Worksheet N°1

Exercise 1: Give the domains of definition of the following functions:

$$f_1(x) = \frac{2x+3}{x^4-1}, \quad f_2(x) = \frac{\sqrt{2x+3}}{x^4-1}, \quad f_3(x) = \frac{2x+3}{\sqrt{x^4-1}}, \quad f_4(x) = \sqrt{\frac{2x+3}{x^4-1}}.$$
 $f_5(x) = \frac{x+2}{x-1}, \quad f_6(x) = \sqrt{x-1}, \quad f_7(x) = \frac{3}{\sqrt{x-1}}, \quad f_8(x) = \sqrt{\frac{x+1}{x^2-1}}.$

Exercise 02

Study the continuity of the following functions at the point x=1:

$$f_1(x) = \frac{x+2}{x-1}, \quad f_2(x) = \sqrt{x-1}, \quad f_3(x) = \frac{3}{\sqrt{x-1}}, \quad f_4(x) = \sqrt{\frac{x+1}{x^2-1}}.$$

Exercise 03

Give the domains of definition and calculate the limits of the following functions

$$\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x} - 1}{\sqrt{x + 1}}, \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}},$$

$$\lim_{x \to 0} \frac{e^x - 1}{x}, \quad \lim_{x \to 0} \frac{\sin (ax)}{x}.$$

Exercise 04

Calculate the limits

$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + x + 1} - ax \right), \quad \lim_{x \to +\infty} \frac{\ln x}{x^a}, \quad \lim_{x \to \pm \infty} \frac{\sqrt{x^2 + x - 2}}{x + 1 + \sqrt{x^2 + x - 2}}, \quad \lim_{x \to 1} \frac{e^x - 1}{x},$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}, \quad \lim_{x \to 0} \frac{\cos x - 1}{x}, \quad \lim_{x \to +\infty} \frac{e^x}{x}.$$

Exercise 05 We consider the fonction f defined by

$$f(x) = \begin{cases} \frac{\sin x}{x} & si \quad x < 0, \\ 1 & si \quad x = 0, \\ x^2 + 1 & si \quad x > 0. \end{cases}$$

1/ Is the function f continuous on R?:

2/ Determine the set of points where f is derivable?.

3/ Calculate the derivative of f at the points where it is derivable?.