Méthode Big M (Grand M)

La méthode Big M est une technique de recherche opérationnelle utilisée pour résoudre des problèmes de programmation linéaire avec des contraintes supérieures ou égales, ou des contraintes d'égalité.

Étapes principales

- Identifier les contraintes non standards : La méthode est nécessaire lorsque le problème contient des contraintes de la forme "supérieur ou égal (≥) ou des contraintes d'égalité (=)
- 2. Ajouter des variables :
 - Pour les contraintes ≥ ajoutez une variable de surplus (qui sera toujours nulle à l'optimum) et une variable artificielle.
 - o Pour les contraintes d'égalité, ajoutez une variable artificielle.
 - o Pour les contraintes de la forme (\leq)ajoutez seulement une variable d'écart.
- 3. Modifier la fonction objectif :
 - o **Pour une minimisation**: Ajoutez des variables artificielles avec un coefficient de +M à la fonction objectif.
 - o **Pour une maximisation**: Ajoutez des variables artificielles avec un coefficient de -M à la fonction objectif.
 - Les variables de surplus et d'écart n'affectent pas la fonction objectif, elles auront donc un coefficient de 0.
- 4. **Résoudre** : Appliquez l'algorithme du simplexe à cette nouvelle fonction objectif modifiée. Le grand nombre *M* pénalise l'utilisation des variables artificielles.
- 5. Vérifier la solution :
 - o Si toutes les variables artificielles sont nulles dans la solution optimale, la solution obtenue est la solution optimale du problème original.
 - Si au moins une variable artificielle n'est pas nulle, le problème n'a pas de solution réalisable.

Exemple:

Soit le problème d'optimisation linéaire suivant :

$$\begin{cases} Max \ Z = x_1 - x_2 + 3x_3 \\ x_1 + x_2 \le 20 \\ x_1 + x_3 = 5 \\ x_2 + x_3 \ge 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Forme standard

$$\begin{cases} Max\ Z = x_1 - x_2 + 3x_3 + 0e_1 + 0e_2 - MA_1 - MA_2 \\ x_1 + x_2 + e_1 = 20 \\ x_1 + x_3 + A_1 = 5 \\ x_2 + x_3 - e_2 + A_2 = 10 \\ x_1, x_2, x_3, e_1, e_2, A_1, A_2 \ge 0 \end{cases}$$

 e_1 : variable d'écart, e_2 : variable de surplus, A_1 , A_2 : variables artificielles, $M \gg 0$

Tableau de Simplexe

Coeff. da	ans z (C_j)	1	-1	3	0	0	-М	-M	
	Base	x_1	x_2	x_3	e_1	e_2	A_1	A_2	b
Coeff.	Variable								
0	e_1	1	1	0	1	0	0	0	20
-М	A_1	1	0	1	0	0	1	0	5
-М	A_2	0	1	1	0	-1	0	1	10
	$\overline{Z_j}$	-M	-М	-2M	0	M	-М	-M	-15M
C	$\overline{-Z_j}$	1+M	<i>M-1</i>	3+2M	0	-M	0	0	

Choix de la variable entrante dans la base

- Maximum des $\,\mathcal{C}_{j} \mathcal{Z}_{j}\,\,$ pour des problèmes de max.
- Minimum des $\mathcal{C}_j Z_j$ pour des problèmes de min.

Coeff. d (C_j)	ans z	1	-1	3	0	0	-M	-М		
I	Base	x_1	x_2	<i>x</i> ₃	e_1	e_2	A_1	A_2	b	Rapport
Coeff.	Variable									
0	e_1	1	1	0	1	0	0	0	20	
-M	A_1	1	0	1	0	0	1	0	5	5
-M	A_2	0	1	1	0	-1	0	1	10	10
	Z_j	-M	-M	-2M	0	M	-M	-M	-15M	
C_j	$-Z_j$	1+M	M-1	3+2M	0	-M	0	0		

 x_3 a le plus grand $C_j - Z_j$ donc elle entre dans la base

Choix de la variable sortante de la base

 \mathcal{A}_2 a le plus petit rapport donc elle sort de la base

Coeff. d (C_j)	ans z	1	-1	3	0	0	-M	-М		
I	Base	x_1	x_2	x_3	e_1	e_2	A_1	A_2	b	Rap.
Coeff.	Variable									
0	e_1	1	1	0	1	0	0	0	20	20
3	x_3	1	0	1	0	0	1	0	5	
-M	A_2	-1	1	0	0	-1	-1	1	5	5
	Z_j	3+M	-M	3	0	M	3+M	-M	15-5M	
C_{j}	$-Z_j$	-2-M	-1+M	0	0	-M	-3-2M	0		

De la même manière

Coeff. d (C_j)	lans z	1	-1	3	0	0	-M	-М		
I	Base	x_1	x_2	x_3	e_1	e_2	A_1	A_2	b	Rap.
Coeff.	Variable									
0	e_1	2	0	0	1	1	1	-1	15	
3	x_3	1	0	1	0	0	1	0	5	
-1	x_2	-1	1	0	0	-1	-1	1	5	
	$\overline{Z_j}$	4	-1	3	0	1	4	-1	10	
C_j	$_{i}-Z_{j}$	-3	0	0	0	-1	-M-4	-M+1		

Tous les $C_j - Z_j$ sont négatifs ou nuls et il n y a pas de variables artificielles dans la base Alors la solution optimale est

$$x_1 = 0$$
, $x_2 = 5$, $x_3 = 5$ $z = 10$

Cas particuliers:

- Egalité des $C_i - Z_i$

Exemple:

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1	1	0	7	
e_2	2	1	0	1	9	
$C_j - Z_j$	12	12	0	0	0	

1^{ère} possibilité

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1	1	0	7	7/1=7
e_2	2	1	0	1	9	9/2=4.5
$C_j - Z_j$	12	12	0	0	0	

2^{ème} possibilité

	x_1	x_2	e_1	e_2	b	Rapport	
e_1	1	1	1	0	7	7/1=7	
e_2	2	1	0	1	9	9/1=9	
$C_i - Z_i$	12	12	0	0	0		

Pour un problème de maximisation nous devons considérer le cas ayant un plus grand rapport. Pour notre cas on choisit la 2ème possibilité.

- Egalité des rapport

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1	1	0	7	7/1=7
e_2	2	1	0	1	14	14/2=7
$C_j - Z_j$	8	5	0	0	0	

1^{ère} possibilité

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1	1	0	7	7/1=7
e_2	2	1	0	1	14	14/2=7
$C_j - Z_j$	8	5	0	0	0	

$$\frac{S1}{pivot} = \frac{3}{1} = 3$$

2^{ème} possibilité

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1	1	0	7	7/1=7
e_2	2	1	0	1	14	14/2=7
$C_j - Z_j$	8	5	0	0	0	

$$\frac{S2}{pivot} = \frac{4}{2} = 2$$

S1 et S2 est la somme des coefficient

Pour un problème de maximisation nous devons considérer le cas ayant un plus grand $\frac{Si}{pivot}$. Pour notre cas on choisit la 1^{ère} possibilité.

- Solution infinie

Si tous les rapports sont infinis ou négatifs on dit que la solution optimale est non bornée.

Exemple:

	x_1	x_2	e_1	e_2	b	Rapport
e_1	1	1/3	-1	0	4	-4
e_2	0	3	0	1	7	infini
$C_j - Z_j$	0	-4	2	0		

- Solution non réalisable

Si au moins une variable artificielle apparait dans la base de la solution optimale alors le programme linéaire correspondant n'a pas de solution réalisable optimale

Exemple:

	x_1	x_2	e_1	A_2	b
x_1	1	1/3	1	0	300
A_2	0	3	2	1	100
$C_j - Z_j$	0	-4	-2	0	-900