People's Democratic Republic of Algeria University Med Khider of Biskra Faculty of SNVSTU

Protocol 03- Hypothesis testing

Dr. Ben Gherbal Hanane

Data Analysis in Biosciences — Level: L3 biology Email: hanane.bengherbal@univ-biskra.dz

There are several types of parametric tests designed to test certain hypotheses related to one or more parameters of a specific probability distribution. These tests are mainly grouped into two categories: conformity tests and homogeneity tests. We illustrate the steps in SPSS to perform a conformity (Goodness of fit) test for a mean and a homogeneity test between two means, using the following examples:

Example 1 (Conformity test of observed and theoretical mean). To study a batch of tablets, 10 tablets were randomly selected and weighed. The weights (in grams) were:

$$oxed{0.81} oxed{0.84} oxed{0.83} oxed{0.80} oxed{0.85} oxed{0.86} oxed{0.85} oxed{0.83} oxed{0.84} oxed{0.80}$$

Is the observed mean compatible with the value 0.83g at a 0.02 significance level? **Hypotheses:**

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$

SPSS Procedure:

- 1. Launch SPSS and enter data via Variable View and Data View.
- 2. From the top menu: Analyze \rightarrow Compare Means \rightarrow One-Sample T Test.
- 3. Select the variable weight, set the test value to 0.83.
- 4. Under Options, set confidence level to 98% $(1 \alpha = 0.98)$.
- 5. Click **Continue**, then **OK** to get results.

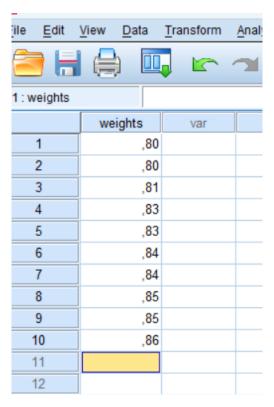


Figure 1: Data entry in SPSS

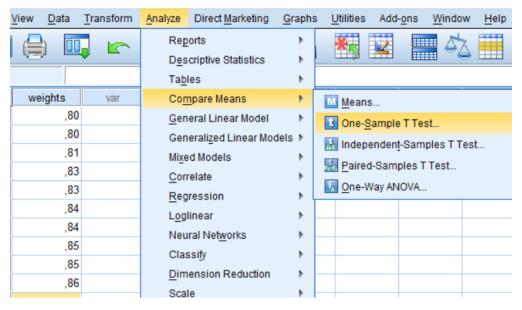


Figure 2: Performing one-sample t-test in SPSS

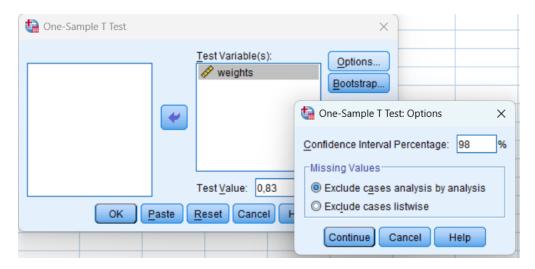


Figure 3: Performing one-sample t-test in SPSS

Interpretation: For a two-tailed test:

$$\begin{cases} \text{Do not reject } H_0 \text{ if } \alpha < \text{p-value} \\ \text{Reject } H_0 \text{ if } \alpha > \text{p-value} \end{cases}$$

In our case, $\alpha = 0.02 < \text{p-value} = 0.885$, so we do not reject H_0 .

→ T-Test

[DataSet0]

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
weights	10	,8310	,02132	,00674

One-Sample Test

		Test Value = 0.83									
				Mean	98% Confidenc Differ						
	t	df	Sig. (2-tailed)	Difference	Lower Upper						
weights	,148	9	,885	,00100	-,0180	,0200					

Figure 4: Results window of the one-sample t-test in SPSS

Remark 1. In the case of a one-tailed test (i.e., when $H_1: \mu < \mu_0$ or $H_1: \mu > \mu_0$), the decision to reject or not reject the null hypothesis H_0 is made as follows:

- Do **not** reject H_0 if $2\alpha < significance$ (i.e., the mean is not significantly different from μ_0);
- Reject H_0 if $2\alpha > significance$ (i.e., the mean is significantly greater than μ_0 if $H_1: \mu > \mu_0$, or significantly less than μ_0 if $H_1: \mu < \mu_0$).

Example 2 (Comparing calcium levels between two samples).	The following table presents
calcium levels in patients suffering from chronic renal failure:	

Patient	Sample 1	Sample 2
1	50	80
2	25	130
3	120	70
4	26	120
5	48	70
6	113	100
7	150	_

Can we conclude, at a 5% significance level, that the means are significantly different? **Hypotheses:**

$$H_0: \mu_1 = \mu_2$$
 vs. $H_1: \mu_1 \neq \mu_2$

SPSS Procedure: The data from the two samples must be entered as a single variable (i.e., as one combined sample), and a second variable should be added to indicate the sample number from which each observation (X_i) comes. Thus, for the data in our example, we obtain the following:

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze
14 : sample			
	level	sample	va
1	50,00	1,00	
2	25,00	1,00	
3	120,00	1,00	
4	26,00	1,00	
5	48,00	1,00	
6	113,00	1,00	
7	150,00	1,00	
8	80,00	2,00	
9	130,00	2,00	
10	70,00	2,00	
11	120,00	2,00	
12	70,00	2,00	
13	100,00	2,00	
14			

Figure 5: SPSS data format for independent samples t-test

- 1. Enter data as a single variable with a group identifier.
- 2. Use Analyze \rightarrow Compare Means \rightarrow Independent-Samples T Test.

- 3. Place the variable sample in the box labeled "Grouping criterion (numeric qualitative)".
- 4. Select the variable sample and click on the **Define Groups** button, a small new window will appear.
- 5. In the *Group* boxes, enter the numbers of the two samples you wish to compare, in our case, "1" for sample 1 and "2" for sample 2.
- 6. Once the groups are defined, click on $\mathbf{Continue}$, then click on \mathbf{OK} to display the test results.

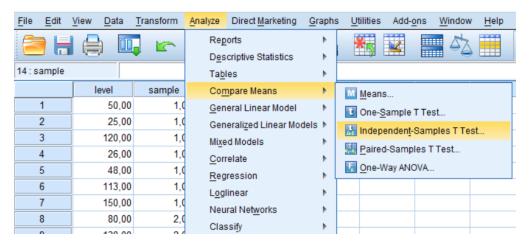


Figure 6: Selecting independent samples t-test in SPSS

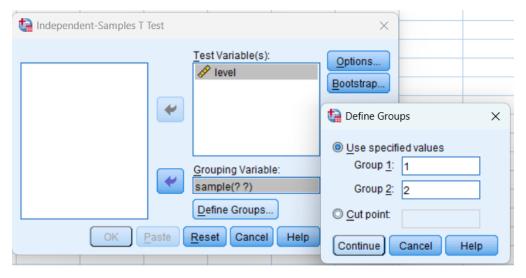


Figure 7: Running the test in SPSS

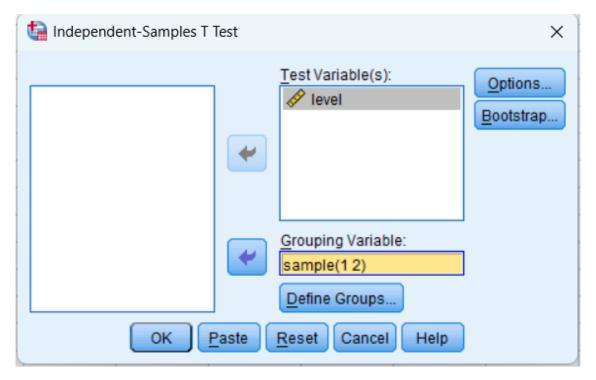


Figure 8: Result window comparing two means in SPSS

Interpretation:

If $\alpha < \text{sig1}$: use sig2 (equal variances)

- Do not reject H_0 if $\alpha < \text{sig}2$
- Reject H_0 if $\alpha \ge \text{sig}2$

If $\alpha \ge \text{sig}1$: use sig3 (unequal variances)

- Do not reject H_0 if $\alpha < \text{sig}3$
- Reject H_0 if $\alpha \ge \text{sig}3$

From the results: $\alpha=0.05 \geq 0.014$ and 0.05 < 0.406, then no significant difference (accept H_0)

	Group Statistics									
	sample	N	Mean	Std. Deviation	Std. Error Mean					
level	1,00	7	76,0000	50,56679	19,11245					
	2,00	6	95,0000	25,88436	10,56724					

	Independent Samples Test										
		Levene's Test Varia	for Equality of nces	t-test for Equality of Means							
									95% Confidence Differ		
		F	Sig.	t	df	Sig. (2 _z tailed)	Difference	Difference	Lower	Upper	
level	Equal variances assumed	8,470	1,014	-,828	11	,425	-19,00000	22,93393	-69,47725	31,47725	
	Equal variances not assumed			-,870	9,198	3 ,406	-19,00000	21,83924	-68,24244	30,24244	

Figure 9: Result window comparing two means in SPSS

Remark 2. In the context of a one-tailed test, and for a significance level α , the decision to reject or not reject the null hypothesis H_0 is made according to the following scheme:

- If α < sig1, then the two variances are not significantly different (i.e., they are equal). In this case, to make the decision concerning the two means, one must use the significance value sig2:
 - 1. Do not reject H_0 if $2\alpha < sig 2$ (the two means are not significantly different).
 - 2. Reject H_0 if $2\alpha \ge sig2$ $(H_1: \mu_1 < \mu_2 \text{ or } H_1: \mu_1 > \mu_2)$.
- If $\alpha \geq sig1$, then the two variances are significantly different. In this case, to make the decision concerning the two means, one must use the significance value sig3:
 - 1. Do not reject H_0 if $2\alpha < sig 3$ (the two means are not significantly different).
 - 2. Reject H_0 if $2\alpha \ge sig3$ $(H_1: \mu_1 < \mu_2 \text{ or } H_1: \mu_1 > \mu_2)$.

Exercises (Solve the exercises manually, then confirm the results using SPSS)

Example 3. The weight of grapes produced per vine was measured for 10 vines randomly selected from a vineyard. The obtained results, expressed in kilograms, are as follows:

Assuming $\mathcal{N}(\mu, \sigma)$, test whether mean < 8 at 5% level.

Example 4. In order to compare two types of trees with respect to their heights, we collected height measurements for several trees, which are presented in the following table.

	Tree 1		-	-			
ſ	Tree 2	21.1	21.1	22.1	22.4	23.3	

Assuming $\sigma_1 = \sigma_2$, test at 1% if Tree 2 mean is lower.

Example 5. We want to compare two teaching methods for reading. For this purpose, two groups of children were formed: the first group was taught using the so-called classical method, and the second group using the modern method. The scores obtained at the end of the school year are as follows:

Group	p 1	15	18	17	18	17	19	16	17	14	19
Group	02	20	16	19	16	18	17	16	20	21	17

- 1. Is the classical method's mean compatible with 6 at 1% risk?
- 2. Assuming $\sigma_1 = \sigma_2$, test at 5% whether modern method yields better results.