Mohammed Khider University of Biskra Faculty of Science and Technology Common Core Science and Technology 2nd year of engineering Module: PW of fundamental electricity

	Biskra on:/2025
N	ame and surname of Grp No:
1.	•••••
2.	•••••
3.	
1	

PW N°02: Electrical measurements (Part2) (Oscilloscope)

Objectives of the practical work:

- 1. Verification of Thevenin's theorem for a resistive network
- **2.** Visualize a voltage (or more) on the oscilloscope.

A. Thevenin's theorem

Either a linear network powered by a generator eg according to the following diagram, with

$$R_g = 0; R_1 = R_3 = 1K\Omega; R_2 = R_c = 100\Omega$$

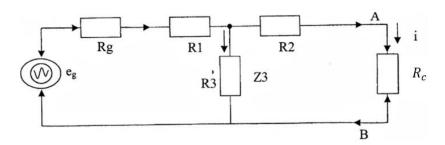


Figure 1

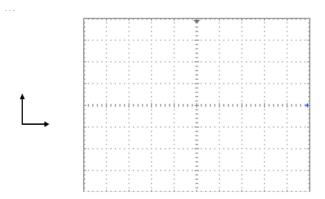
We want to determine the current flowing through the load R_c . To do this, we use Thevenin's theorem in two steps:

1. Disconnect the load R_c

Measure the voltage between terminals A and B This voltage is the Thévenin equivalent voltage E_{Th} . (Using an oscilloscope)

.....

2. Keep the load disconnected and short-circuit the sources


Replace the voltage sources with short circuits while keeping their internal resistance. Then					
calculate the equivalent Resistance seen from terminals A and B. This is the Thévenin					
equivalent impedance R _{Th} .					
Now that you have measured Eth and Rth, apply Thevenin's theorem to give the equivalent					
circuit of Figure.1. with respect to the load Rc.					
3. from which we deduce the current in the load Rc :(formula)					
formula (deduced from the equivalent circuit):					
measured:					
B. Take measurements with the oscilloscope					
In this section, we will learn how to visualise the shape of a signal (using an oscilloscope).					
Let us try the following experiment: Adjust the LFG (Low Frequency Generator) so that it					
delivers the following signal:					
$U(t) = 6\sin(2\pi.100.t) + 2[V]$					
V_{max} =V Form= Frequency=Hz B=V					

1. Visualise the voltage U(t) across the GBF terminals using the oscilloscope in DC mode and take measurements using the oscilloscope's 'measure' button.

1

T= []	
F= []	
<u>Vmax</u> = []	
Vmin= []	
<u>Vmoy</u> = []	
<u>Veff</u> =[]	

2. Visualise the voltage U(t) across the GBF terminals using the oscilloscope in AC mode.

T=	[]
F=	
<u>Vmax</u> =	
Vmin=	
Vmoy=	. ,
Veff=	
******	[]

3. Take measurements with the voltmeter:

$$U(t) = 6\sin(2\pi.100.t) + 2$$
 [V]

Measure the voltage across the GBF using the voltmeter in DC mode.

 V_{DC} =V it represents $\square U_{moy} \square U_{eff} \square$ Autre :.....

Measure the voltage across the GBF using the voltmeter in AC mode.

Note: Always choose the largest gauge for the value to be measured