Chapter 1

Numerical Methods for Finding Roots

This chapter provides detailed formulas and derivations (without full formal proofs) for four classical root-finding methods: Fixed Point Iteration, Bisection, Newton–Raphson and Secant methods. For each method we give 2 examples with Python implementations and numerical results (iterations, final approximations, absolute error, and observed order of convergence when possible).

1.1 Fixed Point Iteration Method

1.1.1 Method and Derivation (brief)

Given f(x) = 0 we rewrite as x = g(x). The iteration is

$$x_{n+1} = g(x_n). (1.1)$$

If g is continuously differentiable in a neighborhood of a fixed point x^* and $|g'(x^*)| < 1$, then the sequence converges linearly. A first-order error relation (Taylor expansion) gives:

$$e_{n+1} := x_{n+1} - x^* = g(x_n) - g(x^*) = g'(x^*)(x_n - x^*) + \mathcal{O}((x_n - x^*)^2), \tag{1.2}$$

hence asymptotically $|e_{n+1}| \approx |g'(x^*)| |e_n|$.

1.2 Example 1: $f(x) = \cos x - x$, $g(x) = \cos x$

The root is $x^* \approx 0.7390851332151607$.

Iteration and results

Initial guess $x_0 = 0.5$

Iterations performed 69

Final approximation $x_n = 0.739085133215$ Absolute error $|x_n - x^*| = 3.063e - 13$

Observed order (estimate) 1.000

1.3 Example 2: $f(x) = x^3 - x - 2$, transformation $g(x) = (x+2)^{1/3}$

This transformation is not standard; convergence is not guaranteed for all initial guesses but can work near the root $x^* \approx 1.5213797068045676$.

Iteration and results

Initial guess $x_0 = 1.5$

Iterations performed 14

Final approximation $x_n = 1.521379706805$ Absolute error $|x_n - x^*| = 3.531e - 14$

Observed order (estimate) 1.000

1.4 Bisection Method

1.4.1 Method and Error Estimate (brief)

For continuous f with f(a)f(b) < 0 the intermediate value theorem guarantees a root in (a, b). Bisection halves the interval each iteration; after n iterations the interval width is $(b-a)/2^n$, thus if tol is target width, required iterations satisfy

$$n \ge \left\lceil \log_2 \frac{b - a}{\text{tol}} \right\rceil. \tag{1.3}$$

1.5 Example 1: $f(x) = x^3 - x - 2$ on [1, 2]

Initial interval [1, 2] Iterations performed 40

Final midpoint $x_n = 1.521379706805$ Absolute error $|x_n - x^*| = 8.515e - 13$

1.6 Example 2: $f(x) = \sin x - 0.5$ on [0, 2] (root at $\pi/6$)

Initial interval [0, 2] Iterations performed 41

Final midpoint $x_n = 0.523598775598$ Absolute error $|x_n - x^*| = 5.513e - 13$

1.7 Newton–Raphson Method

1.7.1 Method and Local Error Relation (brief)

Newton's iteration is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. (1.4)$$

Assuming f is sufficiently smooth and $f'(x^*) \neq 0$, a Taylor expansion yields the local quadratic error relation

$$e_{n+1} \approx -\frac{f''(x^*)}{2f'(x^*)}e_n^2,$$
 (1.5)

showing (quadratic) convergence when close to the root.

1.8 Example 1: $f(x) = x^3 - x - 2$, $x_0 = 1.5$

Initial guess $x_0 = 1.5$

Iterations performed 4

Final approximation $x_n = 1.521379706805$ Absolute error $|x_n - x^*| = 0.000e + 00$

Observed order (estimate) 2.000

1.9 Example 2: $f(x) = x^2 - 2$ (compute $\sqrt{2}$), $x_0 = 1$

Initial guess $x_0 = 1$

Iterations performed 6

Final approximation $x_n = 1.414213562373$ Absolute error $|x_n - x^*| = 2.220e - 16$

Observed order (estimate) N/A

1.10 Secant Method

1.10.1 Method and Convergence (brief)

The secant method uses the finite-difference approximation to the derivative:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$
(1.6)

Its convergence order is superlinear with $p \approx 1.618$ (the golden ratio) under suitable conditions.

1.11 Example 1: $f(x) = x^3 - x - 2$, $x_0 = 1$, $x_1 = 2$

Initial guesses $x_0 = 1, x_1 = 2$

Iterations performed 8

Final approximation $x_n = 1.521379706805$ Absolute error $|x_n - x^*| = 0.000e + 00$

Observed order (estimate) 1.613

1.12 Example 2: $f(x) = \cos x - x$, $x_0 = 0$, $x_1 = 1$

Initial guesses $x_0 = 0, x_1 = 1$

Iterations performed 6

Final approximation $x_n = 0.739085133215$ Absolute error $|x_n - x^*| = 0.000e + 00$

Observed order (estimate) 1.595

1.13 Comparison Summary and Recommendations

Method	Derivative?	Typical Order	Iters (example)	Final abs. error (example)
Fixed Point	No	Linear (—g'—)	69, 14	3.063e-13, 3.531e-14
Bisection	No	Linear	40, 41	8.515e-13, 5.513e-13
Newton	Yes	Quadratic	4, 6	0.000e+00, 2.220e-16
Secant	No	≈ 1.618	8, 6	0.000e+00, 0.000e+00

1.14 Discussion

The numerical examples illustrate typical behavior: Newton converges extremely quickly when derivative information is available; Secant approaches Newton speed without requiring the derivative; Bisection is robust but requires more iterations; Fixed point depends strongly on the chosen transformation g. Hybrid strategies (e.g., use Bisection to bracket, then Secant/Newton to accelerate) are recommended in practice.