
TP # 4: Chemical Property Classification
Using Advanced Perceptron Scheme

Dr. Samir Kenouche

Contents

1 Introduction 2

2 Mathematical Formulation of the Classical Perceptron 2

3 Advanced Perceptron (Differentiable Scheme) 3
3.1 Perceptron Architecture for Chemical Property Classification 3

4 Numerical Example: Polar vs. Non-Polar Molecules 4

5 Python Implementation 7

6 Comparative Discussion 7
6.1 Evolution and Interpretation of Decision Boundaries with Data Points . . 8

7 Conclusion 9

1

1 Introduction

In computational chemistry and chemoinformatics, molecules can be represented by vec-
tors of numerical descriptors (e.g., dipole moment, LogP, molecular weight, number of
hydrogen bond donors). A perceptron is one of the simplest and most interpretable
machine learning algorithms that can classify molecules according to physicochemical
properties such as polarity, solubility, or toxicity.

Given molecular descriptors x = [x1, x2, . . . , xn]
T , the perceptron predicts whether a

compound possesses a specific property (e.g., polar vs. non-polar) using a linear decision
boundary.

y = f(wTx+ b)

Where w is a vector of weights, and b is a bias term.

Chemical Usefulness

In chemoinformatics, perceptrons can classify molecular activities, predict solubil-
ity, estimate toxicity levels, or identify reactive functional groups. They provide a
transparent linear approximation of the chemical space separation between different
molecular behaviors.

2 Mathematical Formulation of the Classical Percep-

tron

The perceptron computes a weighted sum:

zi = wTxi + b

and applies the step activation function:

f(zi) =

{
1, if zi ≥ 0

0, otherwise

Given the true class ti ∈ {0, 1}, the error is defined as:

ei = ti − yi

The update rules for each misclassified sample are:

w(k+1) = w(k) + ηeixi and b(k+1) = b(k) + ηei

where η is the learning rate.

Learning Intuition

Each time a molecule is misclassified, the decision boundary shifts in the direction
that reduces future misclassifications. The vector w defines the orientation of this
boundary, while b shifts it.

2

3 Advanced Perceptron (Differentiable Scheme)

The classical perceptron uses a discontinuous step activation, which makes gradient-
based optimization impossible. The advanced perceptron introduces a differentiable
activation, such as the sigmoid:

f(z) =
1

1 + e−z

with derivative:
f ′(z) = f(z)(1− f(z))

A differentiable loss function is defined as:

L =
1

2
(ti − yi)

2

and the parameter updates become:

w
(k+1)
j = w

(k)
j + η(ti − yi)f

′(zi)xij and b(k+1) = b(k) + η(ti − yi)f
′(zi)

This makes the perceptron a simple instance of a one-layer neural network trained by
gradient descent.

3.1 Perceptron Architecture for Chemical Property Classifica-
tion

The perceptron used to classify molecules as polar or non-polar takes two chemical de-
scriptors as inputs: the dipole moment x1 and the hydrophobicity index (LogP) x2.
These are linearly combined with learned weights and a bias term, followed by a sigmoid
activation function to produce the probability of polarity.

x1: Dipole Moment

x2: LogP

Bias b

Σ σ(z) ŷ

w1

w2

z = w1x1 + w2x2 + b ŷ = σ(z)

Output:
ŷ ≈ 1 ⇒ Polar
ŷ ≈ 0 ⇒ Non-polar

Activation:

σ(z) =
1

1 + e−z

Inputs:

x1 = Dipole moment (D)
x2 = LogP (hydrophobicity)
b = Bias term

Figure 1: Clear schematic of the single-layer perceptron used for classifying molecules
based on polarity. Inputs correspond to chemical descriptors, and the output neuron
produces a probabilistic polarity prediction.

3

4 Numerical Example: Polar vs. Non-Polar Molecules

We consider the classification of molecules based on two chemical descriptors:

� x1: Dipole moment (Debye),

� x2: LogP (lipophilicity).

We illustrate the perceptron training process numerically for the chemical property
classification problem (polar vs. non-polar molecules), using the simplified two-feature
dataset:

x =

[
x1

x2

]
=

[
Dipole Moment (D)

LogP

]
, y ∈ {0, 1}.

The four samples used are summarized below:

Molecule x1 (Dipole Moment) x2 (LogP) Target y
Ethanol 1.85 -0.90 1
Acetone 1.69 -0.10 1
Hexane 0.00 2.10 0
Benzene 0.08 3.50 0

Table 1: Dataset used for the perceptron training example.

We start with random initial weights:

w
(0)
1 = 0.2, w

(0)
2 = −0.1, b(0) = 0.0, η = 0.1.

The perceptron output is given by:

ŷ = σ(z) =
1

1 + e−z
, where z = w1x1 + w2x2 + b.

The weight update rule for each epoch is:

w
(t+1)
i = w

(t)
i + η (y − ŷ)xi, b(t+1) = b(t) + η (y − ŷ).

Iteration 1

For Ethanol (x = [1.85,−0.90], y = 1):

z(1) = (0.2)(1.85) + (−0.1)(−0.90) = 0.46, ŷ(1) = 0.613.

δ(1) = y − ŷ = 0.387.

w
(1)
1 = 0.2 + 0.1(0.387)(1.85) = 0.2715,

w
(1)
2 = −0.1 + 0.1(0.387)(−0.9) = −0.1348,

b(1) = 0.1(0.387) = 0.0387.

4

Iteration 2

For Acetone (x = [1.69,−0.10], y = 1):

z(2) = 0.2715(1.69) + (−0.1348)(−0.10) + 0.0387 = 0.5078, ŷ(2) = 0.624.

δ(2) = 0.376.

w
(2)
1 = 0.2715 + 0.1(0.376)(1.69) = 0.3359,

w
(2)
2 = −0.1348 + 0.1(0.376)(−0.10) = −0.1386,

b(2) = 0.0387 + 0.1(0.376) = 0.0763.

Iteration 3

For Hexane (x = [0.00, 2.10], y = 0):

z(3) = 0.3359(0) + (−0.1386)(2.1) + 0.0763 = −0.2157, ŷ(3) = 0.446.

δ(3) = −0.446.

w
(3)
1 = 0.3359 + 0.1(−0.446)(0) = 0.3359,

w
(3)
2 = −0.1386 + 0.1(−0.446)(2.1) = −0.2323,

b(3) = 0.0763 + 0.1(−0.446) = 0.0317.

Iteration 4

For Benzene (x = [0.08, 3.50], y = 0):

z(4) = 0.3359(0.08) + (−0.2323)(3.5) + 0.0317 = −0.766, ŷ(4) = 0.317.

δ(4) = −0.317.

w
(4)
1 = 0.3359 + 0.1(−0.317)(0.08) = 0.3334,

w
(4)
2 = −0.2323 + 0.1(−0.317)(3.5) = −0.3433,

b(4) = 0.0317 + 0.1(−0.317) = 0.0000.

Iteration 5–10 (Summary Table)

Epoch w1 w2 b ŷEthanol ŷHexane Eavg

5 0.397 -0.368 0.033 0.66 0.41 0.122
6 0.441 -0.395 0.055 0.69 0.36 0.104
7 0.507 -0.445 0.083 0.73 0.29 0.083
8 0.576 -0.486 0.102 0.77 0.24 0.071
9 0.633 -0.518 0.120 0.80 0.19 0.061
10 0.662 -0.541 0.131 0.82 0.15 0.054

Table 2: Evolution of weights, bias, and outputs over 10 epochs.

5

Interpretation

Interpretation of Iterations

� The weights (w1, w2) grow in opposite directions: w1 (dipole moment) in-
creases, reinforcing the idea that high dipole moment favors polarity; w2

(LogP) decreases, since high hydrophobicity discourages polarity.

� The bias b stabilizes around 0.13, effectively centering the decision surface
between the two chemical groups.

� The predicted probability for polar molecules rises from 0.61 to 0.82 by
epoch 10, while that for non-polar molecules drops below 0.2.

� The average error Eavg =
1
2N

∑
(y− ŷ)2 decreases steadily, indicating conver-

gence.

Convergence Insight

After around 70–100 epochs (see Figure 2), the perceptron fully separates polar and
non-polar regions in the dipole–hydrophobicity plane. Chemically, this convergence cor-
responds to the model discovering a linear correlation:

Polarity ↑ if Dipole Moment ↑, Polarity ↓ if LogP ↑ .

6

5 Python Implementation

Executable Python Code

import numpy as np

Dr. Samir Kenouche - 02/11/2025

X = np.array([[1.85, -0.9],

[0.00, 2.1],

[1.69, -0.1],

[0.08, 3.5]])

T = np.array([1, 0, 1, 0])

w = np.array([0.5, -0.5])

b = 0.1

eta = 0.2

def sigmoid(z):

return 1 / (1 + np.exp(-z))

for epoch in range(5):

for i in range(len(X)):

z = np.dot(w, X[i]) + b

y = sigmoid(z)

error = T[i] - y

grad = eta * error * y * (1 - y)

w += grad * X[i]

b += grad

print(f"Epoch {epoch+1}: w={w.round(5)}, b={b:.5f}")

6 Comparative Discussion

Table 3: Comparison between classical and advanced perceptron schemes

Aspect Classical Perceptron Advanced (Sigmoid) Perceptron

Activation Step (discontinuous) Sigmoid (smooth, differentiable)
Loss Function Misclassification only Continuous differentiable loss
Optimization Additive correction Gradient descent
Convergence Oscillatory possible Smooth convergence
Interpretation Binary decision Probabilistic output

7

Chemical Interpretation

The advanced perceptron provides probabilistic outputs representing the likelihood
that a molecule is polar or non-polar. This probabilistic interpretation is especially
valuable in chemistry, where molecular boundaries are fuzzy and overlapping.

6.1 Evolution and Interpretation of Decision Boundaries with
Data Points

The following visualizations show how the perceptron decision surface evolves over epochs,
based on the actual trained weights up to 100 iterations. Each panel includes the four
molecular data points used in training.

0 2

0

2

4

Dipole Moment (D)

L
og
P

Epoch 1

0
0.2
0.4
0.6
0.8
1

0 2

0

2

4

Dipole Moment (D)

L
og
P

Epoch 10

0
0.2
0.4
0.6
0.8
1

0 2

0

2

4

Dipole Moment (D)
L
og
P

Epoch 30

0
0.2
0.4
0.6
0.8
1

0 2

0

2

4

Dipole Moment (D)

L
og
P

Epoch 50

0
0.2
0.4
0.6
0.8
1

0 2

0

2

4

Dipole Moment (D)

L
og
P

Epoch 70

0
0.2
0.4
0.6
0.8
1

0 2

0

2

4

Dipole Moment (D)

L
og
P

Epoch 100

0
0.2
0.4
0.6
0.8
1

Figure 2: Evolution of the perceptron decision surface using real trained weights for
epochs 1–100. Blue points: polar molecules (Ethanol, Acetone). Orange points: non-
polar molecules (Hexane, Benzene). The probability surface becomes progressively
sharper and more chemically interpretable.

8

Chemical Interpretation

� At epoch 1, the surface is nearly flat—model uncertainty is maximal. Polar
and non-polar samples fall in overlapping regions.

� By epoch 30–50, the surface tilts to align with the data. The neutral zone
(light color) passes between the two groups.

� From epoch 70 onward, the model stabilizes. The two blue (polar) samples
lie entirely in the high-probability region (P > 0.8), and the orange (non-
polar) samples in the low-probability zone (P < 0.2).

� Chemically, the perceptron has learned a meaningful correlation: polarity
increases with dipole moment and decreases with hydrophobicity (LogP).
The sharp boundary around epoch 70 reflects the saturation of learning—the
model has captured the underlying physical rule.

7 Conclusion

The perceptron offers a transparent and mathematically tractable model for chemical
property prediction. While the classical version provides a simple linear separator, the
advanced perceptron integrates smooth activations and gradient learning, enabling re-
liable convergence and probabilistic outputs. Such models serve as the foundation for
multilayer neural networks used in modern quantitative structure–activity relationship
(QSAR) modeling.

9

	Introduction
	Mathematical Formulation of the Classical Perceptron
	Advanced Perceptron (Differentiable Scheme)
	Perceptron Architecture for Chemical Property Classification

	Numerical Example: Polar vs. Non-Polar Molecules
	Python Implementation
	Comparative Discussion
	Evolution and Interpretation of Decision Boundaries with Data Points

	Conclusion

