81280652.$$

Error term (batch):

$$\nabla_{\mathbf{z}} \mathcal{L}^{(0)} = \frac{1}{3} (\mathbf{a}^{(0)} - \mathbf{y}) = \frac{1}{3} \begin{bmatrix} 0.51499550 - 1 \\ 0.61063923 - 0 \\ 0.43536371 - 1 \end{bmatrix} = \begin{bmatrix} -0.16166817 \\ 0.20354641 \\ -0.18887876 \end{bmatrix}.$$

Gradient wrt weights (matrix form):

$$\nabla_{\mathbf{W}} \mathcal{L}^{(0)} = \mathbf{X}^{\top} (\nabla_{\mathbf{z}} \mathcal{L}^{(0)}) = \begin{bmatrix} 1.0 & 1.5 & 0.3 \\ 0.5 & -0.3 & 0.7 \\ 0.2 & 0.8 & -0.5 \end{bmatrix} \begin{bmatrix} -0.16166817 \\ 0.20354641 \\ -0.18887876 \end{bmatrix} = \begin{bmatrix} 0.08718782 \\ -0.27364647 \\ 0.22460954 \end{bmatrix}.$$

Gradient wrt bias:

$$\nabla_b \mathcal{L}^{(0)} = \mathbf{1}_3^{\top} (\nabla_{\mathbf{z}} \mathcal{L}^{(0)}) = -0.14633385.$$

Parameter update

Gradient descent update (learning rate $\eta = 0.1$):

$$\mathbf{W}^{(1)} = \mathbf{W}^{(0)} - 0.1 \,\nabla_{\mathbf{W}} \mathcal{L}^{(0)} = \begin{bmatrix} 0.09128122 \\ -0.17263535 \\ 0.27753905 \end{bmatrix},$$

$$b^{(1)} = b^{(0)} - 0.1 \,\nabla_b \mathcal{L}^{(0)} = 0.01463339.$$

Iteration 1

Forward

Compute pre-activation with updated parameters:

$$\mathbf{z}^{(1)} = \mathbf{X}\mathbf{W}^{(1)} + b^{(1)}\mathbf{1}_3 = \begin{bmatrix} 0.07510474\\ 0.42537705\\ -0.21759652 \end{bmatrix}.$$

Activations:

$$\mathbf{a}^{(1)} = \sigma(\mathbf{z}^{(1)}) = \begin{bmatrix} 0.51876736 \\ 0.60476921 \\ 0.44581450 \end{bmatrix}.$$

Loss and backward

Loss:

$$\mathcal{L}^{(1)} = 0.79747916.$$

Gradients:

$$\nabla_{\mathbf{z}} \mathcal{L}^{(1)} = \frac{1}{3} (\mathbf{a}^{(1)} - \mathbf{y}) = \begin{bmatrix} -0.16041088 \\ 0.20158974 \\ -0.18473850 \end{bmatrix}.$$

$$\nabla_{\mathbf{W}} \mathcal{L}^{(1)} = \mathbf{X}^{\top} \nabla_{\mathbf{z}} \mathcal{L}^{(1)} = \begin{bmatrix} 0.08655518 \\ -0.26999231 \\ 0.22155386 \end{bmatrix}, \quad \nabla_{b} \mathcal{L}^{(1)} = -0.14354964.$$

Update

$$\mathbf{W}^{(2)} = \mathbf{W}^{(1)} - 0.1 \,\nabla_{\mathbf{W}} \mathcal{L}^{(1)} = \begin{bmatrix} 0.08262570 \\ -0.14563612 \\ 0.25538366 \end{bmatrix},$$

$$b^{(2)} = b^{(1)} - 0.1 \nabla_b \mathcal{L}^{(1)} = 0.02898835.$$

Iteration 2

Forward

$$\mathbf{z}^{(2)} = \mathbf{X}\mathbf{W}^{(2)} + b^{(2)}\mathbf{1}_{3} = \begin{bmatrix} 0.08786669\\ 0.38657851\\ -0.17792091 \end{bmatrix},$$

$$\mathbf{a}^{(2)} = \sigma(\mathbf{z}^{(2)}) = \begin{bmatrix} 0.52245307 \\ 0.59890980 \\ 0.45614770 \end{bmatrix}.$$

Loss and backward

$$\mathcal{L}^{(2)} = 0.78257589,$$

$$\nabla_{\mathbf{z}} \mathcal{L}^{(2)} = \frac{1}{3} (\mathbf{a}^{(2)} - \mathbf{y}) = \begin{bmatrix} -0.15918231 \\ 0.19963660 \\ -0.18128410 \end{bmatrix},$$

$$\nabla_{\mathbf{W}} \mathcal{L}^{(2)} = \mathbf{X}^{\top} \nabla_{\mathbf{z}} \mathcal{L}^{(2)} = \begin{bmatrix} 0.08588736 \\ -0.26638101 \\ 0.21851487 \end{bmatrix}, \quad \nabla_{b} \mathcal{L}^{(2)} = -0.14082981.$$

Update

$$\mathbf{W}^{(3)} = \mathbf{W}^{(2)} - 0.1 \,\nabla_{\mathbf{W}} \mathcal{L}^{(2)} = \begin{bmatrix} 0.07403696 \\ -0.11899802 \\ 0.23353217 \end{bmatrix},$$
$$b^{(3)} = b^{(2)} - 0.1 \,\nabla_{b} \mathcal{L}^{(2)} = 0.04307133.$$

Iteration 3

Forward

$$\mathbf{z}^{(3)} = \mathbf{X}\mathbf{W}^{(3)} + b^{(3)}\mathbf{1}_3 = \begin{bmatrix} 0.10431572\\ 0.37665192\\ -0.13478228 \end{bmatrix},$$

$$\mathbf{a}^{(3)} = \sigma(\mathbf{z}^{(3)}) = \begin{bmatrix} 0.52605531\\ 0.59306533\\ 0.46635535 \end{bmatrix}.$$

Loss and backward

$$\mathcal{L}^{(3)} = 0.76808632,$$

$$\nabla_{\mathbf{z}} \mathcal{L}^{(3)} = \frac{1}{3} (\mathbf{a}^{(3)} - \mathbf{y}) = \begin{bmatrix} -0.15798156 \\ 0.19768844 \\ -0.17788155 \end{bmatrix},$$

$$\nabla_{\mathbf{W}} \mathcal{L}^{(3)} = \mathbf{X}^{\top} \nabla_{\mathbf{z}} \mathcal{L}^{(3)} = \begin{bmatrix} 0.08518664 \\ -0.26281440 \\ 0.21549522 \end{bmatrix}, \quad \nabla_{b} \mathcal{L}^{(3)} = -0.13817467.$$

Update

$$\mathbf{W}^{(4)} = \mathbf{W}^{(3)} - 0.1 \,\nabla_{\mathbf{W}} \mathcal{L}^{(3)} = \begin{bmatrix} 0.06551830 \\ -0.09271658 \\ 0.21198265 \end{bmatrix},$$
$$b^{(4)} = b^{(3)} - 0.1 \,\nabla_{b} \mathcal{L}^{(3)} = 0.05688880.$$

4 Summary and meaning

- The perceptron computes probabilities via the sigmoid activation; Binary Cross-Entropy matches that probabilistic interpretation and yields the simple error signal (a y).
- The matrix formulation is efficient: the batch error $(\mathbf{a} \mathbf{y})$ is multiplied by \mathbf{X}^{\top} to aggregate feature contributions to each weight.
- Each gradient step reduces the loss (observed numerically over the first four iterations). The update moves weights opposite to the gradient direction because we perform gradient descent.

Chemical Interpretation

In this molecular descriptor classification problem, each input feature x_j represents a chemical property, such as hydrophobicity, polar surface area, or partial charge of a molecule. The weight w_j quantifies how strongly that descriptor contributes to the predicted probability that a molecule is toxic (y = 1). A positive weight means the descriptor increases the likelihood of toxicity, while a negative weight decreases it.

The bias term b acts as a baseline chemical propensity, adjusting the threshold for toxicity independent of specific descriptors. After the linear combination $z = W^T x + b$, the sigmoid activation maps the chemical signal into a probability $a = \sigma(z)$, giving a biologically interpretable likelihood of the molecule being toxic.

The binary cross-entropy loss measures the discrepancy between predicted probabilities and actual observed toxicities, guiding the gradient descent to adjust weights in chemically meaningful directions.

5 Python Code

The following Python code has been reformatted for readability, clarity, and cleaner output, while preserving the same mathematical operations:

```
Executable Python Code
import numpy as np
# Dr. Samir Kenouche
# Molecular descriptor data
X = np.array([
    [1.0, 0.5, 0.2], # molecule 1
    [1.5, -0.3, 0.8], # molecule 2
    [0.3, 0.7, -0.5] # molecule 3
1)
y = np.array([1, 0, 1])
# Initialize weights and bias
W = np.array([0.1, -0.2, 0.3])
b = 0.0
eta = 0.1
# Activation function
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
# Training loop for 4 iterations
for t in range(4):
    z = X @ W + b
    a = sigmoid(z)
    # Gradients
    grad = (a - y) / len(y)
    W = W - \text{eta} * (X.T @ grad)
    b = b - eta * grad.sum()
    # Loss (binary cross-entropy)
    loss = -np.mean(y * np.log(a + 1e-12) + (1 - y) * np.log(1 - a + 1e-12))
    print(f"Iteration \{t\}: Loss = \{loss:.5f\}, W = \{W\}, b = \{b:.5f\}")
print("\nFinal weights and bias:")
print(f"W = {W}, b = {b:.5f}")
```

Step-by-Step Calculation of $\mathcal{L}^{(0)}$

This section shows the detailed calculation of the binary cross-entropy loss for the first iteration (iteration 0) of the perceptron training.

Iteration 0 Loss Calculation

Input:

$$X = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 1.5 & -0.3 & 0.8 \\ 0.3 & 0.7 & -0.5 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad W^{(0)} = \begin{bmatrix} 0.1 \\ -0.2 \\ 0.3 \end{bmatrix}, \quad b^{(0)} = 0$$

Step 1: Linear combination

$$z = XW^{(0)} + b^{(0)} = \begin{bmatrix} 0.06 \\ 0.45 \\ -0.26 \end{bmatrix}$$

Step 2: Sigmoid activation

$$a = \sigma(z) = \frac{1}{1 + e^{-z}} \approx \begin{bmatrix} 0.5150 \\ 0.6106 \\ 0.4353 \end{bmatrix}$$

Step 3: Binary cross-entropy loss

$$\mathcal{L}^{(0)} = -\frac{1}{3} \sum_{i=1}^{3} \left[y_i \log(a_i) + (1 - y_i) \log(1 - a_i) \right]$$

Compute each term:

$$-\log(0.5150) \approx 0.663$$
, $-\log(1 - 0.6106) \approx 0.944$, $-\log(0.4353) \approx 0.832$

Sum: 0.663 + 0.944 + 0.832 = 2.439

Divide by 3:

$$\mathcal{L}^{(0)} \approx \frac{2.439}{3} \approx 0.813$$

Result:

$$\mathcal{L}^{(0)} \approx 0.813$$

6 Meaning of Binary Cross-Entropy Loss and Comparison with Mean Squared Error

The binary cross-entropy (BCE) loss measures how well a model predicts probabilities of binary outcomes (e.g., toxic vs. non-toxic molecules). It compares the predicted probability $a = \sigma(z)$ with the actual label $y \in \{0,1\}$ using the formula:

$$L_{BCE} = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(a_i) + (1 - y_i) \log(1 - a_i) \right]$$

Interpretation:

- When the prediction a_i is close to the true label y_i , the loss is small.
- When the prediction is far from the true label, the loss increases sharply.
- It is particularly suited for probability outputs (0 to 1) and penalizes confident but wrong predictions heavily.

6.1 Comparison with Mean Squared Error (MSE / RMSE)

• MSE computes the squared difference between the predicted value and the actual label:

$$L_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (a_i - y_i)^2$$

- MSE treats the problem as a regression, while BCE treats it as a probabilistic classification.
- BCE is more sensitive to predictions near 0 or 1, which is important in classification tasks.
- RMSE (square root of MSE) gives the error in the same scale as the predicted probability, but does not penalize confident wrong predictions as strongly as BCE.
- In chemical classification (toxic vs non-toxic), BCE is preferred since it gives a clear probabilistic interpretation of molecule toxicity.

Appendix: Stepwise Summary and Chemical Interpretations

Appendix Overview

This appendix provides a comprehensive, pedagogically-oriented summary of the perceptron calculations, meaning of each function, and strategies to improve chemical classification.

1. Stepwise Calculation Workflow

Step 1: Linear Combination

Formula: $z = W^T X + b$

Meaning: Weighted sum of molecular descriptors plus bias. Each w_j quantifies the contribution of descriptor x_j .

Step 2: Sigmoid Activation

Formula: $a = \sigma(z) = \frac{1}{1 + e^{-z}}$

Meaning: Maps linear combination to probability [0,1]; interpretable as the likelihood

of a molecule being toxic.

Step 3: Binary Cross-Entropy Loss

Formula: $L = -\frac{1}{N} \sum [y_i \log(a_i) + (1 - y_i) \log(1 - a_i)]$

Meaning: Measures discrepancy between predicted probability and true label; penalizes confident wrong predictions.

Step 4: Gradient Computation

Formula: $\nabla_W L = X^T(a-y)/N$, $\nabla_b L = \sum (a-y)/N$

Meaning: Indicates direction to update weights/bias to minimize loss; derived from

chain rule.

Step 5: Weight Update

Formula: $W \leftarrow W - \eta \nabla_W L, b \leftarrow b - \eta \nabla_b L$

Meaning: Implements gradient descent; learning rate η controls step size.

2. Function Interpretations and Derivations

Function Roles

- $W^TX + b$: Linear mapping of molecular descriptors.
- $\sigma(z)$: Non-linear transformation ensuring outputs are probabilities.
- L_{BCE} : Loss function guiding parameter optimization.
- $\nabla_W L$, $\nabla_b L$: Gradients from chain rule for backpropagation.

3. Strategies for Improving Chemical Classification

Chemical Classification Improvements

- Feature Engineering: Add relevant descriptors (logP, polar surface area, electronic properties).
- Regularization: Apply L_1/L_2 penalties to prevent overfitting.
- Learning Rate Tuning: Use adaptive optimizers (Adam, RMSProp) for faster convergence.
- Data Augmentation: Expand molecular dataset for robustness.
- **Network Complexity:** Consider multi-layer perceptrons for non-linear interactions.
- Cross-Validation: Evaluate performance on multiple splits.
- Interpretability: Use SHAP or feature importance to understand descriptor influence.