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(General introduction

Mathematics and statistics are important for biology students because they provide the tools to
analyze data, build models, and conduct research. These subjects are crucial for understanding
biological concepts quantitatively, whether it’s tracking population changes, analyzing genetic
data, or understanding rates of chemical reactions.

Key areas where math and statistics are applied in biology

e Data analysis: Statistics are used to describe data, uncover patterns, and determine if results
are statistically significant.

e Modeling: Mathematics is used to create models that can predict or describe biological phe-
nomena, such as how a disease spreads or how populations change over time.

e Experimental design: Statistics is essential for designing experiments that will yield reliable
results and avoid common pitfalls in data collection.

e Specific disciplines:
e Biochemistry: Mathematical computer models help in understanding complex reactions
and processes.

e Genetics: Math is used in computer programs for analyzing DNA sequences.

e Zoology: Mathematical tools can express the relatedness of species and estimate when
they diverged from a common ancestor.

e Medicine: Diagnostic tools like MRI and EEG rely on mathematical principles.

e Lab work: Basic math is necessary for practical tasks like preparing solutions with correct
concentrations, a fundamental skill in many biology labs.



Chapter 1

Limits and Continuity

Introduction

In this chapter, we study two fundamental notions of calculus: limits and continuity. These
concepts are essential for understanding how functions behave and change, which is useful in many
areas of biology such as population dynamics, enzyme kinetics, and growth models.

1.1 What is a function?

A function is a relation that associates each element of a set called the starting set with an element
of another set called the ending set.

f:D—A
x — f(x).
Définition 1.1 Let f be a function on Dy.
o The function f is odd iff (if and only if ) the following statements are correct.

1. Vx € Df then —x € Df
2. ¥z € Dy we have f(—x) = —f(z).

e The function f is even iff the following statements are correct.

1. Vo € Dy then —x € Dy
2. Vx € Dy we have f(—z) = f(z).

e A periodic function is a function that repeats itself in reqular intervals or periods. The
function f is said to be periodic if V. x € Dy 4 p € R*:

flz+p) = f(z)
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Symbols | Explanation
v for all
3 exists
€ in
=
4

implies
equivalane

if f if and only if

1.2 Limit of a Function

The limit of a function describes the value that the function approaches as the variable approaches
a given number.

2.2 Formal Definition
Let f(x) be defined around a. We say that f(z) tends to a limit L as x tends to a, and we write:

lim f(z) =L

T—a

if for every ¢ > 0, there exists 6 > 0 such that:

lr—a| <d=|f(x)—L|<e

Left and Right Limits
- The right limit of f at a is lim+ f(z) (when z > a). - The left limit of f at a is lim f(x)

T—a Tr—a~
(when z < a).

If both limits exist and are equal, then the limit at a exists.

2.4 Example
Let
22, r < 2,
I/ ){33:—2, x> 2.
We have:

lim f(r) = (2)> =4, lim f(z)=3(2)—-2=4

T—2~ z—27F

Therefore, lim, s f(z) = 4.

1.3 Continuous Functions

Definition

A function f is said to be continuous at a point a if:

lim f(z) = f(a)

r—ra

That is, the limit of f(z) as x approaches a is equal to the actual value of f at that point.
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Continuity on an Interval

A function f is continuous on an interval [ if it is continuous at every point of I.

Examples

1. f(z) = 2? is continuous everywhere on R. 2. f(z) = 1 is continuous on R\ {0}.

Types of Discontinuity

e Jump discontinuity: when the left and right limits exist but are different.
20 +1, <1

flz) =
x+3, x>1

Then,
lim f(z)=3, lim f(z)=4

z—1- z—1t

Since the two limits are not equal, f has a jump discontinuity at x = 1.

e Infinite discontinuity: when the function tends to infinity near a point.
Example: f(z) =1 at z = 0.

e Removable discontinuity: when the limit exists but is not equal to f(a).
2

Example: f(x) == at z = 1.

r—1

The Intermediate Value Theorem (IVT)

Theorem Statement

If f is continuous on a closed interval [a,b] and N is any number between f(a) and f(b), then
there exists at least one ¢ € [a, b] such that:

fle)=N

Example

Let f(z)=2%—x—2on [1,2].

f)==2, f(2)=4

Since 0 is between —2 and 4, by the IVT, there exists ¢ € (1,2) such that f(c) = 0. Numerically,
c~1.52.



Chapter

Differentiability

Introduction

Before studying differentiability, we must know the concepts of function, limit, and continuity.
Differentiability helps us describe how fast a quantity changes, for example, how fast a population
grows or how a reaction rate changes with temperature. It tells us when a function can be
approximated by a straight line near a point.

2.1 Definition of Differentiability (One Variable)

Let f be a function defined in the neighborhood of xy. We say that f is differentiable at
a point g if the limit

. Jlz})—F{zo)

lim ————~

r—ro €T — Iy

exists in R. When this limit exists, it is denoted by f'(g) and called the derivative of f
at ayg.

Jflx) — flzo) becomes flxo+h) — flxo)
L becomes . So
T — Ty h

we can define the notion of differentiability of f at xg in the following way:

Remark If we put v — g = h, the quantity

[ is differentiable at the point xy < lim flwo+ ) = fo)

erists in R
h—0 h

Notations:

T . - o A\ " : . . . . o
We can use the notations f'(xg). Df(xg), i—j(.ro) to designate the derivative of f at xrq.
T
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Example

I. The function f(x) = 22 is differentiable at any point 25 € B and the derivative
f'lrg) = 2irg. As an explanation, given g € R we have:

. u”-"n +h)— f{u"n] RESE f-‘];}— "f; . 9, 9.
iy = fi = = dugl o 2a0) = 220

2. The function f(x) = sin(x) is differentiable at any point rg € B and the derivative
f'laa) = cos(irg). As an explanation, given g € R we have:

litn flxo+h) = flxo)

. sin{xg + h) — sin(xg)
= lim :

h—0) Iy h—+l) It
. h
. 2reg 4+ Ny sin (3) )
= lim cos ; = cos|ay)
h=s0) 2 3

Definition (Left and right derivative)

1. Let [ be a function defined on an interval of type [rg.rg + of with o > 0. We say
that f is vight-differentiable at oy it

iy S0+ R — o)

=01+ h

exists in R. This limit is denoted by fi{rg) and is called the right derivative of f
at arg.

2. Let f be a function defined on an interval of type |zg — o, xrp| with a > 0. We say
that f is left-differentiable at rq iff:

lim flea+h) = flxo)
hesl h

exists in . This limit is denoted by f{(ag) and is called the left derivative of f at
xp.

Let f be a function defined in the neighborhood of @, we have:
S is differentiable on the right and left at
[ s differentiable at @y = and

Jrlao) = fi (o)
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Example

Let f(x) = |x|, we have:

CJO+R)—FO) . W . A,

. ',"‘ o ;; ;4'11.‘1‘-! g = =)
0+ - )

lim A b= $10) = lim u = o 1= fI{0)

h—0 I h—ie h=0+ fi

== The function [ is differentiable on the right and on the left at oy = 0 and
moreover fi(0) =1 and

fil0) = =1.s0 fi(0) # fI(0) = [ is not diferentiable at xg = 0

Geometrical interpretation

The figure below shows the graph of a function y = f(r):

by hy= flr
The ratio Jixo + ,-,j f{xo) = tan(#) is the ."'hlt]l)l"' of the straight line Joining point A xo. flxg))
[
to point B{eg + h, fleg+ b)) on the graph. When h — 0, this line tends towards the tangent

I:_f“ 'j to the curve at a pni]ll .-H.l‘u,‘f{_i‘gﬁ]. S0 we get:

- . flxa+ h) — flao) : D
Jlro) = il_[:'l) x = tan(a) = D

is the slope of the tangent to the curve at point A(rg, f(ag)).

4

{ Mo+t =A%)

i
1 |
- Yo
L L 2 3
x
Figure  : Geometrical Interpretation of Differentiability at a point g
Remark According to the figure above, the equation of the tangent to the curve y = [(r)

at the point A(xg. f(xg)) is y = flag) = [ao )z = x0)

Let f be a function differentiable at a point xp, then f is continuous at rg.
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Proof:
We have: JEEI{I{J*} - flxg)) = J‘|im (

] r—rp

f(x) — f(xo) ,"{-f'u}) (x — x0)

Since f is differentiable at g we get:
: N Y — 1 TIVILY JOSER S : ; P
’]ﬂg‘.qﬂ_:}l o)) = Jl{j:!.,"{ (rg)lr —ag) =0 = [ is continuons at ry

Remark The opposite of this theorem is incorreet. A function can be continuous at a
point rg without being differentiable at the same point. For example, the function x « |r| is
continuous at rg = 0 but not differentinble at the same point.

Differential on an interval. Derivative function.

Definition

Let f be a function detined on an open interval /. We sav that f is ditferentiable on [ if:
it is differentiable at any point on . The function defined on T by: e e /() is called
the derivative function or simply the derivative of the function f and is denoted by f* on
df

dr’

Remark let [ be a function defined on an interval I and a. b € RU {+o0o, —oc} then:

« We say that [ is differentiable on I = |a.b] iff: it is differentiable on the open interval
la.b| and differentiable on the right at a and on the left at b,

e We say that f is differentiable on I = [a,b] if: it is differentiable on the open interval
|a. b| and differentiable on the right at a.

o We say that [ is differentiable on [ =|a b] if: it is differentiable on the open interval Jo, b|
and differentiable on the left at b.

Operations on differentiable functions

Proposition : (At a point)

Let f,g be two functions ditferentiable at g, then we have:
« f+ gis ditferentiable at xg et (f + g)'(a0) = ['(v0) + ¢'(20)
« [f.g is differentiable at aq et (f.g)'(x0) = ['(i0).9(x0) + f(x0).4'(x0)

= f’f-*‘u]
f'ﬁ-"u]u

If we have: [(ag) $# 0, alors } is ditferentiable at g o (-l}-_) (irg) =

: : g
If we have: glaa) # 0. then = is diferentiable at g and
g

("_r)r{ ro) = f,{-l"u_]'-y[..l'u.! - f{"'“]“!)"(-i'u]
- ff{-f'np

i
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Proposition : (On an interval)

Let f and g be two functions differentiable on an open interval [ then:
o [+ g is diferentiable on fand (f+g) = [+ 4
« f.gis ditferentiable on [ and (f.g9) = ff.g+ f.¢

. | . A
o« If f# 0on I, — is diffeventiable on T and (—) ===
f f f?

« Ifg#0onl. / is differentiable on I and
i

(f)’_ Ig—1d

) g

Proposition : Differentiability and composition

Let f: ] — R and g : J — B be two functions where I and J are two open intervals
such that: f(I)C .J

« Differentiability at a point: If [ is differentiable at g and g is differentiable at
flxg). then g o f is diferentiable at xp and (g o f)' (@) = f'(x0).o'(f(x0))

« differentiability on an interval: If [ is differentiable on I and g is diferentiable
on J. then g o f is differentiable on [ and (ge f) = f'.(d' o f)

Proposition : Differentiability and inverse function

Let f : I — J be a bijective and differentiable function at xq € I. Then f~! is

1
differentiable at yo = f(xo) if and only if f/(x¢) # 0 and in this case: (f~1)(yo) = Flaa)
I

Let f T —= J be a bijective and differentiable funetion on 1. IF f* £ 0on [, then f1
1

frof

is differentiable on .J and we have : (f~1)
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Mean value Theorem

Theorem : (Rolle’s theorem)

Let f be a function defined on |a. b|. If we have:
I. f is continuous on [a.b].
2. f is differentiable on Ja. b]
3. f(a) = F(b)

then there exists a real nmber ¢ E]rr.fr,: such that If"ri'-'l =1

Figure  Geometrical interpretation of Rolle's theorem

Theorem : (Mean value Theorem)

Let f be a function defined on [a. b, if we have:
1. fis continuous on [a. b,
2. [ is differentiable on ]u, .i’;[
then there exists a real munber ¢ €la. b such that:

If[.fr'l - Illl-[ri] = If"l[r"llfh — )

10
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£l | —

« \
f/ N \
"g \\.\ '\

[N

Figure ; Geometrical interpretation of the mean value theorem
f'ﬁl]Hl"l’[lll’J]ll."(":-:H't'l med o of the mean value theorem)

Let f be a function defined on I, i > 0 and @ € T such that o + € I, then if we have:
. fis comtimons on [.r'“. 1+ h].
2. [ is derivable on ].i'“. Ty + h[

then there exists a @ E]{l. l[ such that:

If‘[.l‘” —I— fi :I — fl:iu:l = fi[__r'“ + H.f!Jh

Example

By using the mean value theorvem, show that:

Yo =0 sin(z) <>

By putting f(t) = — sin(t) we get:

f is continnons on [0, x|
W = 0 we have: and

[ is differentiable on [0, 2]

According to the mean value theorem, there exists ¢ €]0, [ such that:
flx) = f(0) = f'(e)(x = 0)
&= r —sin(x) = (1 — cos(c))r < sin(xr) = cos(c)r

=+ sin(x) < r (as cos(e) < 1)

11
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Theorem : Generalized mean value theorem

Let f and g be two real functions defined on [a. b] such that:
1. fand g are continnous on |a,b|.
2. [ and g are differentiable on Ja, bf.

Then there exists a real munber ¢ €]a. bf such that:

(f(b) = fla))d'(e) = (g(b) — gla)) f'(e)

Proposition ' (Variations of a function)

Let f be a continnous function o [u_ Fa] and ditferentiable on ]u_ J’r[_ we have:

o

I fi{r) = 0on Ja, b, then [ is strictly increasing on |a, b].
2. 1f f*(x) = 0 on Ja, b, then f is increasing on [a. ).
3. 1f f'(x) < 0 on a. b, then f is strictly decreasing on [a. b].
4 11 f'(x) <0 on Ja, b, then f is decreasing on [a, .

5. If f'(r) = 0 on Ja. b, then f is constant on [a. b].

L'Hopital's rule

Theorem

Let [ and g be two continnons functions on I (where T is a neighborhood of rg).
differentiable on I — {ip} and satisfyving the following conditions:

[. lim f(x)= lim g{e) =10

r=+10

2. Ve el —{w} d{x)#0

Then: () ()

. () ) Jix

lim —= =1 = lim — =1

T=%T0 "f”] =4y "flfjl'
. osinfr) . cos(r)
lim = lim =]
=] T =+l

Remark The converse is generally false. For evample: f(r) = 12 cos( i )y glz) = x.
't

We have: lim ““1"""""*[,%] 0. While lim

. lim (22 cos( L) 4 .~;i||[l_}] does not
r—sl) r}'l:‘j'J r—sl) = T

s} i {;J r—si)

erist (since: limsin(L) does not evist)
=l pe

Remark Also, the Hopital's rules is true when v — +oc

12
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2.2 Rules of Differentiation

Rule Formula
Constant (c) =

Power (z™) = n:c” !
Sum (f+9)=f+g
Product (fg) =fg+ fd
Quotient i), = f/g fd

Chain Rule (f?(g( ) =

f'(g(z)) -

g'(x)

Common Derivatives:

Function | Derivative
sinx CcoS
COS & —sinx
er er
Inz 1
X

13



Chapter

Integrals

Integration is one of the two main operations in calculus (the other is differentiation). While
differentiation finds the rate of change, integration finds the total quantity or the area under a
curve.

Integration is used in biology to calculate:

e Total bacterial growth over time,
e Total oxygen consumption,
e Accumulated concentrations of a substance.

If we know a function f(z) that represents a rate (for example, growth rate), the integral of
f(z) between a and b gives the total change:

Area under y = f(x) between x = a and = = b.

3.1 Indefinite Integral

The indefinite integral of f(x) is a function F'(x) such that:

and we write:
/f(x) de =F(z)+C

where C' is the constant of integration.

Examples

In the following ¢ denote a real constant (c € R).
L [atde = —52"™ 4 ¢, withn # —1.
2. [a7ldzr = [1dz =In(|z]) +c
3. [e"dx =e" +c.

4. fa*””dx:i—l—c.

Ina

14
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5. [sin(z)dx = — cos(z) + c.
6. [ cos(z)dx = sin(x) + c.
7. %dﬁ = —ctan(z) + c.
8. | womde = tan(z) +c.
9. [ ﬁdl‘ = arcsin(z) + c.

10. [ dr = arctan(z) + c.

11. fmdx—arcsm( )+c

12. [ a2+x2da: = —arctan( )+ c.
13 fﬁd![‘: 3 1n(|a+z}) +C

14. f\/ﬁd‘r = ln(|x+\/a2 ﬂ:xQD +c

3.2 Definite Integral

The definite integral gives a numerical value representing the area under the curve between a

and b:

Example

3.3 Properties of Integrals

/kf Ydr =k /f

/ab[f( )+ g(a dx—/f d:c+/ o(2) do
/f Ydr =0
/af(x)da:——/baf(x)dx

15
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3.4 Integration Techniques
Substitution Method
If u = g(z), then:
[ fotang@ar = [ s au
Example:
/ 2xe” du
Let u = 2?2 = du = 2z dx
/e“du—e“—l—C—e"”z—l—C
f \/%dx :??
To compute this integral we use the following substitution
we put
t=e¢ "= dt =—e "dx
SO
/ _ L (t) +
o = arccos c=
ioen iip
= arccos (e‘m) + ¢ = —arcsin (e“”) +c with ¢ € R.

Integration by Parts

/udv—uv—/vdu
/xexdm

Let u =2 = du = dz, and dv = e"dx = v = €

Example:

/xexdm =ze" — /e””dx =e"(z—-1)+C

To compute the integral we use the integration by parts method. For this, we take the following:

u = xr+2 . u =
v = cos(2x) voo=

N = =

sin(2x)

Thus,

/ (x +2)cos(2z)dxr = %(x + 2)sin(2x) — / % sin(2z)dx

1 1
= 5(1‘ + 2) sin(2x) + 1 cos(2x) + ¢

16

with ¢ € R.
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Integration of Rational Functions

In this section we will take a more detailed look at the use of partial fraction decompositions in
evaluating integrals of rational functions, a technique we first encountered in the inhibited growth
model example in the previous section.

We begin with a few examples to illustrate how some integration problems involving rational
functions may be simplified either by a long division or by a simple substitution.

72 ‘
Example To evaluate / + — dz, we first perform a long division of = 4+ 1 into 2* to
&I
obtain
2 - 1
= — .
r+1 r+1
Then )
x 1 1
— dx = r—1+ - dm:,—xg—x—i—log|m—|—1|—|—c
x+1 r+1 2
2r 4+ 1 o
Example To evaluate i dr, we make the substitution
r® 4

u=x° +x
du = (2x + 1)dzx.

2r +1 1
/ §+ dr:/— du = log |u| + ¢ =log|z? + x| + c.
2+ u

Then

dx, we perform a long division of = + 1 into = to obtain

Example To evaluate /

T+

Then

x 1
/ T_ dr:/ 1— — ) dr =z —log|z+ 1|+ c.
r+1 r+1

Alternatively, we could evaluate this integral with the substitution

u=ux+1
du = dz.

17
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With this substitution, # = v — 1, so we have

f T,dr:/U71du
ax+1 u
—/(11) du
u

=u—log|u|+ ¢

=z+1-loglz+1|+c.

Note that this is the same answer we obtained above, although with a different constant
of integration.

Partial fraction decomposition: Distinct linear factors

Now we consider the general problem of evaluating

J@)
g(z) e

where both f and g are polynomials. We will assume that the degree of g is less than the
degree of f. As illustrated in the first and third examples above, if this is not the case,
we can first perform a long division to simplify the quotient into the form of a polynomial
plus a remainder term which is a rational function with numerator of degree less than the
denominator. To begin we will suppose that g factors completely into n distinct linear

factors. That is, suppose there are constants ay, ao,...,a, and by, b, ..., b, such that
g(x) = (12 + by)(agx + ba) -+ - (a,z + by,), (6.4.1)
where the factors on the right are all distinct. From a theorem of linear algebra, which we
will not attempt to prove here, there exist constants Ay, Ao, ..., A, such that
T A A A
flx) L 2 L.y On (6.4.2)
glz)  arx+by agw+ b ant + by,
T
The expression on the right of (6.4.2) is called the partial fraction decomposition of %
glx
Omnce the constants A, Ao, ..., A,, are determined, the evaluation of

becomes a routine problem. The next examples will illustrate one method for finding these

constants.
1
Example To evaluate [ ———— dx, we need to find constants A and B such
(z—2)(z —3)
that
1 A B

(z —2)(z —3) BT R

18
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Combining the terms on the right, we have

1 Az —3)+ B(r—2)

(x=2)(x—3) (z—2)(xz—3)

Now two rational functions with equal denominators are equal only if their numerators are
also equal; hence we must have

1=A(r—-3)+B(z—-2)

for all values of z. In particular, for x = 2 we obtain

1=-4,
from which it follows that A = —1, and for = 3 we have
1=05.
Thus ) ) )
1 b
(x=2)(x—=3) -2 a-3
)

= —log |z — 2|+ log |z — 3| + .

3z
Example To evaluate / —T dr, we need to find constants A and B such
(4+5)(2z-1)
that
3z A B

(z+5)(2z—1) _£+5+21’71'

Combining the terms on the right, we have

3z A2z — 1)+ B(z +5)

(z+5)(2x—1) (z+5)(2z—1)

As before, it follows that
3r=AQR2x— 1)+ B(z+5)

for all values of x. In particular, for r = —5 we obtain
—15 = —11A4,
from which it follows that )
15
A = T
11
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1
and for & = 3 we have

3 11

— = _B,

2 2
from which it follows that

]

T
Hence
3z 15 1 N 3 1
(x+5)(2x—1) 1la+5 1122-1"

S0

1 15 1 3 1
——dr="— | ——dz+ ——— dx
(z+5)(2x — 1) 11/ 2+5 112z —1

7151 | 5| 31 20 — 1|
=11 obr—i—a—s—ggobur— +c.

Partial fraction decomposition: Repeated linear factors

Returning to the general problem of evaluating

15

where f and g are both polynomials and the degree of f is less than the degree of g,
we will now consider the case where g factors completely into linear factors, allowing for
the possibility that one or more of these factors may be repeated. Specifically, suppose
the factor axz + b occurs n times in the factorization of g. Then the partial fraction

g(x)

must contain a sum of terms of the form

decomposition of

Ay Ay A
ar+b  (ax+b)2 (ax + by’

(6.4.3)

for some constants Ay, As, ..., A,,, in addition to similar terms for every other factor of g.

This is best illustrated in an example.

r+1
Example To evaluate L dr, we need to find constants A, B, C, and D
(z=1)*z-2)

r+1 A B C D
(z—1)3(x—=2) a-1 N (z—1)2 - (x—1)3 Ta—o
That is, this partial fraction decomposition contains three terms corresponding to the
factor & — 1, since it is repeated three times, and only one term corresponding to the factor
r — 2, since it occurs only once. Moreover, the degrees of the denominators of the terms
for  — 1 increase from 1 to 3. Now combining the terms on the right of (6.4.4), we have

such that

(6.4.4)

41 Az -1}z —2)+Bz—1)(z—2)+C(z —2)+ D(z — 1)

(@ 1)°(x —2) (x— 13— 2)
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Again, it follows that
rHl=Ar-1)2r-2)+Brx-1)(z=2)4+Cz=2)+ D(z—1)* (6.4.5)

for all values of . However, because of the repeated factors, we cannot choose values for x
which will isolate each of the constants one at a time as we did in the previous examples.
Instead, we will illustrate another technique for finding the constants. By multiplying out
(6.4.5) and collecting terms, we obtain

r+1=A% 12 452 —2)+ B(z? =32+ 2)+ C(x —2) + D(2* =322 + 32 — 1)
—(A4+D)r* + (—4A+ B -3D)2* + (5A—3B+C +3D)x —2A+2B—-2C - D
for all values of z. Since two polynomials are equal only if they have equal coeflicients, we

can equate the coefficients of 2z + 1 with the coefficients of the polynomial on the right to
obtain the four equations

A+D=0
—4A+B-3D=0
_ (6.4.6)
5A-3B+C+3D=1
—2A42B-2C-D=1.
From the first equation we learn that
D=—-A.
Substituting this into the second equation gives us
B = A.
Substituting both of these values into the third equation results in
C=A+1.
Finally, substituting for D, B, and C in the fourth equation gives us
—2A4+2A-2(A+1)+A=1,
which gives us A = —3. Hence B = -3, C = -2, and D = 3. Thus
r+1 3 3
———dr=— | ———dr — | ——— dzr
f(xn?'(:cz) ‘ f(rn ‘ f(r.l)? ‘
2 J 3 d
‘f(:r—l)s ”fm—z !
. 3 1 ) 5
= —3loglz — 1] + ——1° -1 + 3log |z — 2|+ c.
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Example: To evaluate the following integral:

1
/fﬁ+nu—ndm

we need to find constants A, B and C' such that:
1 A Bz +C

P+ @1 o-1 2+1
By multiplying both sides by(z* + 1)(z — 1), we obtain :

1=A@"+1)+ (Bz+C)(z —1).

Let’s develop:
1=A@*+1)+Bz(x — 1)+ C(x — 1) = Ax* + A+ Ba® — Bx + Cx — C.
Let’s group similar terms together:
1=(A+B)2*+ (-B+ )z + (A-C).

By identifying the coefficients :

A+B=0,
~B+C =0,
A-C=1.

We solve the system :

So : . ) )
A=—-, B=—— (=—-.
2’ 2’ 2
The decomposition into partial fractions is therefore:
1 12 1 z+1
(224 1)(z—1) 2—-1 2 2241
So:

1 1 dx 1 r+1
dr = = - = dx
(2 4+ 1)(z—1) 2) xz—-1 2) 2241

We separate the second integral:

z+1 T 1 1 9 1
/$2+1da::/x2+1dx+/x2+1dx:Eln(x + 1)+ tan™ " (z).

Substitution in the integral :

1 1 1/1 9
L/uu1mw4ﬁ”—§m”‘”‘§(?“x+”+M“w@0+0-

Let’s simplify :

1 1 1, 1
/(x2+1)(x—1) dx:§ln|x—1|—zlln(x +1)—§arctan(x)+6’_
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Example: To evaluate the following integral:

84022 4 3
/Md:p

2+ 1
Perform long division:

23+ 222+ 3 +2+—x+1
T T .
2 +1 2 +1

Then integrate term by term:

—z+1 x? -z 1
2 der = — +2 d dzx.
/(x+ +x2+1> T 2+:c—|—/x2+1 x+/x2+1x

— 1 1
/ 5 —fl dx = —3 In(z* + 1), / P dr = arctan(x).
T T

3422243 2 1
/%dmz %+2x— Eln($2+1)+arctan(x)—l—0.
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Chapter

Introduction to descriptive statistical analysis

Introduction

Statistics is a scientific method that consists of: reducing data on large sets, then analyzing,
commenting on, interpreting, and finally critiquing this data.

4.1 Basic concepts

In this section we will present some basic concepts and definitions associated with statistical
language.

4.1.1 Definitions

Population: The population, also called the universe, is a well-defined set of homogeneous ele-
ments on which a statistical study is to be carried out.

Sample: A sample is the subset of the population on which the observations are made.

Individuals: The individuals, also called statistical units, may be human beings, objects, or
animals.

These three concepts (population, sample, and individuals) can be illustrated as follows:

a : )

X X

opulation
Echantillon

X 7lndividus

Characteristic: A characteristic is a feature or property that allows us to identify individuals
and classify them into subsets. Note that each individual may be described by one or
several characteristics. Moreover, the modalities must be mutually exclusive, meaning that
an individual cannot belong to more than one modality at the same time.
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Categories: The categories (modalities) of a characteristic are the different possible situations
of that characteristic. For example:

1. The characteristic “Sex” has two categories: {Female, Male}.

2. The characteristic “Marital status” has the following categories:
{Married, Single, Widowed, Divorced}.

4.1.2 Character type

We distinguish two types of characteristics:

Qualitative characteristic: A characteristic is said to be qualitative when its categories are not
measurable. They are identified by words describing a state. Example: Sex, occupation,
nationality, ... This type of variable can in turn be classified into two categories:

1. Nominal: where the categories are measured on a nominal scale, meaning they are
expressed by names. Example: eye color, types of plants, ...

2. Ordinal: where the categories can be presented on an ordinal scale; they express the
degree or level of a state characterizing an individual.

Example 1: The characteristic “metal resistance to heat” has the following categories:
slightly resistant, moderately resistant, highly resistant.

Example 2: The characteristic “high school diploma grade” has the categories: excel-
lent, very good, good, fair.

Quantitative characteristic: A characteristic is said to be quantitative when its categories are
measurable, that is, expressed as numbers. The characteristic is then called a statistical
variable, and the different categories are the possible values of the variable.

Example: Age, height, weight, and number of children are quantitative characteristics, sta-
tistical variables whose categories are measurable in various specific units. Quantitative
variables are of two different types:

1. Discrete variables (or discontinuous): A quantitative variable is said to be discrete
if it can take only isolated values. A discrete variable that takes only integer values is
called discrete. For example, the number of children per household can only be 0, 1, 2,
3, ...; it can never take a value strictly between 0 and 1, or between 1 and 2, or between
2 and 3, ...

2. Continuous variables: A quantitative variable is said to be continuous when it can
take any value in a finite or infinite interval. For example, the diameter of a tree, its
height, or the average grade of a semester, ...

Caractére

Quantitatif Qualitatif

Continue Discret Nominale Ordinale

25



Chapitre 3. Integrals Afroun F.

4.2 Statistical tables and graphical representations

The statistical information collected in its raw form is practically unusable. In order to give it
meaning and usefulness, it must be organized, classified, and processed, mainly by using tables
and graphs.

Presenting qualitative or quantitative statistical data in the form of statistical tables is a very
important and essential step for subsequent statistical procedures. Afterwards, the statistical
tables are represented by graphs in order to visualize the behavior of the statistical variable.

In what follows, after introducing the notion of frequency (absolute and relative), we will
highlight the difference between graphs specific to qualitative characteristics, discrete quantitative
characteristics, and continuous quantitative characteristics.

4.2.1 Statistical tables: Count and frequency

Let us consider a population composed of N individuals described by a characteristic X, which
consists of the categories 1, s, ..., zr. Presenting this information in a table consists of counting
the number of individuals corresponding to each category and then organizing them.

The theoretical table may be presented as follows:

Categories x; of the characteristic | xy | o | ... | T; | ... | Tk
Number of individuals n; ny | no | ... | n;| ... | ng

The number n; of individuals having category x; of the characteristic X is called the count or
absolute frequency. Thus, we have the notion of the total count, denoted by n, defined as

k
n:Zni:n1+ng+---+nk,

i=1

which represents the size of the sample taken for statistical analysis.
The observations organized in the table form a statistical series (or statistical distribution),
which consists of all the data and their corresponding counts, denoted by {(xz, ng), i = L_k}
The frequency or relative frequency of the category z; is the number f; = = which
measures the proportion of individuals having category x; in the sample. Note that the frequency
fi satisfies the following two properties:

1. Foralli € {1,...,k}, we have 0 < f; < 1.

k

22 fi=h+tfet+fi=1

i=1
Exemple 1 Let the sample below of size n = 50, taken from a discrete quantitative variable:

143516 316152146
15

6 4 2 o 1
2426132431456 2 4 2 11

w W

1 6 1 5
2 4 ) 2

The grouping of the observations (counting of frequencies) provides us with the following table:
X; 1 2 3 4 5 6
n; 13 9 6 8 7 7

fi=mni/n | 0.26] 0.18| 0.12| 0.16 | 0.14 | 0.1}
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4.2.2 Graphical representation of a qualitative variable

To graphically present a qualitative variable, several types of diagrams are available. Below are
the most commonly used ones in practice.

e Bar chart: This type of representation is obtained by constructing as many columns as
there are categories of the characteristic. These columns are rectangles with a constant base
and height proportional to n; (or f;).

e Pie chart: The pie chart allows us to visualize the relative share of each category of the
characteristic. The base of this representation is a circle divided into as many sectors as
there are categories, such that the angle 6; representing the share of x; is given by:

360° — n o Mi _ onno
0. =7 — n = 6, = 360 xz—360 X f;

Exemple 2 The distribution of workers in a company according to their qualification is summa-
rized as follows:

Qualification Workers | Employees | Technicians | Engineers | Total
Number of workers n; 140 30 20 10 200
Relative frequency f; 0.7 0.15 0.10 0.05 1

The angles corresponding to the distribution of workers according to qualification are:
01 = 360° x f; = 360° x 0.7 =252° 6 = 360° x fy = 360° x 0.15 = H4°
03 = 360° x f3 =360° x 0.10 =36° 6, = 360° x fy = 360° x 0.05 = 18°

The graphical presentation of the distribution of workers can be done using one of the following
diagrams:

160

© Ouvriers = Employé T ici Ingénieurs

Ouvriers Employés Techniciens Ingénieurs Diagramme circulaire
Diagramme en Tuyaux des effectifs des fréquences

4.2.3 Graphical representation of a discrete quantitative variable

The appropriate graph to represent a statistical series from a discrete quantitative variable is the
bar chart, where each value x; of the variable corresponds to a bar whose height is proportional
to n; or f;.

Suppose that the statistical distribution of the number of rooms per dwelling in a certain
locality is given as follows:
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Number of rooms x; 1 2 3 4 5 6 | Total
Number of dwellings n; | 5 10 | 20 30 25 10 100
fi 0.05 | 0.1 ] 0.20 | 0.30 | 0.25 | 0.10 1

The corresponding diagram of this series is shown in Figure 4.6 (left). If we connect the tops
of the bars, we obtain the frequency polygon (see Figure 4.6 (right)).

fi 035 T T T T T T fi o03s

Plygone des fréquens

s

o1 f g o1
0.05 - T 4 0.05 -
0 o

1 2 3 4 5 6

X

Figure 4.1: Bar chart of room frequencies per dwelling.

4.2.4 Cumulative Counts and Frequencies

Définition 4.1 Cumulative counts (resp. cumulative frequencies) are defined as the number N;
(resp. F;) such that:

Ni=Y n; (resp. ;=) f)),
j=1 Jj=1

The cumulative frequency F; answers the question: what proportion of individuals have a value
less than ;11 or greater than or equal to x;?

Définition 4.2 The cumulative curve (or cumulative frequency polygon) (absolute or relative) is
the graphical representation of these cumulative frequencies.

For a discrete statistical variable, the cumulative curve is the representation of a step function
whose horizontal steps have coordinates (x;, F;). This function is called the empirical distribution
function, defined by:

F : R—]0,1]
r — F(x), such that

0 if v < aq
fi if vy <z <19
Flx)=q fit/f2 ifza<z<uxs
Y i ifri <z <mig
1 if v > xy,
Example: distribution of dwellings according to the number of rooms
(0 ifx <1
0.05 if1<xr<?2
0.15 if2<zx<3
F(z)=1< 035 if3<x<4
0.65 if4<x<5b
090 f5<x<6
! if x> 6

28



Chapitre 3. Integrals Afroun F.

Z; 1 Ji F/ Fi\
1 5) 0.05 | 0.05 | 0.95
2 10 | 0.10 | 0.15 | 0.85
3 20 | 0.20 | 0.35 | 0.65
4 30 | 0.30 | 0.65 | 0.35
5}

6

25 10.2510.90 | 0.10
10 1010 |1 0
Total | 100 | 1

Statistical table of increasing and decreasing cumulative frequencies for the number of rooms
per dwelling.

Remarque 4.1 The function F' is discontinuous at each point of the statistical variable.

1 T —!
!
P |
' '
p-07s g1 .
____________________ 3
| | 1
[ |
06 i i
p=075—> \
R L
i
04 |
P —
p=025—>| _ _ _ _ L ____i i
1 '
02 | |
— i
1 1 1
0 L L L
1 2 <~ % s X

Figure 4.2: Increasing cumulative curve for the number of rooms per dwelling.

4.2.5 Graphical representation of a continuous quantitative variable

For a continuous variable, to establish the statistical table, it is necessary first to group the data
into classes. A class is defined by its lower and upper bounds: by convention [a;_1, a;[. It is clear
that this requires defining the number of classes and the amplitude associated with each.

Let the i class be given by [a;_1, a;[, which is fully defined by:

v

The lower bound of the class: a;_1.

v

The upper bound of the class: a;.

A%

The amplitude of the class: A; = a; — a;_1.

ait+a;—1
—5 -

A%

The class midpoint: x; =
Remarque 4.2 In practice:
1. Generally, classes of equal amplitude are chosen.

2. The choice of the number of classes and their amplitude depends on the total number of
observations n.

3. Any reduction in the number of classes and any increase in amplitude leads to a loss of
information.
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4. Sturges’ rule: Number of classes ~ 1+ 3.3log N, and the amplitude is given by

max r; — min x;

A:

number of classes

5. The values of a continuous statistical variable are the class midpoints.

The statistical table of a continuous variable series is generally presented as follows:

X [a’O’al[ [a17a2[ e [aiflaai[ e [amflaam[
n/[/ nl n2 .. nz o e nm

where n; represents the number of observations in the i*" class, while the frequency is defined
as in Section 4.2.1, i.e., f; = ™ with n the total sample size.

To graphically represent a continuous variable, we use the histogram, which is a generalization
of the bar chart to the notion of classes. T'wo situations are possible: series with equal class widths
and series with unequal class widths, as illustrated below.

Each class is represented by a rectangle whose base is the class amplitude and whose height
is proportional to the frequency or number of observations (see Figure 4.3).

e  ELLLEC L fipmmmmmmaaaaaaa

Figure 4.3: Illustration of graphical representation of a class.

The frequency polygon in this case is the line joining the midpoints of the top sides of the
rectangles (see Figure 4.6).

T \

Figure 4.4: The frequency polygon.

Exemple 3 The data below come from an experiment in which the plasma calcium concentration
was measured in 40 individuals who received a hormonal treatment.

X [ [10,16] ] [16,22] | [22.28] | 28,34 | [34.40] | [40.46]
1

n; 4 ) 17 8 4
fi| 0.100 | 0.150 | 0.425 | 0.200 | 0.100 | 0.025
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Histogramme des effectifs Histogramme des fréquences

0 a5

X 5 10 15 20 25 30 35 40 5 X

Figure 4.5: Histogram of counts and Histogram of frequencies of the plasma calcium concentration.

Exemple 4 The distribution of a group of individuals according to their height (e¢m) is given in
the following table:

Height (em) | ni | fi | F/ | F>
[149.5,159.5[ | 14 | 0.08 | 0.08 | 0.92
[159.5,169.5] | 32 | 0.18 | 0.26 | 0.74
[169.5,179.5[ | 65 | 0.37 | 0.63 | 0.37
[ [
[ [

179.5,189.5[ | 47 | 0.27] 0.9 | 0.1
189.5,199.5[ | 17 | 0.10 | 1 0
Total 175 | 1

Statistical table of increasing and decreasing cumulative frequencies for the distribution of the
height(cm) of a group of individuals.

0 P I I I I I I
139.5 149.5 1595 169.5 179.5 189.5 199.5 2095
X

Figure 4.6: Increasing cumulative curve.

4.3 Numerical Characteristics of a Statistical Variable

When observing a graphical representation of a statistical series, two impressions may be noted:

1. The order of magnitude of the statistical variable, characterized by the values located at the

center of the distribution; this is called the “central tendency characteristic” (or position
measure).

2. The fluctuations of the observations around the central value; this is called the “measure of
dispersion”.
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4.3.1 Measures of Central Tendency

They are intended to define the central values of the statistical series. These are: the mode, the
median, and the arithmetic mean.

4.3.1.1 The Mode

a) Discrete Case

The mode, denoted by M,, of a discrete statistical variable is the value with the highest
frequency.

Exemple 5 In Example 2 (Number of rooms per dwelling), M, = 4 (because value 4 has the
highest count).

Remarque 4.3 On a bar chart, the mode corresponds to the bar with the greatest height.

b) Continuous Case

In this case we refer to the “modal class”, which is the class with the highest frequency per
unit width.

In Example 3, the calcium concentration in plasma, the modal class is [22, 28].

Remarque 4.4 In the continuous case, the mode may be taken as the midpoint of the modal class.

For an approximate calculation, use the formula: for the modal class [e;_1, €;],
M, € [e;—1, €

Ay
Mo = €1 +&1A1 +A27
where a; is the class width,
Aq: excess of the modal class over the preceding class,
As: excess of the modal class over the following class.

Graphically: M, = e;_1 + d (d calculated using the scale).

: /
6 / 5:
2 d %
0

10, 16[ [16, 22( 22,280\, 128,340 (34,40( 40, 26

Figure 4.7: The mode graphically

4.3.1.2 The median

The median M, is the value of the statistical variable that divides the individuals, arranged in
ascending (or descending) order, into two equal groups.
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Exemple 6 Consider the dataset: {12;26;6;3;32;15;21}.
Ordered: {3;6;12;15;21;26; 32} .
The median s M, = 15.

In general, the median of a statistical variable is the value M, such that F(M,) = % = 0.5,
where F' is the empirical distribution function.

Calculation of the median

a) Discrete case:

Let x(1), Z(2), ...T(n) be the n observations arranged in increasing order:

Z() < Z(2) S S T(n)-

1st case: n odd, n =2p+1

) ST S - STp) S [ Lpay | S

5=

(p+2) < 0 = L(2p+1) -

-~ -~

p observations p observations

M. = x(p11): the value at position (p+ 1).
2nd case: n even, n = 2p

) S 3) S o S 0 S| i) | S Tei) S o S Tap)

N
-~ -~

p observations p observations

M, = w, with [x(p), x(pﬂ)} the median interval.
In Example 2: number of children per household.
— 10 — _ e tEe 141
n=10=2x5= M, = (5)2(6)7%71.
0011 1 1 1

T U
X(5) X(6)
Graphical determination of the median:
1. No horizontal plateau of the cumulative curve has ordinate (0.5).

Figure.

0.2 < 05<0.7.
F(0) < 05<F(1).
= M, =1 child.

2. If a horizontal plateau of the cumulative curve has ordinate 0.5, the median is undetermined

between two consecutive possible values:
M Ti—1+T;
e — K 2 1

b) Continuous case:

Since the function F is continuous and monotonic () between 0 and 1, the median is the
unique solution of the equation F(z) = 1.

Graphical determination of the median (interpolation method):
Let [e;_1, e;[ be the median class.

Figure.
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F(e;—1) < 0.5 < F(e)

F(e;) — F(ei—1) 05— F(ei—)
€ —€i—1 M, — e

fi 05— F(ei1)

a; M, —e;q

tana =

Hence,

fi(Me - ei—l) = Q; (05 - F(e,;_l))
And therefore,

M, = e+ a, 0.5 — F(e;i—1)
fi

a; : class width

fi + frequency of the median class.

Graphically:

M, = e;_1 + d (where d is calculated from the scale).

4.3.1.3 Arithmetic Mean

It is the sum of all observations divided by the total number of observations.

a) Discrete case:

Let X be a discrete variable taking the values x1, s, ..., x; with corresponding frequencies
Ny, Na, ..., N, such that Zle n; =n.

The arithmetic mean is denoted by

k

_ 1 N1T1 + Naky + ... + N2y
n n

=1

k

T = 2, (Weighted mean).
> firi  (Weig
i=1

b) Continuous case:

The values are grouped into classes; by convention, we choose x; as the midpoints of each class,
and we use the same formula:

g
i
ing
=
B

(z; = midpoint of the i*" class).

xTr;, =

Algebraic properties of the arithmetic mean:

Property 1: (Change of origin)

Let z1,29,...,x; be the observed values of a statistical variable X and nq,ns,...,n; their
frequencies.

Let xg be a new origin.
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Define the new variable
Y, = T; — Xy, Vi = 1,_71, then 7 = y + X9 with y = Zle fzyz
Indeed, since x; = y; + o,

&l
I

1 1

1o i
= — nY; + — n;To = Y + To.
n; Y n; 0=Y 0

Remarque 4.5 This change of variable is used to simplify calculations; in practice, one often
chooses xog = M, or M.,.

Property 2: (Change of scale and origin)
If we choose y; = #—*2, where x¢ and a are constants,

then * = ay + xy.

Remarque 4.6 In practice, we choose xq as: the median, the mode, or the class center.
a = ged(a;) (continuous case),
and the spacing between x; (discrete case).

Proposition 4.1 The sum of deviations from the arithmetic mean is zero:
Zle TLZ(ZL‘Z - E) = 0.
Indeed: 3% ni(v; —T) = Zle n;x; — Zle n,T =nT —nT = 0.

Proposition 4.2 The sum of squared deviations from the arithmetic mean is minimal:
pla) = Zle ni(z; — a)? is minimal for a = T.

Relative position of the mode, median, and mean
Consider a unimodal statistical distribution.
1. When the distribution is symmetric, the three measures of central tendency coincide.

Figure

2. When the distribution is asymmetric, the median is generally between the mode and the
mean, and is usually closer to the latter.

Figure

4.3.2 Measures of Dispersion

Exemple 7 Consider the two statistical series:

X ={6;6;T, 7;; 9;9;10;10}.

Y ={1;2;4;6; 8],10;12;14;15}.

We notice that X and Y have the same mean and the same median T =7y = M, = 8, but they
are different: the first series X 1is less dispersed than the second.

Exemple 8 Consider the statistical series X of k values arranged in increasing order:
T S x2) << Ty
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4.3.2.1 Range

The range, denoted by “e”, is the difference between the two extreme values: the smallest and the
largest observed value.

e = max (z;) — min (z;) = 2w — T().

4.3.2.2 Variance and Standard Deviation

The empirical variance of the statistical variable X taking values x;, 1 < i < k, with frequencies
n;, 1 <1<k, and Zle n; = n, is:

V(X) = %Zn(w 7P = il -7

The empirical standard deviation, denoted by o, is:

oy = /V(X) = %Zni(:ci—f)zz > filwi 7P

Properties of the variance:

L V(X)>0.
2. V(X)=L13F na? -7 =" fia? -7

n (2 ) -

3. Let T and V(X) be the mean and variance of the statistical variable X.

Define a new variable X’ with mean ¥’ and variance V' (X’) such that:

T — X0 . T
x = . i=1k
a

where zy and a are constants. Then:
V(X)=d*V(X") and ox =aoyx.

Remarque 4.7 When comparing two statistical series of the same nature, the one with the larger
ox 1S the more dispersed.

Coefficient of Variation:
It is a measure of relative dispersion defined by:

Cv = UTX.
Z|

Properties:
1. Cv is a dimensionless quantity.
2. C'v does not depend on the units used.

3. C'v makes it possible to compare two series expressed in different units.
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4.3.2.3 Interquartile Range

a) Quantiles: these generalize the median.

- A quantile of order a (0 < o < 1), denoted by x,, is the solution of the equation F(z) = «a.

That is, a proportion « of the individuals have the characteristic X less than z,,.

- Quartiles are commonly used.

These are the values of the variable x; that divide the series into 4 equal parts. There are 3
quartiles, denoted Q)1, @2, @3, with )1 being the quantile of order }1, ()2 the quantile of order %,
and @3 the quantile of order %.

That is, F(Q1) = 1, F(Q2) = 3 = F(M,), and F(Q3) =3

- Interquartile Range:

It contains 50% of the population, leaving 25% on each side.

The interquartile range is given by: Q)3 — Q1.

e Practical Determination:

To determine Q3 — @)1, first calculate ()7 and ()3 using the same method used for finding the
median.

e Discrete Case (graphically)

02

]
1

p=075—>1 .
= S e e !

1 1 1

1 1 1

06 i i i
p=0.75—> 1 1 1
e S | 1 1

i i i

04 | H |
— 1 1

p=0.25—>»> i i 1
1 1

1 1

i i

1 1

1 1

6

If F(z;—1) <05 < F(z;) = M, = x;.
If F(x;oq) <025 < F(x;) = Q1 = ;.
If F(z;—1) <0.75 < F(z;) = Q3 = ;.
If Va E]xi_l,xi[, F((L’) 05= M, = xi+;i71
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Continuous Case:

Same method as for the median.

If F(e;) =0.5 (resp. 0.25, 0.75), then e; = M, (resp
If F(e;—1) <0.5 < F(e;), then:

- Q1 Qs).

with [e;_1, e;[ being the median class.

0.5 — F(e;_
M, =e;i_1 + ai—(el)v
i
0.25 — F<6i71>
Qi1 =ei—1+a; 7. . Q1 € e, e
0.75 — F(ei_l)
Qs =ei—1+a; 7. . Qs € [ei—1, e

Q|:'\1.5
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