
TP#3: Perceptron as a Linear Regressor

Mathematical Formulation, Numerical Example, and Python

Implementation

Dr. Samir Kenouche

November 1, 2025

1 Introduction

The perceptron is commonly used for classi�cation, but it can also perform linear re-
gression when the activation function is linear (identity function) and the objective is to
minimize the Mean Squared Error (MSE). This report provides the mathematical formula-
tion, a detailed numerical example, and Python code to demonstrate training a perceptron
as a linear regressor.

2 Mathematical Formulation

A perceptron with n inputs can be represented as:

y = f(x) = wTx+ b

where:
x = [x1, x2, . . . , xn]

T , w = [w1, w2, . . . , wn]
T , b is the bias.

For regression, we use the identity activation function:

ŷ = wTx+ b

The Mean Squared Error (MSE) is de�ned as:

E(w, b) =
1

2m

m∑
i=1

(ŷ(i) − y(i))2

where m is the number of samples.

1

The gradients of the loss with respect to the parameters are:

∂E

∂wj

=
1

m

m∑
i=1

(ŷ(i) − y(i))x
(i)
j ,

∂E

∂b
=

1

m

m∑
i=1

(ŷ(i) − y(i))

Then, parameters are updated iteratively using gradient descent:

wj ← wj − η
∂E

∂wj

, b← b− η
∂E

∂b

where η is the learning rate.

3 Diagram of the Linear Perceptron

x1 x2 xn

Σ

w1 w2 wn

b

ŷ

Linear activation: f(z) = z

Figure 1: Linear Perceptron Architecture for Regression

4 Algorithm Summary

1. Initialize w and b (zeros or small random values).

2. For each iteration:

� Compute predicted output ŷ(i) = wTx(i) + b.

� Compute the gradient of the loss function.

� Update the weights and bias using gradient descent.

3. Stop when the loss converges or the maximum number of epochs is reached.

2

5 Detailed Numerical Example

We consider the following training data, which follows a perfect linear relation y = 2x:

i xi yi

1 1 2
2 2 4
3 3 6

We use:
η = 0.01, w(0) = 0, b(0) = 0

The model is:
ŷi = wxi + b

Iteration 0

ŷ = [0, 0, 0], e = [−2,−4,−6]
∂E

∂w
=

1

3
(−2× 1− 4× 2− 6× 3) = −9.333, ∂E

∂b
=
−2− 4− 6

3
= −4

w(1) = 0− 0.01(−9.333) = 0.0933, b(1) = 0− 0.01(−4) = 0.04

Iteration 1

w = 0.0933, b = 0.04

ŷ = [0.133, 0.227, 0.320], e = [−1.867,−3.773,−5.680]
∂E

∂w
= −8.818, ∂E

∂b
= −3.773

w(2) = 0.1815, b(2) = 0.0777

Iteration 2

w = 0.1815, b = 0.0777

ŷ = [0.259, 0.440, 0.621], e = [−1.741,−3.560,−5.379]
∂E

∂w
= −8.333, ∂E

∂b
= −3.560

w(3) = 0.2648, b(3) = 0.1133

3

After about 1000 epochs:

w(1000) ≈ 1.9995, b(1000) ≈ 0.001

and the predictions become nearly exact.

x ytrue ŷ

1 2 2.00
2 4 4.00
3 6 6.00

6 Python Implementation

Listing 1: Perceptron as a Linear Regressor

import numpy as np

import matplotlib.pyplot as plt

Samir KENOUCHE

Training data

X = np.array([[1], [2], [3]])

y = np.array([[2], [4], [6]])

Initialization

w, b = 0.0, 0.0

eta = 0.01

epochs = 1000

m = len(X)

losses = []

Training loop

for epoch in range(epochs):

y_pred = X * w + b

error = y_pred - y

loss = (1/(2*m)) * np.sum(error**2)

losses.append(loss)

dw = (1/m) * np.sum(error * X)

db = (1/m) * np.sum(error)

w = w - eta * dw

b = b - eta * db

print(f"Final w = {w:.4f}, b = {b:.4f}")

Plot fitted line

plt.figure(figsize=(6,4))

4

plt.scatter(X, y, color='blue', label='Training data')

plt.plot(X, X*w + b, color='red', label='Fitted line')

plt.xlabel("x"); plt.ylabel("y")

plt.legend(); plt.grid(True)

plt.title("Perceptron as Linear Regressor")

plt.show()

Plot loss curve

plt.figure(figsize=(6,4))

plt.plot(losses)

plt.title("Convergence of Loss (MSE)")

plt.xlabel("Epoch"); plt.ylabel("Loss")

plt.grid(True)

plt.show()

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
x

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

y

Perceptron as Linear Regressor
Training data
Fitted line

Figure 2: Perceptron as Linear Regressor

7 Conclusion

In this report, we demonstrated that the perceptron model can be used for linear regression
by adopting a linear activation function and minimizing the mean squared error. Gradient
descent successfully recovers the parameters of a linear model (w ≈ 2, b ≈ 0) when trained
on simple data following y = 2x.

5

0 200 400 600 800 1000
Epoch

0

2

4

6

8
Lo

ss

Convergence of Loss (MSE)

Figure 3: Convergence of Loss (MSE)

A Appendix. Mathematical Derivation of the Least

Squares Parameters for a Linear Model

A.1 Model and Objective Function

Consider a set of n observed data points (xi, yi), i = 1, 2, . . . , n. The simple linear
regression model is written as

yi = β0 + β1xi + εi, (1)

where β0 and β1 are unknown parameters (intercept and slope, respectively), and εi
represents the random error associated with each observation.

The least squares principle seeks to determine β0 and β1 that minimize the sum of squared

residuals :

S(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2 . (2)

A.2 First-Order Conditions

To �nd the minimum of S, we di�erentiate with respect to β0 and β1 and set the derivatives
to zero.

6

Derivative with respect to β0:

∂S

∂β0

=
n∑

i=1

2 (yi − β0 − β1xi) (−1)

= −2
n∑

i=1

(yi − β0 − β1xi) . (3)

Setting this derivative to zero yields

n∑
i=1

yi − nβ0 − β1

n∑
i=1

xi = 0. (4)

Derivative with respect to β1:

∂S

∂β1

=
n∑

i=1

2 (yi − β0 − β1xi) (−xi)

= −2
n∑

i=1

xi (yi − β0 − β1xi) . (5)

Setting this derivative to zero gives

n∑
i=1

xiyi − β0

n∑
i=1

xi − β1

n∑
i=1

x2
i = 0. (6)

Equations (4) and (6) are known as the normal equations of simple linear regression:

nβ0 + β1

∑
xi =

∑
yi,

β0

∑
xi + β1

∑
x2
i =

∑
xiyi.

(7)

A.3 Solution for the Parameters

From the �rst equation of (7),

β0 =
1

n

n∑
i=1

yi −
β1

n

n∑
i=1

xi. (8)

Introduce the sample means

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, (9)

so that
β0 = ȳ − β1x̄. (10)

7

Substitute (10) into the second normal equation of (7):

(ȳ − β1x̄)
∑

xi + β1

∑
x2
i =

∑
xiyi,

nx̄ȳ − nβ1x̄
2 + β1

∑
x2
i =

∑
xiyi. (11)

Rearranging for β1,

β1

(∑
x2
i − nx̄2

)
=
∑

xiyi − nx̄ȳ, (12)

and thus

β̂1 =

n∑
i=1

xiyi − nx̄ȳ

n∑
i=1

x2
i − nx̄2

. (13)

A.4 Centered Variable Form

Note that

n∑
i=1

(xi − x̄)(yi − ȳ) =
∑

xiyi − nx̄ȳ,
n∑

i=1

(xi − x̄)2 =
∑

x2
i − nx̄2.

Hence Equation (13) can be rewritten compactly as

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
, (14)

and, substituting back into (10),

β̂0 = ȳ − β̂1x̄. (15)

A.5 Veri�cation of Minimization

The Hessian matrix of S(β0, β1) is

H = 2

(
n

∑
xi∑

xi

∑
x2
i

)
. (16)

Since H is positive de�nite whenever
∑

(xi − x̄)2 > 0, the stationary point found above
corresponds to a minimum of the sum of squared errors.

8

A.6 Final Least Squares Estimates

The least squares estimates of the parameters in the linear model (1) are therefore:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄.

(17)

The �tted regression line is �nally expressed as

ŷi = β̂0 + β̂1xi, (18)

and the residuals are
ε̂i = yi − ŷi. (19)

A.7 Interpretation

The parameter β̂1 represents the estimated change in y for a one-unit change in x, while
β̂0 represents the �tted value of y when x = 0. Notably, the regression line always passes
through the point (x̄, ȳ).

Summary of the Least Squares Estimation Results

Model: yi = β0 + β1xi + εi

The least squares method minimizes

S(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2.

The resulting estimators are:

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
, (20)

β̂0 = ȳ − β̂1x̄. (21)

Hence, the �tted regression line is:

ŷi = β̂0 + β̂1xi

and the residuals are:
ε̂i = yi − ŷi.

9

Properties of the Least Squares Estimates

� The regression line passes through (x̄, ȳ).

� Residuals are orthogonal to the �tted line:∑
i

ε̂i = 0,
∑
i

xiε̂i = 0.

� The slope β̂1 measures the average change in y for one unit change in x.

10

