
TP 1 Artificial intelligence and machine learning October 2025 #
Dr. Samir KENOUCHE

This course focuses on studying linear regression in the context of neural networks derived
from artificial intelligence. In this context, regression can be understood as a simple form of
supervised learning, which often forms the basis for more complex models. It should be noted
that adjustment is an optimization operation that involves searching for the theoretical profile
that best fits the experimental data (the examples). In many cases, graphical representation
is insufficient to understand the functional relationship between the data to be adjusted. In
fact, prior knowledge of the theoretical model may be essential. The adjustment process must
allow the outputs (yi) to be interpreted and predicted based on the inputs (xi). There are
many methods for adjusting the parameters of the theoretical model in order to choose the
best fit. In this course, we will discuss adjustment using ordinary and weighted least squares.
These techniques are widely used after data collection in both physics and chemistry. The
algorithms will be written in Python. The theoretical aspect of the least squares method is
described at the end of the document.

Problem 1. Linear fitting consists of finding a linear relationship between the inputs (fea-
tures) and an output (target). Mathematically, this is written as:

ŷ = wTx+ b (1)

� x: Input vector

� w: Weight vector

� b: Bias

� ŷ : Prediction

The purpose is to find the optimal values of w and b that minimize the error between ŷ
(predicted value) and y (true value). In a neural network, each neuron basically performs a
linear adjustment, followed (often) by a nonlinear activation function:

a = f(wTx+ b) (2)

Learning is performed using the gradient descent method. More details about this method are
available on my website Click here

(3)

Solution. An example of an application is provided as a Phyton program:

""" Dr. Samir KENOUCHE 20/10/2025 """

import numpy as np

import matplotlib.pyplot as plt

import random

np.random.seed(1)

1

https://sites.univ-biskra.dz/kenouche/my_folder/phy/chapitre2.pdf

EXAMPLE OF DATA

nombre_points = 100

x = np.random.rand(nombre_points)

y = 10*x + 1 + np.random.randn(x.size)

INITIALIZATION OF LEARNING PARAMETERS

weight = 0.0 # WEIGHT

bias = 0.0 # BIAS

neta = 0.1 # LEARNING RATE

ndata = 100 # NUMBER OF LEARNING CYCLES

critere = np.zeros(ndata)

for epoch in range(ndata):

dweight = 0

dbias = 0

cost = 0

for i in range(nombre_points):

yhat = weight*x[i] + bias

dweight = dweight + (yhat - y[i]) * x[i]

dbias = dbias + (yhat - y[i])

cost = cost + (yhat-y[i])**2

UPDATE OF W AND B BY GRADIENT DESCENT: LEARNING

weight = weight - neta*(2*dweight/nombre_points)

bias = bias - neta*(2*dbias/nombre_points)

critere[epoch] = cost

print(weight,bias)

DISPLAYING GRAPHS

plt.scatter(x, y)

plt.plot(x, weight*x+bias,"r-", label="Fitting", linewidth=1)

plt.title("Random scatter plot")

plt.xlabel("X axis")

plt.ylabel("Y axis")

plt.show()

plt.plot(critere[:60])

plt.show()

A simple neural network without a nonlinear activation function. We can also perform
the same task using the Keras library dedicated to neural networks.

2

""" Dr. Samir KENOUCHE 20/10/2025 """

from keras import *

import numpy as np

import matplotlib.pyplot as plt

import random

EXAMPLE OF DATA

nombre_points = 100

x = np.random.rand(nombre_points)

y = 10*x + 1 + np.random.randn(x.size)

MODEL BUILDING

model = Sequential()

model.add(layers.Dense(units=1, input_shape=[1]))

model.compile(loss=’mean_squared_error’, optimizer=’sgd’)

LEARNING

model.fit(x, y, epochs=300, verbose=0)

RESULTS

weights = model.get_weights()

print("WEIGHTs:", weights[0], "BIAIS :", weights[1])

□

1 Theoretical background

Many methods exist for adjusting the parameters of theoretical models in order to choose the
best fit. In this section, we will discuss linear regression 1 in the least squares sense. From
a conceptual point of view, the linear model is characterized by two entities, deterministic
and random, according to:

Random variable ↢ y = f(x; θi)︸ ︷︷ ︸
Deterministic

+ ϵi︸︷︷︸
Random

(4)

The dependent variable y has a random character “inherited” from ϵi. This regression
model is constructed in accordance with the following assumptions:

� The distribution of the residuals (or regression error) ϵi is independent of x. This is
the assumption of independence.

1The word linear here applies to the coefficients and not to the explanatory variable. In this case,
∂f(ai, xi)

∂ai
̸= f(ai). For a nonlinear model, we have

∂f(ai, xi)

∂ai
= f(ai).

3

� The distribution of regression errors follows a normal distribution with mean zero
and constant variance N (0, σ2). This assumption is also known as the assumption of
homoscedasticity:

∀i = 1, 2, ..., n E(ϵi) = 0, V(ϵi) = σ2

� Cov [ϵi, ϵj] = 0 for i ̸= j

The basic idea behind the least squares method is to minimize the sum of squared dif-
ferences (also called residuals) between the experimental data and the model we’re looking
at. The goal is to find the theoretical model, generally written as f(xi; θi), that best fits the
experimental measurements. Here, θi are the parameters of the model in question, which
have physical significance. In the least squares method, these are determined by minimizing
an objective function (also called a cost function or optimization criterion), denoted S(θ̂1, θ̂2)
2

The optimality criterion is that of minimizing residuals. The estimates, θ̂1 and θ̂2, reflect
the minimum of the objective function. We will illustrate this point by first considering the
model: ŷi = θ1 xi + θ2

S(θ̂1, θ̂2) =
n∑
i

e2i =
n∑
i

(yi − f(xi; θi))
2 (5)

S(θ̂1, θ̂2) =
n∑
i

e2i =
n∑
i

(yi − θ1 × xi − θ2)
2 (6)

This expression reflects the sum of all vertical distances, whose unit is that of the x-axis,
between the experimental data and the theoretical model under consideration. Mathemati-
cally, this minimization is expressed as:

δS(θ1, θ2)

δθ1

∣∣∣∣∣
θ1=θ̂1

=
n∑

i=1

2 (yi − θ̂1 × xi − θ̂2)× (−xi) = 0

δS(θ1, θ2)

δθ2

∣∣∣∣∣
θ2=θ̂2

=
n∑

i=1

2 (yi − θ̂1 × xi − θ̂2)× (−1) = 0

(7)

⇒


2

[
n∑

i=1

yi − θ̂1

n∑
i=1

xi − θ̂2

]
× (−xi) = 0

2

[
n∑

i=1

yi − θ̂1

n∑
i=1

xi − θ̂2

]
× (−1) = 0

(8)

2It should be noted that the function S(θ̂1, θ̂2) (see equation (6)) is strictly convex. It has a minimum at

a single point (θ̂1 and θ̂2), which is obtained by setting the partial derivatives of S to zero.

4

⇒


2

[
−

n∑
i=1

yi xi + θ̂1

n∑
i=1

x2
i + θ̂2 xi

]
= 0

2

[
−

n∑
i=1

yi + θ̂1

n∑
i=1

xi + θ̂2

]
= 0

(9)

⇒


θ̂1

n∑
i=1

x2
i + θ̂2 xi =

n∑
i=1

yi xi

θ̂1

n∑
i=1

xi + θ̂2 =
n∑

i=1

yi

(10)

This system of equations can be written in matrix form, as follows:


n∑

i=1

x2
i

n∑
i=1

xi

n∑
i=1

xi n

×
[
θ̂1
θ̂2

]
=


n∑

i=1

xiyi

n∑
i=1

yi

 (11)

The vector of estimated parameters is obtained as follows:

[
θ̂1
θ̂2

]
=


n∑

i=1

x2
i

n∑
i=1

xi

n∑
i=1

xi n


−1 

n∑
i=1

xiyi

n∑
i=1

yi

 (12)

Remember that the inverse of a M2×2 matrix is simply calculated using the general for-
mula:

M2×2 =

[
A B
C D

]
⇒ M−1

2×2 =
1

det(M)

[
D −B
−C A

]
(13)

Avec det(M) = AD −B C

From equation (12), the slope θ̂1 and the y-intercept θ̂2 are determined from the formulas:

θ̂1 =

n
n∑

i=1

xi yi −
n∑

i=1

xi

n∑
i=1

yi

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 and θ̂2 =

n∑
i=1

x2
i

n∑
i=1

yi −
n∑

i=1

xi

n∑
i=1

xi yi

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

5

	Theoretical background

