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Simulation et génération des nombres
pseudo-aléatoires

Introduction

Lorsqu’une résolution mathématique exactes d’un probleme n’est pas possible, on fait
appel aux méthodes d’approximation. Entre autres, figure la méthode de la simulation qui est
un outil puissant et idéal dans la majorité des sciences actuelles (Informatique, Physique, Chi-
mie, Télécommunications,...) en plus est un outil de résolution numérique et une discipline de
modélisation.

1.1 Simulation

Le terme ”Simulation” est dérivé du mot latin SIMULARE qui veut dire : copier, feindre,
faire paraitre comme réelle une chose qui ne l'est pas. Nous conduit aussi vers le chemin qui
nous permet de déduire les caractéristiques du fonctionnement d’un systeme réel. En d’autre
terme, la simulation est ’étude du comportement d’un systeme dynamique a travers un modele
(grace a un modele que l'on fait évoluer dans le temps), elle désigne un procédé selon lequel
on exécute un programme informatique sur ordinateur en vue de simuler un phénomene ou une
organisation particuliere : Chaine de montage en industrie, trafic routier dans une agglomération,
bloc opératoire dans un hopital, etc.

La simulation ne résout pas le probleme posé en trouvant la solution, mais elle nous aide a
prendre parmi plusieurs solutions la meilleure d’entre elles.

La simulation a pour role d’imiter I’évolution d’un systeme dans le temps et calculer ensuite
ses caractéristiques. On a souvent recours a la simulation lorsque :

1. L’expérience sur le systeme est impossible ou dangereuse (exemple de réacteurs nucléaires).

N

Le systeme évolue rapidement de telle sorte qu’on ne peut pas l'observer avec précision
(exemple de réactions chimiques).

Le systeme évolue tres lentement (exemple de simulation du climat & long terme).
L’expérience est cotiteuse financierement.

Le systeme est en phase de conception.

SRR A el

On veut valider des résultats analytiques.



Chapitre ??. Simulation et génération des nombres pseudo-aléatoires

1.1.1  Terminologies

Définition 1.1 Un systeme est un ensemble doté d'une structure, d’un groupe d’éléments et de
relations entre ceux-ci dans un environnement fermé. Il est affecté par les éventuels changements
de son environnement.

Dans le domaine de la simulation, plusieurs définitions ont été attribuées au concept
”Modele” | en voici celle donnée par ’AFCET (Association Frangaise pour la Cybernétique économique
et Technique)

Définition 1.2 7Un modéle est un schéma, c’est-a-dire une description mentale (intériorisée), ou
figurée (diagramme, formules mathématiques, etc.) qui pour un champ de questions est pris comme
représentation abstraite d’une classe de phénomeénes, plus ou moins habilement dégagés de leur
contextes par un observateur pour servir de support a l'investigation, et/ou la communication”.

Le modéle est une représentation simplifiée d’un systéme réel ou imaginé exprimer sous
forme verbale, graphique ou mathématique dans le but de l’étudier. Toutefois, il doit contenir assez
de détails pour tirer des conclusions valables sur le systeme réel.

Définition 1.3 Les variables d’état sont les informations nécessaires qui ont pour but de définir
ce qui est en train de se passer dans un systéme.

Définition 1.4 Les entités sont les éléments ou les objets du systéeme qui subissent des opérations
et se déplacent en générale dans le systéme (message dans un réseau,...). Une entité peut étre active
ou peut se résoudre d’une maniére pacifique (passive), permanente ou temporaire.

Définition 1.5 Les ressources sont des éléments qui exécutent des opérations, et généralement
ne se déplacent pas dans le systeme (Machine, Unité Centrale,...). Mais on peut trouver des objets
qui peuvent exécuter une opération tout en se déplagant a lintérieur du systéme (une machine
transportant des palettes dans une usine, chariot transportant une piéce dans un atelier).

Définition 1.6 Les attributs sont des variables identification qui caractérisent les entités ou les
ressources. On distingue cependant deux types d’attributs :

1. Fixes : Contiennent les caractéristiques constantes de l'objet (durée de service, date d’ar-
rivée dans le systeme, ...).

2. Variables : Contiennent les caractéristiques changeantes de 'objet (état d’une ressource,
longueur de la file associée a une ressource,... ).

Définition 1.7 L’activité est un processus qui provoque un changement dans [’état du systéme,
ce changement d’état est appelé événement. Les objets exécutent quelques opérations et des que ces
derniéres seront initiées (ou terminées) a chaque événement, elles seront appelées des activités.
Les activités utilisées dans la simulation a événement discret possédent des durées.

Définition 1.8 L’événement est la réalisation instantanée qui peut changer ’état du systeme. On
distingue des événements internes au systéme (endogenes) et des événements externes (exogenes).

Définition 1.9 Un processus est le rassemblement d’un certain nombre d’événements dans lequel
ces derniers sont produits.

Définition 1.10 Un simulateur est un programme contenant l’algorithme utilisé pour simuler le
systeme étudié. 1l est constitué d’un ensemble d’entités qui décrivent une composante du systeme
réel.
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1.1.2 Etapes de la simulation

Pour concevoir un simulateur, on doit respecter les étapes suivantes :

1) Formulation du probléme : Cette étape consiste a identifier et analyser le probleme
tout en déterminant ses composantes, ses relations et les frontieres entre le systeme et son
environnement.

2) Fixation des objectifs : Dans n’importe quel probléme a simuler, il faut bien définir les
objectifs visés par le projet de simulation. Ceci comprend :

e les questions auxquelles on devra répondre.
e Les sorties attendues.
e Le temps requis ainsi que les cotits de ’étude, etc.

3) Elaboration du modéle : Il s’agit d’extraire un modeéle qui est une abstraction du systéme
réel, c’est-a~dire aussi fidele que possible de ce dernier.

4) Collecte de données : Apres la formulation d’un probleme quelconque et apres avoir iden-
tifié les objectifs, on fera appel a une collection de données qu’on adapte a des distributions
de probabilité tout en faisant appel a des tests statistiques.

5) Validation du modeéle : Il s’agit de traduire le modele obtenu sous une forme acceptable
par ordinateur et de s’assurer que le modele s’exécute sans erreurs. Le meilleur moyen pour
valider un modele conceptuel est de comparer ses sorties avec celles du systeme réel. C’est
dans cette étape qu’intervient les tests statistiques, c’est-a-dire pour pouvoir valider un
modele de simulation, on fait appel par exemple aux tests d’ajustements (Khi-Deux ou
Kolmogorov-Smirnov), aux tests de comparaison (test de Fisher ou test de Student), ...etc.
Le processus de validation d'un modele peut étre illustré par la figure ?7?.

6) Exécution de la simulation : L’exécution et le rassemblement des résultats d'un modele
permet de pouvoir le mettre a I’épreuve.

7) Analyse et interprétation des résultats : Une fois les résultats sont obtenus, le concep-
teur passe a l'interprétation de ces dernieres dans le but de donner des propositions (solu-
tions). Le choix de la meilleure solution devra étre fait par I'analyse qui la justifiera dans
une documentation qui est nécessaire pour différentes raisons :

e Aide a comprendre le fonctionnement du modele.

e Facilite toute modification ou mise a jour du modele.

e Permet de revoir toute les alternatives prises en considération, des criteres de comparaisons
qui ont été utilisés. Ceci nous aidera dans la prise de décision qui sera principalement basée
sur les résultats fournis par la simulation et rapportés dans la documentation.

) (B

< Comparasons Modglisation Analyse
Systime Modéle Performance
Systéme Reel
Modéle Résolution Résultats

Simplification/Compexification Analyse des résultats

FIGURE 1.1: (A) : Processus de validation et (B) : Processus d’analyse et interprétation des
résultats
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1.1.3 Simulation a événements discrets

La simulation a événements discrets est la représentation abstraite du systeme réel tel qu’il
évolue dans le temps, c’est-a-dire se rapporte a la modélisation d’un systeme, dont 1’état évolue au
cours du temps selon une représentation dans laquelle les variables d’état changent instantanément
a certaines dates précises, dans le but d’expliquer certains aspects du comportement de ce systeme.

1.1.3.1 Principales approches de la simulation a événements Discrets

Il existe quatre approches de la simulation a événements discrets et chaque approche est
caractérisée par une méthode différente pour faire améliorer le systeme dans le temps :

1. Approche activité (méthode a pas fixe) : Lorsqu’on utilise cette méthode ’horloge
est avancée par intervalle de temps discret et uniforme, et le systeme est examiné a chaque
unité de temps, c’est-a-dire a chaque incrémentation, on vérifie et on cherche s’il y a des
événements qui peuvent se produire ou des activités qui peuvent débuter pour pouvoir les
traiter.

2. Approche événements : Cette méthode est économique en terme de temps de calcul,
lorsqu’on l'utilise, on s’intéressera particulierement a un événement, et 1’horloge du temps
sera avancé a chaque fois que ce dernier se produit . Ce qui veut dire qu’avant chaque
déplacement de I’horloge, il est nécessaire de faire une vérification sur les événements qui
nous sont réalisés juste avant, et s’il y a lieu on peut pas exécuter d’autres jusqu’a ce qu’on
termine les précédents.

3. Méthode des trois phases : le principe de cette méthode consiste a :
(a) Déterminer le plus proche événement et de faire avancer I’horloge a ce point.
(b) Exécuter toute les activités B (Bound).
(c¢) Exécuter toute les activités C (Conditionnelle), dont les conditions sont satisfaites.

4. Approche par processus : La présence des séquences d’événements ou des activités simi-
laires pour un type d’objets, défini sous forme de processus :
e La description du fonctionnement du systeme complet par macro-représentation.
e La gestion des conflits et la synchronisation entre processus par des regles d’interruption
et de reprise.

1.1.4 Simulation de Monte Carlo

Cette méthode a été développée durant les années 40 par Von Neumann, Vlan et Fermi pour
résoudre certains problemes de désigne d’écrans anti-rayonnement. Elle est congue a 1’origine pour
résoudre des problemes déterministes et consiste a représenter un probléeme déterministe par un
processus stochastique dont les distributions de probabilité satisfont les relations mathématiques
du probleme déterministe complexe [?].

La premiere étape consiste a construire un modele analytique qui représente I'investissement
considéré (exemple : une équation pour la valeur présente). Dans la deuxieme étape, l'analyste
développe une distribution de probabilité pour chaque facteur qui est sujet a l'incertitude dans
le modele. Il peut utiliser des données historiques ou une approche subjective. A partir des dis-
tributions de probabilités pour chaque facteur dans le modele, il génere au hasard une réponse
tentative. La répétition de ce mode d’échantillonnage varie entre les différentes histoires bien que
le modele reste le méme. Une question importante a connaitre dans la simulation de Monté Carlo
est le nombre d’essais (ou d’exécution) nécessaire pour avoir une réponse satisfaisante. La réponse
est que le nombre d’essais doit étre assez élevé pour atteindre le régime permanent.
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On peut définir les conditions de régime permanent comme une situation dans laquelle le
résultat d’essais consécutifs ne varie pas significativement. Les modeles analytiques et la simulation
de Monté Carlo ont les mémes problemes, a savoir, la validité du modele. Cependant, dans le cas
de la simulation de Monté Carlo, la taille de I’échantillon doit étre assez grande pour faire décroitre
la validité d’échantillonnage a un niveau acceptable. Les probabilités des événements doivent étre
basées sur les jugements de personnes impliquées dans le projet, utilisées avec le jugement du
décideur.

1.2 (énération des nombres pseudo-aléatoires

Toute simulation des phénomenes stochastique se fait par un moyen indirect, qui est
la génération de nombres aléatoires, cette derniere consiste a obtenir des observations des va-
riables aléatoires a partir de la distribution désirée, pour que ces observations puissent interpréter
fidelement la réalité du phénomene, il est nécessaire qu’elles aient la méme loi de probabilité.
L’objectif de la génération des nombres aléatoires est la construction d’une suite de nombres
statistiquement indépendantes et réparties uniformément sur [0, 1] :

Jn+1 = f(Jn)a (1'1)

ou f est une fonction qui doit étre choisie minutieusement et précisément, pour que la répartition
des nombres J, se rapproche de ce que donnerait le hasard. C’est a partir de la que la notion
de nombres pseudo-aléatoires est apparue qui n’est autre qu’'une suite de nombres aléatoires
générée par un algorithme déterministe.

1.2.1 Meéthodes de génération des nombres pseudo-aléatoires

1.2.1.1 Méthode congruentielle générale

Cette méthode, introduite par Lehmer en 1951, est une génération d'une suite de nombres
par une formule tout a fait déterministe de maniere a obtenir une suite qui semble aléatoire
(indépendante et distribution uniforme dans 'intervalle de variation).

Formule du générateur congruentiel
Soit Xy un nombre entier positif. La suite de nombres est définie par :

Tpe1 = (azx, + ¢)mod(m). (1.2)

Avec :

e m : module, m > 0.

e a : multiplicateur, 0<a<m
e ¢ : l'incrément, 0 < ¢ < m.
Dans le cas ou :

1. ¢=0: le générateur congruentielle est dit linéaire.

2. ¢ # 0 : le générateur congruentielle est dit mixte.
Propriétés et vocabulaire de la méthode congruentielle
o Xi<m.

e Le nombre maximum de valeurs possibles de la suite est m.

e Deés qu’'un nombre est répété, toute la séquence recommence.
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e p dénote la période et le nombre de valeurs possibles de la suite.

e Sip=m, le générateur est dit de période maximum.

Théoreme 1.1 Un générateur est de période maximum p = m si et seulement si les trois condi-
tions suivantes sont vérifiées :

e c et m n'ont pas de diviseur commun,

e a =1 modulo g pour tous les nombres premiers g diviseurs de m (Pour rappel, a = i modulo j
st a peul s’exprimer comme a =i+ kj ou k est un entier positif ou nul).

Remarque 1.1 Pour obtenir des nombres pseudo aléatoires uniformément répartis sur [0,1], il

suffit de prendre :
Tn

Uu,=—. 1.3

=2 (1.3

I1 s’agit de procréer (engendrer) une variable aléatoire X de fonction de densité f(z), et de

fonction de répartition [F(x), suivant une loi uniforme sur [0, 1] en se basant sur des techniques

connues dont certaines s’appliquent a la génération de variables pseudo-aléatoires de distributions

quelconques, tant dit que d’autres ne s’appliquent qu’aux distributions continues ou discretes.

Parmi les principales techniques de génération de nombres pseudo-aléatoires, on distingue :

1. Méthode d’inversion Si la fonction de répartition est explicitement connue, et la fonction
de répartition inverse F~! existe. Dans ce cas, la méthode de la transformation inverse peut
étre utilisée comme suit :

a) Générer des variables Y ~» Uniforme [0, 1];

b) Ecrire Y en fonction de F(X);

c¢) Déduire : x=F"1(y).

Remarque 1.2 La technique de transformation inverse est utilisée pour des distributions
dont F(x) est simple.

Implémentation de la méthode d’inversion :

i) Cas discret : Générer n observations d’une variable aléatoire X qui suit une loi discrete.

ZT; i T ... | TN
Di Do y4! -+« .| PN
F(x) | po|po+p1|...] 1
Algorithme
Début

Pour 7 allant de 1 & N faire :
Générer Y ~» U|0,1];

n n+1
Trouver n tel que Y p; <y < > p,
3=0 J=0
Ty = Tn
Fin Pour;

Fin;
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i1) Cas continue :
Génération d’une loi uniforme sur [a,b] :
La fonction de densité d’une variable aléatoire suivant une loi uniforme sur [a,b] est
donnée par :

La<a <y
— b—a’ — —
f@) { 0, ailleurs. (1.4)
La fonction de répartition est donnée par :
0, T < a;
Flz) =4 = a<xz<b (1.5)
1, x> b.

Calcul d’inverse : On a,

a:u:x:u(b—a)—l—a.

F(z) = u, avec u € [0,1] =
—a

Donc, pour simuler une variable aléatoire uniforme sur [a, b], il suffit de générer des
nombres aléatoires u; de variable aléatoire uniforme sur U'intervalle [0, 1] et déduire les
réalisations x;, tel que : x; = a + (b — a)u;.

2. Méthode de rejet : Le but est de simuler une variable aléatoire X de densité f(z) et de
fonction de répartition F(z). La méthode du rejet évoque deux hypotheses sur la fonction
f@)

e f est définie sur un support compact, c’est-a-dire qu’elle prend la valeur nulle en dehors
d’un certain intervalle fermé [a,b]. Cette méthode se résume comme suit :

a) Normaliser la fonction f(z) de telle fagon que : f(z) = ¢x g(x),0u ¢ est une constante
et g(x) < 1.

b) Générer une variable aléatoire U; qui suit une loi uniforme sur [0, 1].
c) Définir x comme fonction linéaire de uy, © =a+ (b —a) X u.

d) Générer une autre variable aléatoire Uy qui suit une loi uniforme sur [0, 1]. Si uy <
g(x), alors on accepte z, comme une réalisation de X. Sinon, on la rejette et on
revient a ’étape b.
e Supposons qu’on dispose d'une fonction g(x) majorant de f(z), Cest-a-dire : f(z) <
g(x), Vz. Si g(x) n’est pas une fonction de densité (c’est le cas en général), alors on
prend :

[e.e]

c= /g(t)dt, /f(t)dt =1 et h(z)=2Y
0 0
Dans ce cas, les étapes précédentes b), ¢) et d) deviennent sous la forme suivante :
a) Générer y selon h.

b) Générer U ~~ [0, 1].

c) Siu< L) alors on prend z =y ;

9(y)’
sinon, on rejette et on revient a 1’étape a).

3. Méthode de convolution : La distribution de la somme de plusieurs variables aléatoires
indépendantes est appelée : convolution des distributions initiales. Cette méthode consiste
a sommer deux variables (ou plus) pour obtenir une variable aléatoire distribuée selon la
loi de probabilité souhaitée (voir 'exemple ??). Si la variable aléatoire qu’on désire générer
peut se représenté comme somme d’autres variables que 'on peut générer aisément :
X=Y1+Y,+Y;5+..4Y,, alors on génere les Y; et on obtient X en les sommant.

7
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Exemple 1

o Une loi Gamma est une somme des lois Exponentielles de méme paraméetre.

e Une loi Khi-Deuz (x2) d n degré de liberté est une somme de n lois Normales [0, 1]
indépendantes au carré.

e Une loi Binomiale(n,p) est une somme de n lois Bernoulli(p).

Génération d’une variable qui suit une loi normale On dit que X suit une loi
normale N(m,o ), lorsque la densité de sa loi est donnée par :

1

o\ 2T

ei%(z;m)2

fz) =

La fonction de répartition de la loi Normale ne peut pas étre explicitée, donc la méthode
d’inversion ne s’applique pas. On la génere de la maniere suivante :

X =0Y +m,
ou Y est une variable aléatoire Normale centrée réduite, calculée a partir d’une suite de n
variables aléatoires Uy, Uy, Us, . .., U, uniformément distribuées entre [0, 1].
n
Ui — 5
Y = l:l—n (1.6)

12

Remarque 1.3 Cette écriture est justifiée par le théoreme des grands nombres : > X; ~»
1
N(nX,nox), ¥V la loi de X.

4. Méthode de décomposition
Il s’agit dedécomposer la fonction de répartition F de la variable aléatoire X comme suit :

F(z) = ZPZE(@ (1.7)

i>1

La méthode se résume ainsi :

Ecrire F(z) = 3 pilFy(x) ot : ) p; = 1.

i>1 i1
a) Générer U ~ U|0, 1].
b) Trouver i tel que : 0+ p; + p2 + ps + ..... +pia< U <p1+p2+ps+...... + pi.
c) Générer X selon IF;(z).
Pour s’assurer que les suites des nombres générées possedent un comportement aléatoire selon

la loi désirée, il faut tester ce comportement selon deux criteres : I’'Uniformité et I'Indépendance,
tout en utilisant les tests d’Ajustement.

1.2.2 Quelques tests statistiques

Les tests d’ajustement ont pour but de vérifier si un échantillon provient ou pas dune
variable aléatoire de fonction de distribution connue Fo(z). Soit F(x), la fonction de répartition
de la variable échantillonnée. Il s’agit de tester
Hy” F(x) =TFy(x) ” contre H,"F(x) # Fo(x)” [1].

Les tests classiques les plus usuels sont :
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1. Test de Khi-Deux
Soit X7, X, ..., X, un n-échantillon issu d’une variable aléatoire X. On partage le domaine
D de la variable X, partie de ’ensemble des réels R, en r classes ¢y, co, ...., ¢,.. Généralement,
on prend r ~ /n.
Soit :
e n, : l'effectif de la classe ¢;.

e p; : la probabilité de se trouver dans la classec;. Elle est déduite a partir de la loi de
probabilité a tester.

e n;p; : effectif théorique de la classe c;.

Pearson a démontré que la variable aléatoire

K} = Z (e ) ; npi)2> (1.8)

=1

suit asymptotiquement une loi de Khi-Deux a (r — 1) degré de liberté. n; étant une variable
aléatoire représentant I'effectif de la classe ¢; et dont la réalisation est n;. Soit k2 la réalisation
de la variable aléatoire K2.

La regle de décision est alors sous la forme :

o SikZ< X%T_La), on accepte 'ajustement de la variable aléatoire X par la loi choisie.
o Sik2> X%Pl’a), on rejette I'ajustement de la variable aléatoire X par la loi choisie.

Lorsque les parametres de la loi a valider sont estimés a partir de I’échantillon, le degré
de liberté du Khi-Deux est alors égal a (r — g — 1), ¢ étant le nombre de parametres estimés.
L’application du test Khi-Deux doit satisfaire les conditions suivantes :

(a) Le nombre de classes doit étre supérieur ou égal a 7.
(b) L’effectif théorique de chaque classe doit étre supérieur ou égal a 8.

(c) Les effectifs théoriques des k classes doivent étre sensiblement égaux.

2. Test de Kolmogorov-Smirnov

Ce test est plus puissant que le précédent car, c’est celui dans lequel le risque d’accepter H
a tort est plus faible. La procédure a suivre est la suivante :

e On tire un échantillon de n observations a l'aide du générateur;

e On classe les observations selon un ordre croissant ;

e On compare la fonction de répartition empirique F,, (z) calculée a partir de ces n nombres
pseudo-aléatoires avec la fonction de répartition théorique F(x) (loi uniforme sur [0, 1]) et

on calcul :
D,, = maz|F,(z) — F(x)| = maxD(z,), (1.9)
ol
F, () = {nombre d’observations < x}
"= T taille de Véchantillon
et

F(x) =2, si z€][0,1].

On fixe un seuil de signification «, et soit d(«) la valeur tabulée (obtenue a partir de la
table de Kolmogorov-Smirnov), tel que P(D,, > d(a)) = «. La regle de décision est alors
de la forme :

e On rejette Hy Si D, > d(a);

e On accepte Hy Sinon.
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3. Test de Student Un des plus importants usages de la simulation est la comparaison
des performances de deux ou plusieurs systemes. Pour réaliser cette comparaison a partir
d’échantillons (données statistiques) obtenus de la simulation des systémes observés, nous
devons recourir aux méthodes statistiques. Dans ce qui suit, nous présenterons 1'une de ces
méthodes a savoir le test de Student.

Etant donné deux échantillons de taille nq, ny, peut-on admettre qu’ils ont été prélevés dans
une meme population relativement a la variable étudiée.

Mathématiquement, le probléeme se formalise de la maniere suivante :

On observe sur le premier échantillon (les réalisations d'une variable aléatoire X7), de fonc-
tion de répartition Fj(z) et sur le deuxieme échantillon (les réalisations d’une variable
aléatoire X3), de fonction de répartition Fy(x); on veut tester :

Hy: Fi(x) = Fy(x) contre Hi: Fi(x) # Fi(x).
Dans la pratique, on se contentera de vérifier I’égalité des espérances, donc on a a tester :
Hy: "X = my” contre Hy: "X #my”,
ol

X : est la moyenne de 'échantillon / my, : est la moyenne théorique.
Ce test est basé sur la statistique suivante :

(X — mup)v/n =1

Ty i = (1.10)

avec :

Hy est acceptée si :
1,1 < t(n—l,%): (1.11)

ol t(,—1,2) est la quantité de Student au seuil a.

e
2

Conclusion

La simulation a événements discret est un outil puissant et universel. Les gains a tirer d’une
expérience de simulation sont variés : description (validation d’une architecture), explication (ob-
servation, expérimentation sur une maquette), et prédiction (mesure de performances, ou prévision
de comportement). Son champ d’application recouvre les problemes d’analyse, de conception, d’op-
timisation.

La simulation nous permet d’étudier les conditions d’opération extréme du systeme et d’évaluer
les conséquences sans mettre en danger le systeme ou son environnement. Permet de concevoir des
systemes tres complexes, elle devient le moyen le plus sure pour la compréhension d'un systeme
quand son étude s’avere difficile. C’est un instrument idéal de ”"décideur”, aussi bien que de
technicien.

Malgré tout ce qu’elle présente comme avantages la simulation est un outil cotiteux en termes
de temps de calcul, consommateur de ressources informatiques, et ne fournit que des estimations
de ce que I'on cherche.
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Chapitre 2

Simulation de lois usuelles et la fonction
RANDOM sous Matlab

2.1 Simulation de lois usuelles

Dans cette section nous allons présenter quelques informations sur les loi utiliser dans le cha-
pitre trois ainsi que les algorithme nous permetont de générer un échantillon de taille n a partir
de ces lois.

2.1.1 Loi Exponentielle

La densité de probabilité d’'une loi exponentielle de parametre A > 0 est donnée par :

flz)=Xe™* Vo >0,

sa fonction de répartition est définie par :
F(z)=1—e* Va>0.

Pour cette distribution on a :

E(X)=~ et aQ(X):%.

Propriété ”sans mémoire” : Une propriété importante de la loi exponentielle est son
absence de mémoire c’est-a-dire,

P(X <t+ty/X >ty) = P(X <t),Vto,t > 0.

Pour générer une observation d'une loi exponnetielle de parametre A on exploite ’algorithme
suivant :
Algorithme :

Début
Générer une v.a U uniforme sur [0,1];
X + —1In(U);
Retourner X ;

Fin;

11



Annexe A : Simulation de lois usuelles et la fonction RANDOM sous Matlab

2.1.2 Loi d’Erlang

Une variable aléatoire X suit une loi de Erlang d’ordre k (k = 1,2,...) de parametre A, si elle
est la somme de k variables aléatoires indépendantes X7, Xs..., X et identiquement distribuées
suivant une loi exponentielle de parametre A. La densité de probabilité d’une loi Erlang d’ordre k
est donnée par :

(M)
(k—1)!

La fonction de répartition est ainsi donnée comme suit :

eMt>0

ft) =X

F(t)=1- /f(x)dx

Les parametres A et k sont appelés respectivement parametre d’échelle et de forme. Pour cette
distribution, on a :

_k
=

La loi d’Erlang est un cas particulier de la loi de Beta(a,b) lorsque a € N.

Pour générer une variable aléatoire selon une loi d’Erlang d’ordre k£ de parametre A, on peut
utiliser les algorithmes de génération des nombre aléatoire d'une loi Gamma. Mais sa définition
nous permet de construire un simple algorithme de simulation étant donnée une somme k variable
aléatoire d’une loi exponentielles de parametre \.

E(X)=~ et o*X)

L’algorithme
Début
Générer k v.a uniforme sur [0,1] (U1, Us, .....,U,);
X e (-4 os(tr) = 3 lox([1 03

Retourner X;
fin;

2.1.3 Loi de Weibull

On dit que la variable aléatoire X suit la loi de Weibull, de parametres (o, 5, v), et on note
X ~ wbl(a, B,v), si sa densité s’écrit sous la forme :

é(u)ﬁ—le(_u)ﬂ siz > v

f(X):{a R . (2.1)

stx < v

ol : a > 0 est un parametre d’échelle, 5 > 0 est un parametre de forme et v € R est un parametre
de position. Son espérance et sa variance sont respectivement :

E(X)zozF(l—l—%)—l—l/ et Var(X) = ao? [F(1+%)—F2(l+%>}.

avec I'(z) = [[7t"'e™, € R (la fonction gamma).
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Annexe A : Simulation de lois usuelles et la fonction RANDOM sous Matlab

2.2 La fonction RANDOM sous Matlab

Tous les logiciels de calcul sont munis de fonctions prédéfinies pour la génération de nombre
pseudo-aléatoires dont la syntaxe et les lois qui peuvent étre simulées different d’un logiciel a un
autre. Sous Matlab on trouve qu’il existe plusieurs fonctions de génération de nombres aléatoires,
entre autres on cite : rand, randn et random. La fonction rand renvoie des nombres a virgule
flottante entre 0 et 1 tiré d’une distribution uniforme, la fonction randn est spécifique pour la
génération des nombres aléatoires tirés d’une distribution normale centrée et réduite, tandis que
la fonction random est plus générale ou elle peut étre utilisée pour générer des variables aléatoires
issue d’une loi usuelle fixée préalablement par 1'utilisateur. Pour cette derniere, 1'utilisateur peut
utiliser la commande :

random(nom,A) qui renvoie un nombre aléatoire de la famille de distribution & un parametre
spécifiée par "nom” et le parametre de la distribution A. Exemple : random(’exp’,2) rend
une observation d’une variable aléatoire de loi exponentielle de parametre 2.

random(nom,A, B) qui renvoie un nombre aléatoire de la famille de distribution ayant deux
parametres, spécifiée par "nom et les parametres de la distribution A et B. Exemple :
random('norm’,20,2) rend une observation d'une variable aléatoire de loi normal de moyenne
20 et d’écart-type 2.

random(nom,A, B, C') qui renvoie un nombre aléatoire de la famille de distribution a trois pa-
rametres spécifiée par nom et les parametres de cette distribution A, B et C'. Exemple :
random("Weibull’,2,3,4) rend une observation d’une variable aléatoire de loi de Weibull de
parametre d’échelle 2, de parametre de forme 3 et de parametre de position 4.

random(...,ny, na, ...,n,) ou randomy(..., [ny, Ny, ..., n,|) renvoie une matrice de dimension ny x
ng X ... X n, de nombres aléatoires.

Exemples :

1. random(’exp’,2,5,3) : rend une matrice de dimension 5 x 3 d’observations issues d’une
v.a de loi exponentielle de parametre 2.

2. random(’exp’,2,5) : rend une matrice de dimension 5 x 5 d’observations issues d’une
v.a de loi exponentielle de parametre 2.

3. random(’exp’,2,5,1) : rend un vecteur colonne de dimension 5 d’observations issues
d’une v.a de loi exponentielle de parametre 2.

Pour plus de détails sur la fonction prédéfinie RANDOM et les noms et les détails des différentes
lois qui peuvent étre simulées sous Matlab, le lecteur peut se référer au HELP du logiciel Matlab.
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Chapitre

Applications : Modélisation et simulation

Introduction

L’objectif du présent passage est, a travers des exemples de différents champs, d’expliquer a
I’étudiant les différentes étapes a suivre, de la modélisation a 'interprétation des résultats, pour
résoudre un probleme réel ou théorique a 'aide de la technique de simulation.

3.1 Meéthode de rejet pour le calcul d’intégrales

Implémenter sous Matlab des fonctions qui nous permettent de :
1. calculer I = fab e~ dx avec a < b.

2. calculer I = fab In(sin(z) 4 cos(x))dr avec 0 < a < b < 7.

3. estimer la valeur de 7.

3.2 Fiabilité d’un systeme électrique

Soit un systeme électrique bien déterminée, composée de trois types de composants. Supposons
que nous nous intéressons a ’analyse statistique de la durée de vie du systeme.

Pour cela, soit X la variable aléatoire représentant la durée de vie du systeme global et X, X5 et
X3 des variables aléatoires représentant respectivement la durée de vie de chacun des composants.
Les informations dont dispose sur les trois composants sont comme suit :

composant 1 composant 2 composant 3
Nombre de composants (Nbr) 2 5 3
Loi de X; N(p=10,0% = 3% | Exp(A =15) | wbl(a = 10,8 = 3)

Question :
1. Donner la forme générale de la densité de X (sans développement) qu’on note f.

2. Implémenter sous MATLAB une fonction qui nous permette de générer un échantillon de
taille n dont les parametres d’entrer sont : Nbr, u, o, A, a, [ et la taille de I’échantillon n.

3. Générer un échantillon de taille n (utiliser différentes taille n) et visualiser graphiquement
I'estimateur a noyau de la densité f (utiliser la fonction ksdensity).
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4. En exploitant le programme de simulation implémenter, donner une estimation ponctuelle
et par intervalle de confiance de la durée moyenne de vie du stsreme et sa variance.

5. Vérifier la normalité asymptomatique de 'estimateur de la moyenne de X.

3.3 Processus Markovien : Marche aléatoire

Soit une particule qui se déplace aléatoirement sur une ligne d’'une distance d’un centimetre
(en avant +1 ou en arriere -1) chaque 2 secondes.

1. Donner un modele mathématique (processus aléatoire) décrivant le phénomene ainsi que les
probabilités de transition d’un état a un autre.

2. Donner un algorithme qui nous permet de simuler ce phénomene.

3. Sila particule est initialement au point zg et le déplacement (+1 ou —1) se fait d’une maniere
équiprobable, alors :

(a) Donner une estimation de la probabilité que la particule soit a I’état 4, apres 1 minute (et
10 minutes) de mouvement pour différentes point initiales z € {0, 1,2,3,—1, —2, —3}.

(b) Donner une estimation de la durée moyenne du premier retour de la particule a I'origine
zo € {0,1,2,3,—1,—2, —3}.

(c) la position initiale de la particule a-t-elle une influence sur les probabilités de position
de la particule et de la durée moyenne de la premiere visite de ’état initial ?

4. Revoir la question 3 dans le cas :

(a) P(déplacer de +1)=0.6 et P(déplacer de —1)=0.4
(b) P(déplacer de +1)= P (déplacer de —1)=0.4, et P (déplacer de 0)=0.2.

3.4 Modéele de ruine

Considérons une compagnie d’assurance dont le fonctionnement de sa liquidité peut étre décrit
par le modele de risque suivant :

N ()
X(t)=utct—Y Z, t=>0, (3.1)
=1

ou : Le processus de comptage {N(t),t > 0} est le processus du nombre de réclamations des

sinistrés et Z; est le montant du i®Me ginistré avant la date ¢ par conséquence la variable Z(t) =

N()
> Z; représente le montant cumulé des réclamations a l'instant ¢. La constante u représente la
i=1
réserve initiale. La prime est proportionnelle au temps (ct) ot ¢ > 0 est le taux de prime constant.

Supposons que le modele (?7) est construit selon les hypotheses suivantes :

— Le processus de comptage {N(t),t > 0} est un processus de Poisson d’intensité A.

— Les montants des réclamations est une suite de variables aléatoires indépendantes et identi-
quement distribuées selon une loi de Weibull de parametres a et (3.

— La réserve initiale v = 1000 unités monétaires et la prime ¢ = 20 unités monétaires.

— Afin d’éviter une ruine certaine, nous supposons que le chargement de sécurité relative
f = 2™ > 0 avec m le montant moyen des réclamations donné par : m = al' (14 g71)

Am
(moyenne de la loi de Weibull).
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Travail demandé : A P'aide de la simulation, donner une estimation de la probabilité de ruine
de cette compagnie a 'horizon T' € {100, 500, 1000, 5000} toute en utilisant

1. Approche activité.
2. Approche événement.

3. Comparer vos résultats.

3.5 Corrigé des exemples

3.5.1 Exemples d’integration

Pour répondre a de tels exemples (calcul d’intégrales ou de surfaces) il est claire nous faisons
recours a la méthode de rejet-acceptation. Mais pour implémenter cette technique nous devons
d’abord :

1. Vérifier si la fonction f change de signe sur U'intervalle d’intégration [a, b]
2. Déterminer le max et le min de f sur 'intervalle [a, b].
Pour les deux premiers exemples une présentation graphique des deux fonctions considérées

dans I'intégration sont présenté dans la figure ?77.

. f(x)=e”z o S(x)=In(sin(x)+cos(x))

F1GURE 3.1: Allure graphique des fonctions a intégrées.

D’apres la figure 7?7, on constate que :
Cas f(z) = e *dx

l.Veel=|a,b] CR, f(z) >0.
2. Ve el=|a,b CR, f(z) <1.

Par conséquence, la surface (I'intégrale) recherché peut étre délimitée par un rectangle dont
les sommets sont : (a,0), (a, 1), (b,0) et (b, 1) dont la surface S = (b—a). Alors, pour générer
des point aléatoire uniformément distribuées sur ce dernier rectangle, il suffit des générer
leurs abscisses selon une loi uniforme entre a et b et leurs ordonnée selon une loi uniforme
entre 0 et 1.

Cas f(x) = In(sin(z) + cos(z))dx

1. Ve € I =[a,b] CR, f(z) > 0.
2. Ve el=la,b CR, f(xz) <0.35.
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Par conséquence, la surface ('intégrale) recherché peut étre délimitée par un rectangle dont
les sommets sont : (a,0), (a,0.35), (b,0) et (b,0.35) dont la surface S = (b—a) *0.35. Alors,
pour générer des point aléatoire uniformément distribuées sur ce dernier rectangle, il suffit
des générer leurs abscisses selon une loi uniforme entre a et b et leurs ordonnée selon une loi
uniforme entre 0 et 0.35.

Ainsi, en tenant compte des différents aspects cités ci-haut les programmes Matlab qui nous
permettra d’estimé la valeur des intégrales en question toute en utilisant I’approche Monté Carlo
seront comme suit (voir figure ?7?) :

Figures/ExerciceN11.pdf

FI1GURE 3.2: Coude source Matlab pour ’estimation des deux exemples d’intégration.

Pour l'estimation de 7 via la simulation, on sait d’une part que la surface s d’un disque de
délimiter par un cercle de centre (0,0) et de rayon R=1 dont I’équation est 2 +y* < 1 est donnée
par s = mR? = 7. D’autre part, le disque en question est situé a I'intérieur d’'un carrée de sommets
(-1,0), (-1,1), (1,0) et (1,1) dont la surface S=4.

Ainsi, si on généré n point uniformément sur le carrée décrit ci-haut alors I’équation suivante
aura lieu :

s  Nbr . .
= avec Nbr est le nombre de points se trouvant sur le disque.
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Par conséquence,

s Nbr Nbr Nbr
— = = s=Sx =>1=4x% .
S n n n

On se base sur ces données, on peut proposer le programme suivant pour estimer la valeur de

cercle de centre (0,0) de rayon R=1

x2+y2=1
15
1 |
05 | 7|
. 0
function  [Ihat]=Exemple1(a,b,n,mc) function  [lhat]=Exemple2(a,b,n,mc)
S=(b-a)*1; % Surface du rectangle S=(b-a)*0.35; % Surface du rectangle
for j=1:mc for j=1:mc
Nbr=0; Nbr=0;
for i=1in for i=lin -05 [
x=random( 'unif',a,b); x=random('unif',a,b);
y=random( 'unif',0,1); y=random('unif',0,0.35);
if (y<exp(-xA2)) if (y<(log(sin(x)+cos(x)))) 1
Nbr=Nbr+1; Nbr=Nbr+1; - r
end end
end end
1()=(Nbr/n)*s; 1()=(Nbr/n)*s;
end end -1.5 ! : . J
lhat=mean(l); Ihat=mean(l); -1.5 -1 -0.5 0 0.5 "1 1.5
end end X

FI1GURE 3.3: Allure graphique des fonctions a intégrées.
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