Ministry of Higher Education and Scientific Research University of Biskra Faculty of Science and Technology Department of Electrical Engineering





# Charge/discharge and control of battery with bi-directional DC/DC converter

## 1 Manipulation 1

Create the diagram in **Figure1** on a Simulink file:

Setting the Powergui Solver:

Simulation type "discrete (simple Time (s)=  $5e^{-6}$ )";

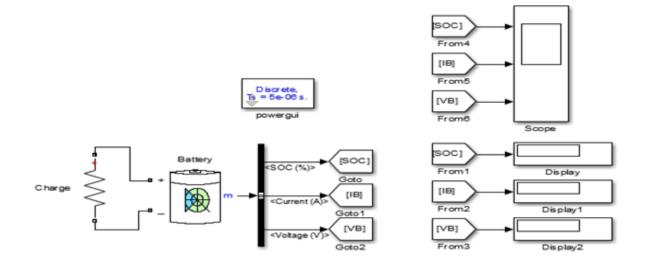



Figure 1: Discharge Battery phase.

Table 1: Battery parameters.

| Battery parameters |                |                         |                       |  |  |  |  |
|--------------------|----------------|-------------------------|-----------------------|--|--|--|--|
| Nominal voltage    | Rated capacity | Initial state-of-charge | Battery response time |  |  |  |  |
| 24(V)              | 10(Ah)         | 50(%)                   | $1e^{-4}(s)$          |  |  |  |  |

Dr. A SAADI

#### 1.1 Discharge phase

We connect a resistor between the battery terminals of 12(Ohms) then 2.4(Ohms).

- **※** Explain how the assembly works?
- \* Plot and explain the battery characteristics?
- \* Compare and conclude the two cases of different resistances?

#### 1.2 Recharging phase

Replace the resistor with a voltage generator with a value of  $=27\mathrm{V}$  ' DC Voltage Source '.

- Answers the same questions as in (Discharge phase).
- In real mode reduces voltage from (27V to 26.5V and 26 V), with simulation  $\approx = inf$ , notice and explain how the assembly works.

## 2 Manipulation 2

Create the diagram shown in figure-1 on a Simulink file:

|     | RL          |              | RC            |                         | Pulsation             |       |
|-----|-------------|--------------|---------------|-------------------------|-----------------------|-------|
| Vdc | R           | L            | R             | С                       | periode               | ratio |
| 48V | 0.1 (Ohms ) | $1 e^{-3} H$ | 0.001 (Ohms ) | $1000 e^{-6} \text{ F}$ | $1 e^{-4} \text{ Hz}$ | 60 %  |

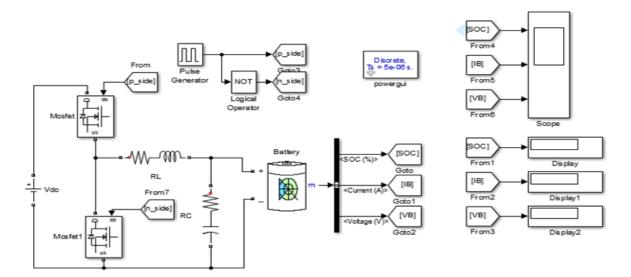



Figure 2: Control of battery with bi-directional DC/DC converter.

#### 2.1 Questions

- ① What is the goal of the this manipulation?
- ② What is the role of DC/DC converters?
- 3 Visualize and interpret the curves?
- **4** Why is the battery current negative?
- **5** Give your conclusion?

## 3 Manipulation 3

Realize and visualize all curves. (Simulation time 280000 s).

### 3.1 Questions

- **1** What is the role of battery 1 and battery 2?
- **2** Explain how this block works?
- **3** What the oscilloscope shows you?
- **4** Interpret and conclude the results

```
function [LoadOn, ChargingOn]=fcn(SOC)
LoadOn=1;
ChargingOn=0;
if (SOC)>=95
LoadOn=1;
ChargingOn=0;
end
if (SOC)<90
LoadOn=0;
ChargingOn=1;
end
```

Figure 3: Matlab function program

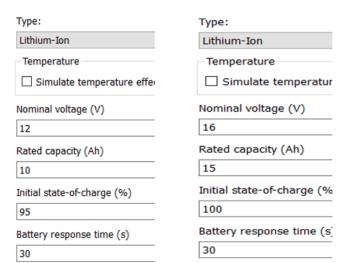



Figure 4: Battery data

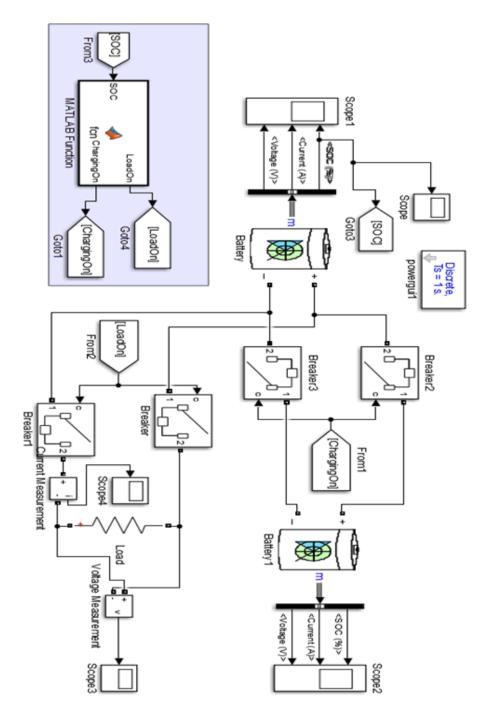



Figure 5: Charging and discharging batteries