قسم: جذع مشترك

جامعة محمد خيضر- بسكـــرة

مقیاس: ریاضیات-1-

سلسلة رقم -2-

تمرين 01: أوجد مجموعة تعريف الدوال الأتية:

$$f_4(x) = \frac{1}{x^2 - 5x + 6}$$
 $f_3(x) = \frac{x^2 - 2x + 1}{x^2 - 1}$ $f_2(x) = (\sqrt{x})^2$ $f_1(x) = \sqrt{x^2 + x + 1}$

$$f_8(x) = \sqrt{|x|}$$
 , $f_7(x) = \frac{\sqrt{x}}{\sqrt{1-x}}$, $f_6(x) = \sqrt{x^2 - 3x - 4}$, $f_5(x) = \frac{1}{\sqrt{x^2 - 1}}$

تمرين 02: أدرس شفعية الدوال التالية

$$f_1(x) = \frac{1}{x^2 + 1}$$
 $f_2(x) = \sqrt{x^2 + x - 1} - \sqrt{x^2 - x - 1}$ $f_3(x) = \frac{1}{\sqrt{x^2 - 1}}$

تمرين 03: أحسب النهايات التالية:

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 - 2x + 7}}{3x + 1} \quad \cdot \quad \lim_{x \to +\infty} \left(x + 2 - \sqrt{x} \right) \quad \cdot \quad \lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x - 2} \quad \cdot \quad \lim_{x \to +\infty} \sqrt{x^2 + 1} - x$$

$$\lim_{x \to -\infty} \left(x + 2 + \sqrt{x^2 + x} \right) \quad \cdot \quad \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 2x + 1} \quad \cdot \quad \lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2} \quad \cdot \quad \quad \lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$$

$$\lim_{x\to+\infty} \left(\sqrt{x^2+1}-\sqrt{x^2-2x}\right) \quad \cdot \quad \lim_{x\to+\infty} \left(2x+1-\sqrt{x^2+x-2}\right)$$

[-2,3] لتكن f الدالة المعرفة على المجال f

$$f(x) = \begin{cases} -x^2 + 2, & x \in [-2, 0[\\ x, & x \in [0, 3[$$

1- مثل بيانيا الدالة f

f عند f عند f عند f عند f

3- هل الدالة f مستمرة على المجال [-2,3] أذكر مجالا تكون فيه الدالة f مستمرة

التمرين 05 :

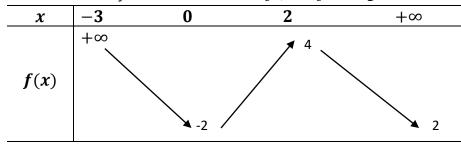
1. حدد مجال استمرارية الدوال:

1-
$$f(x) = \frac{x+2}{x^2-3x+2}$$
 2- $f(x) = \sqrt{x^2-4}$ 3- $g(x) = \frac{\sin x}{x^2-1}$ 4- $f(x) = \sqrt{\frac{3(x^4-16)}{2(x^3-8)}}$

2. أدرس استمرارية الدوال التالية على ${\Bbb R}$

1)
$$f(x) = \begin{cases} -x^2 + x + 2, & x \le 1 \\ \frac{1}{2}x + 1, & x > 1 \end{cases}$$
 2) $f(x) = \begin{cases} \frac{x^3 - 1}{x - 1}, & x \ne 1 \\ 3, & x = 1 \end{cases}$

التمرين 06:


$$[-3,-2]$$
 نقبت أن المعادلة $x^3-4x=0$ تقبل على الأقل حلا في المجال 1.

$$f(x)=3x^3-2x-rac{1}{4}$$
 دالة عددية معرفة كما يلي f

$$f(-1)$$
 ، $f\left(-rac{1}{2}
ight)$ ، $f(0)$ ، $f(1)$ أحسب .a

$$[-1,1]$$
 استنتج أن المعادلة $f(x)=0$ تقبل على الأقل ثلاثة حلول في المجال .b

3. لتكن f دالة مستمرة على المجال $]\infty+$, -] و جدول تغيراتها هو الاتي:

بين أن المنحى (Γ_f) الممثل لدالة f يقطع محور الفواصل في نقطتين مختلفتين يطلب إعطاء حصرا لفاصلتيهما

التمرين 07 :

 x_0 عند f عند اشتقاق الدالة عند -1

$$f(x) = \frac{x}{x+1} \quad \text{, } x_0 = 1$$

$$f(x) = \sqrt{|x-4|}$$
, $x_0 = 4$

$$f(x) = \sqrt{x+1}$$
 لتكن f الدالة العددية المعرفة بـ -2

$$\lim_{x o a}rac{f(x)-f(a)}{x-a}$$
 باذا تستنتج , $a\in]-1,+\infty]$ اليكن $a\in]-1,+\infty$

ایکن
$$a=-1$$
 الحسب $\lim_{x o(-1)^+}rac{f(x)-f(a)}{x-a}$ باکن $a=-1$ الحسب $a=-1$