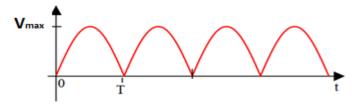
Mohammed Khider University of Biskra

Faculty of Science and Technology

2nd year License


Module: TP ELN Fond 1

# Lab N 04: Stabilized power supply and zener diode

# 1. Double-wave rectification (with Graetz bridge):

# 1.1 Theoretical part:

The double-wave rectification of an alternating signal  $V(t)=V_{\max}\sin(\omega t)$  gives the signal  $U_{\infty}(t)$  represented by the following figure:



| 1. Find the mathematical expression for the average value U_(d avg):                                      |
|-----------------------------------------------------------------------------------------------------------|
|                                                                                                           |
|                                                                                                           |
| . No. 17                                                                                                  |
| <b>A.N</b> : $U_{d\ avg} = \cdots \dots \dots$ 2. Calculate mathematically the effective value U_(d eff): |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| $N.A: U_{deff} = \cdots \dots \dots$                                                                      |
|                                                                                                           |

### 1.2 Practical part (double-wave rectifier circuit or Graetz bridge):

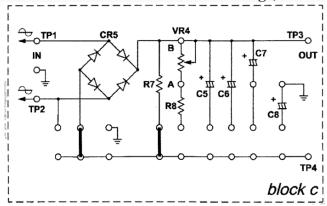
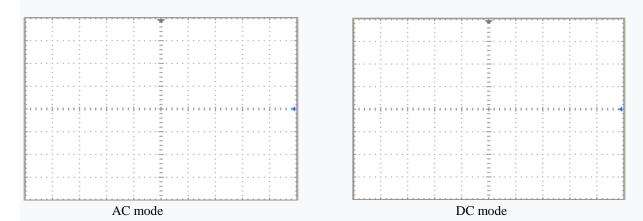




Fig. 23002-block c.2

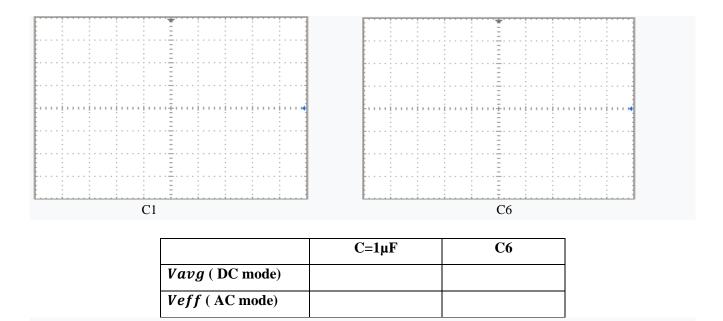
#### A. Handling:

- 1. Insert the connecting clips according to Fig. 23002-block c.2
- 2. Apply an alternating current source of Vpp = 18V between terminals TP1 and TP2.
- 3. Plot only the voltage Vout (CH2) in AC and DC mode. (i.e. unplug CH1)
- 4. Measure Vout using the multimeter in AC and DC mode (Table 3).
- 5. Complete the Table (3)



**Important note**: To stabilize the signal, press "trigger Menu" then choose "Source: CH2" and adjust with LEVEL

Table (3)


|              | Average Value (DC) | Effective value (AC) |
|--------------|--------------------|----------------------|
| Multimiter   |                    |                      |
| Oscilloscope |                    |                      |
| Vmax         |                    |                      |
| Calculation  |                    |                      |

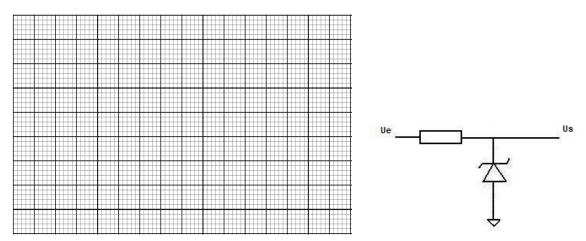
Compare the frequency of the rectified signal with that of the input signal

.....

#### **B.** Filtering by capacitors:

Connect a capacitor C=1µF then C6 and draw the graphs obtained in DC mode:




Give your conclusion

| onerasion      |             | 1         |
|----------------|-------------|-----------|
|                | Signal type | Frequency |
| Double wave    | DC et AC    |           |
| After filtring | DC          |           |

### 2. Characteristic of the Zener diode

Test and verify the diode with the multimeter in ohmmeter mode (sign of the diode). Carry out the following assembly and fill in the table:

| Ue (V)             | -10 | -9 | -7 | -6 | 5 | 4 | -3 | -2 | -1 | 0 | 0.5 | 1 | 2 | 3 | 4 | 5 |
|--------------------|-----|----|----|----|---|---|----|----|----|---|-----|---|---|---|---|---|
| $V_{D}(V)$         |     |    |    |    |   |   |    |    |    |   |     |   |   |   |   |   |
| $I_D$ $(\mu A/mA)$ |     |    |    |    |   |   |    |    |    |   |     |   |   |   |   |   |



| Draw the characteristic of the diode: $ID = f(VD)$                                       |
|------------------------------------------------------------------------------------------|
| How much are the thresholds voltages in forward and reverse directions (from the graph)? |
|                                                                                          |
| compare the characteristics of the classic diode and that of the zener diode             |