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1 Introduction

The perceptron is commonly used for classification, but it can also perform linear re-
gression when the activation function is linear (identity function) and the objective is to
minimize the Mean Squared Error (MSE). This report provides the mathematical formula-
tion, a detailed numerical example, and Python code to demonstrate training a perceptron
as a linear regressor.

2 Mathematical Formulation

A perceptron with n inputs can be represented as:
y=f(x)=wix+b

where:

X = [z1,29,..., 2,7, W =[w,wy,...,w,]", bis the bias.

For regression, we use the identity activation function:

j=wlx+b

The Mean Squared Error (MSE) is defined as:

m
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where m is the number of samples.



The gradients of the loss with respect to the parameters are:
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Then, parameters are updated iteratively using gradient descent:
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where 7 is the learning rate.

3 Diagram of the Linear Perceptron
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Figure 1: Linear Perceptron Architecture for Regression

4 Algorithm Summary

1. Initialize w and b (zeros or small random values).
2. For each iteration:

e Compute predicted output 99 = w’x® + b,
e Compute the gradient of the loss function.

e Update the weights and bias using gradient descent.

3. Stop when the loss converges or the maximum number of epochs is reached.



5 Detailed Numerical Example

We consider the following training data, which follows a perfect linear relation y = 2z:

We use:

The model is:

Iteration 0

Q - [07 0, 0]7 € = [_2’ —4, _6}

OE 1 OF —2—-4-6
T =(-2x1-4x2- = 9. = =4
5 3( X X 6 x 3) 9.333, 9% 3

w® =0-0.01(-9.333) = 0.0933, bV =0-0.01(—4) = 0.04

Iteration 1

w=0.0933, b=0.04
§=1[0.133,0.227,0.320], e = [—1.867,—3.773, —5.680]

oFE oF
T —8.818, o —3.773

w® =0.1815, b? =0.0777

Iteration 2

w = 0.1815, b= 0.0777
§ = [0.259,0.440,0.621], e = [—1.741, —3.560, —5.379]

oF oF
T —8.333, o —3.560

w® =0.2648, b =0.1133



After about 1000 epochs:

w1 ~1.9995, 519 ~ 0.001

and the predictions become nearly exact.

X ytrue y

1 2 2.00
2 4  4.00
3 6 6.00

6 Python Implementation

Listing 1: Perceptron as a Linear Regressor

import numpy as np
import matplotlib.pyplot as plt

# Samir KENOUCHE

# Training data
X = np.array([[1], [2], [311)
y = np.array([[2], [4], [6]])

# Initialization
w, b =0.0, 0.0
eta = 0.01
epochs = 1000

m = len(X)
losses = []

# Training loop
for epoch in range(epochs):
y_pred =X *xw+ b
error = y_pred - y
loss = (1/(2#m)) * np.sum(error*x2)
losses.append(loss)

dw
db

(1/m) * np.sum(error * X)
(1/m) * np.sum(error)

w - eta * dw
b - eta * db

[oaNH
non

print(f"Final w = {w:.4f}, b = {b:.4f}")

# Plot fitted line
plt.figure(figsize=(6,4))




plt.
.plot(X, X*w + b, color='red', label='Fitted line')
.xlabel("x"); plt.ylabel("y™)

.legend(); plt.grid(True)

.title("Perceptron as Linear Regressor")

plt
plt
plt
plt

plt.

scatter(X, y, color='blue', label='Training data')

show()

# Plot loss curve

plt.

plt
plt
plt

plt.
plt.

figure(figsize=(6,4))

.plot(losses)

.title("Convergence of Loss (MSE)")
.xlabel("Epoch"); plt.ylabel("Loss")
grid(True)

show ()
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Perceptron as Linear Regressor
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Figure 2: Perceptron as Linear Regressor

Conclusion

In this report, we demonstrated that the perceptron model can be used for linear regression
by adopting a linear activation function and minimizing the mean squared error. Gradient
descent successfully recovers the parameters of a linear model (w ~ 2, b ~ 0) when trained
on simple data following y = 2x.




Convergence of Loss (MSE)
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Figure 3: Convergence of Loss (MSE)

A Appendix. Mathematical Derivation of the Least
Squares Parameters for a Linear Model

A.1 Model and Objective Function

Consider a set of n observed data points (x;,v;), ¢ = 1,2,...,n. The simple linear
regression model is written as

Yi = Po + Bixi + €4, (1)

where [, and (; are unknown parameters (intercept and slope, respectively), and ¢;
represents the random error associated with each observation.

The least squares principle seeks to determine 5y and ; that minimize the sum of squared

residuals:
n

S(Bo, br) = Z (i = Bo — ﬁlifi)Q- (2)

=1

A.2 First-Order Conditions

To find the minimum of S, we differentiate with respect to 5y and 3, and set the derivatives
to zero.



Derivative with respect to fj:
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Setting this derivative to zero yields

Zyi—nﬁo—ﬁlzxizo- (4)
i=1 i=1

Derivative with respect to ;:
851 Zz: 2(y — Biz;) (— ;)

= -2 Z ;i (yi — Bo — Brxi) . (5)

Setting this derivative to zero gives
n n n
Z%yz’—ﬁozﬂﬂi—ﬁlzx?:& (6)
i=1 i=1 i=1

Equations (4) and (6) are known as the normal equations of simple linear regression:

n50+51zl’i Zzym
Bod wit+ Py ai=> .

(7)

A.3 Solution for the Parameters

From the first equation of (7),

Introduce the sample means

so that

Bo=9— ] (10)




Substitute (10) into the second normal equation of (7):

nzy — npha’ + B Z ] = Z%%
Rearranging for /31,

b (Z v} — 7152) = inyi — nay,

and thus

n
E TiY; — nTY
_ =l
= = )
E xf — nz*
i=1

e

A.4 Centered Variable Form

Note that

n n

Z(l’i —2)(yi —Y) = szyz — nay, Z(xi —z) = fo

i=1 =1

Hence Equation (13) can be rewritten compactly as

n

Z(l’z‘ —Z)(yi — Y)

and, substituting back into (10),

A.5 Verification of Minimization

The Hessian matrix of S(5o, f1) is

B noo>
oo, Z)

2

—nT.

(11)

(12)

(13)

(14)

(15)

(16)

Since H is positive definite whenever > (z; — 7)? > 0, the stationary point found above

corresponds to a minimum of the sum of squared errors.



A.6 Final Least Squares Estimates

The least squares estimates of the parameters in the linear model (1) are therefore:

B, = 2z (T~ 2)(Y: — )
Zizl(xi - x)Q (17)
Bo =7 — bit.

The fitted regression line is finally expressed as
9 = Bo + by, (18)

and the residuals are
€ = Yi — Ui (19)

A.7 Interpretation

The parameter Bl represents the estimated change in y for a one-unit change in x, while
Bo represents the fitted value of y when x = 0. Notably, the regression line always passes
through the point (z, 7).

Summary of the Least Squares Estimation Results

Model: y; = o + iz + &

The least squares method minimizes

n

S(Bo, B1) = D (% — Bo — Przs)’.

=1

The resulting estimators are:

b =" : (20)
(z; — 7)°
bo=7-hz. (21)

Hence, the fitted regression line is:

¥ = Bo + 31%’

and the residuals are:
& =Y — Vi




Properties of the Least Squares Estimates

e The regression line passes through (z, 7).

e Residuals are orthogonal to the fitted line:

e The slope Bl measures the average change in y for one unit change in z.
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