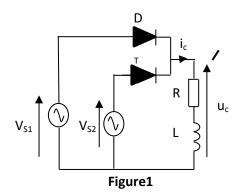
University of Biskra Faculty of Science and Technology Department of Electrical Engineering 3rd Year LMD /3rd Year ING

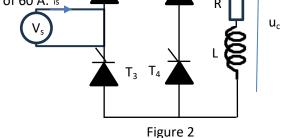

Series No. 2

Exercise n°1

The semi-controlled half-wave rectifier shown in Fig.1; supplies an inductive load R=8 Ω , L=8mH. $v_s(t)=-v_s(t)=220\sqrt{2}\sin(314)$ t $\alpha=\pi+\frac{\pi}{3}$, $\beta=200^\circ$.

- 1. State the rule that determines which diode conducts when several diodes share a common cathode.
- 2. State the rule that determines which diode conducts when several diodes share a common anode.
- 3. Complete the following table:

TIMES		
D		
T		
uc		
V _D		
VT		



- 4. Plot the waveforms of uC, iC, VT, and VD, indicating which switches are conducting.
- **5.** Calculate the average value of the load voltage uC.

Exercise n°2

The controlled single-phase bridge rectifier shown in Figure 2 supplies a highly inductive load (R-L; L \gg R) with a constant current of 60 A. is Vs=120V/50Hz et α = $\pi/3$.

- 1) Plot the waveforms of uc, ic, is, and VTh1.
- 2) Calculate the average and RMS values of the load voltage uc.
- 3) Calculate the RMS value of the source current is.
- 4) Calculate the power factor $\cos \varphi$ of the source.

Exercise 03

A single-phase asymmetric mixed bridge connected to the grid 230 V / 50 Hz supplies a DC motor modelled by an RLE load

- 1. In continuous conduction, with E = 100 V, L = 1 H, $R = 0.92 \Omega$, and $\alpha = 60^{\circ}$, calculate the average voltage of the load (uc_avg), the average current (ic_avg), and the power delivered to the back Back-EMF E.
- 2. In discontinuous conduction, for E = 100 V, L = 0, $R = 10 \Omega$, and $\alpha = 90^{\circ}$, plot uc(t) and ic(t). Then, for $\alpha = 60^{\circ}$ and a non-zero inductance L that is insufficient to maintain continuous conduction, draw the waveforms of uc(t), ic(t), and is(t).

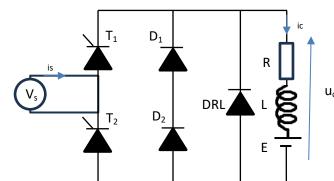


Figure 3