Chapter 0: Mathematical reminders

I.1. Generadlities on Physical quantities ( 4k il ssalial)

e A physical quantity [A] is a quantity wich can be measured, with instruments or

even by using our senses, and wich that reports a physical property.

* For example: length, mass, time, temperature, electric current, light intensity,
volume.... etc

ePhysical quantities [A] have numerical magnitude “a” and unit {4}

_ ﬂ — Physical quantity
{4}

a
—— Unit
numerical magnitude

Example: The Velocity V=10 m/s



» There are two types of measurable quantities

= Scalar quantities:

Length, mass, time, energy...........

= \Vector quantities:

Velocity, Acceleration, Electric and magnetic field......



International System of Units(Called « SW

» This system is composed of the following fundamental units:

I e

Meter (m) Length

Kilogram (Kg) Mass

Second (S) Time

Ampere (A) Electric current intensity
Kelvin (K) Temperature

Candela (Cd) Luminous intensity
Mole Quantity of matter

» The First Fourth units form the system MKSA



Derived quantities

»These quantities are expressed as a combination of fundamental

guantities.

» The units of all quantities other than fundamental units is called derived
unit.

» Derived units are obtained in terms of fundamental quantities.

Exemple :

Area: m?
velocity : m.s?.

Force : Newton (N) = Kg.m.s2.

Energy : Joule (J) =Kg m?2.s2



I.2. Equation for dimensions (Dimensional Equations)

> Determine derived units based on fundamental units nombres réels

[A] = MeLFTYI* a, B,y,A:real numberd

» This equation consists of the equation for dimensions of a quantity A, with:
M : Mass, L : Length, T : Time, | : Current intensity

Examples:

<*Velocity : [V1=L.T7(m/s)
% Acceleration: [a] = L.T"2(m/s?)

“Force: F=md = [F]=MLT ?(kg.m.s"% = Newton)

Work: w= j Fodi = [W] = [F][dl] = MLT72L = MI*T~?(Kg.m?/s? = Joule)




Remark :

* The dimensional equation is used to check the homogeneity of the physical

formulas.

Example :

The period of oscillation of a simple pendulum of length L is it given by:

e() =T =2rgt2~2 = [TI=QT™HYELV2 =T > [T] =T False

e (I) > T = 2nL2g~1/2 = [T] = LY2UT™)™2 =T = [T] =T right



Il. Reminder on vectors

» Mathematical entity defined by multiple numeric values.

»These values describe the magnitude and orientation of the vector.

> A vector AB is characterized by: /
A

e|ts origin or point of application.

e|ts direction, which is the direction of movement of a mobile having
from point A to point B.

e|ts magnitude which presents the length AB. It is noted 145

» Unit vector or orth is a vector whose length is equal to one.



11.1- Projecting a vector onto an axis:

A8 = |45 @

U represent unit vector, with ||u]| =1

A’ and B’ are perpendicular projections of A and B on the axis (4)

A'B = |

A'B’|| w

|1A'B’|| = ||AB|| cos &




I1.2- The components of a vector:

T VA
- - - Ax AZ \\
A=A JT+A,j+Ak or Al4, RN
A,
Tel that ||A>||=\/A,ZC+A§,+A§ is the magnitude of A A E
|
Kl /. | )
1
B m— >
o "~ A LT
A, T L
X

> If avector AB set by the coordinates of the points A(Ax Ay A,)and A(B,; By; B,)

can be found using the following formula:

AB = (B, — A)i+ (B, — A,)j+ (B, — Ak



= ,ﬁ
Vector operations:

Geometrically
I. Addition
R Ax . Bx A’ \\
Al 4y ) o BBy DY
Az Bz 7. D N
A+ B S
//
AX i Bx //
- = - 7’
Analytically : (A+B)| Ay £B, B e
A, £ B,
Properties :
> n n n n
Z P= Y Ait Y Ayjy Ak > A+ B] = ]l4] +[|B]
i=1 i=1 i=1 i=1

> (/T+B) = (B +A) A, —A,
> Al 4y | = -4 -4,
> (A+B)+C=4A+(B+C) Az —4;



Il. multiplication of two vectors:

1.1 Scalar multiplication:

4.B = |[4]||B|| cos (4,B)

[ In Cartesian coordinates:

A.B=A,B,+A,B,+A,B,

U The angle 0 between A and Bis given by:

AB, +A,B, + A,B,

cos 0 =

\/sz +A4,° + Azz.\/sz + B,* + B,




- - =12
> A A=A

> (14).B = A(A.B) = A4.(AB)

- -

> ALB=AB= O(A and B are ortogonal)



1.2. Vector multiplication :

The vector multiplication of vectors Aand B , denoted AANB , is a vector C with:

ic
> Cis perpendicular to the plane formed by the vectors A and B

» The direction is given by using the right-hand rule. HHHHHHL

= (ZI_?)Z‘)) make a direct trihedron (5l 4530),

» the magnitude of ¢ corresponds to the area

of the parallelogram constructed on A and B

Analytically :

€]l = 4 A B|| = [4].IB]. |sin (4B)




+AyB,J AT+ AyByj AJ + AyB,j Ak

) ) Lo 7 T
+A,Bek AT+ AByk A+ AB K N K ® T @

» IAT= 77l sin(ZD) =0 Also jA7j=kAk=0

= AANB = (A,B, — A,B,)i — (AxB, — A,B,)j + (AxB, — A, B, )k




** Determinant method:

+ 4 +
:i) F E—_ - -
A) N\ § = |Ax S - | = +l(Asz - Asz) _](AxBZ - Asz)
B A +k(AxB, — A,B,)

= ANB = (AyB, — A,B))T — (AxB, — A,B)] + (A.B, — A,B,)k

] Properties:

1.LANB = —(B A 4) 2.A//B=>AANB=0



I1.3. Mixed product:

—

Mixed product is a triple vector product that combines the concept of scalar and
vectorial products to yield a scalar value: m = A (§ A 5)

Geometric interpretation:

O The absolute value m of the mixed product is the volume of the parallelepiped
formed by the vectors /T, B and C.

Q The vector BAC s perpendicular of the base of The parallelepiped and its

magnitude equal the area of the base: b = |§ A Z')|

U The altitude of the parallelepiped A
h is given by: h=|Z| cosa

> Therefor, the volume is given by : T:
V = Base(b) X h 189

A (§AZ)= |§/\Z‘>|. |Z| cosa
h




Mixed product properties :

QA (BAC)=B.(CAA) =C.(AAB)=(BAC).A=(CAA).B=(ANB).C

QA (BAC)=—-A.(CAB)=—-B.(AAC)=—C.(BAA)

O If any two of vectors /T, B and C are parallel, or if /T, B and C are Coplanar, then:

4.(BnC) =0

=

b
b

ax Cx
O Analytically, if: A{ay}, B{by} and c{cy}:
a’Z b CZ

A (BAC) =

N

= a,(byc, — b,c,) — a,(byc, — b,c,) + a,(bycy, — bycy)




11.4. Vector triple product

An(BAC) = (4.C)B - (A.B)C - B(4.C)— C(A.B)

Properties:

1 Non-Associativity: AN (E A Z:) * (Z A E) AC

» AA(BAC) = (4.C)B - (A.B)C

> ANB)AC=(AC)B - (B.O)A
Q The vector 4 A (ﬁ A Z:) is in the plane defined by B and C

U The vector(z A l_3>) A Cis in the plane defined by Aand B



11.5. Differential Operators : d \

ax
0 0 0 - - 0
U Operator Nabla: v— —_7 T+ —k Ou V=|—
ax " * ay] * 0z dy
0
J_Gradient operator : 9z /

The gradient operator is a differential operator that applies to a scalar function
dependent on space and time and transforms it into a vector dependent on space and

time. It is read “gradient f” or “nabla f” and is noted :

gradf or _|7)f
In the Cartesian coordinate system the gradient is expressed as follows:

. of(x,y,z,t), 0f(x,y,z,t), 0f(x,y,z1t)-
Vi(x,y,zt) = Ix L+ 3y j+ 3, k




Properties:

d V)(af + Bg) = cﬁf + ,BV)g (with (a, B) € R?

QV(f.9) = fVg + gVf

Example:

s
.

—

Sol:

(x,y,2) =3x%y +z
flx,y

» Calculate gradf(x,y,z) in point M(1, 2, -2)

— d d
gradf(x)yrz)=£ ?"‘_f

(y,z)=Cts y

9,
J+ of
z (x,y)=Cts

k

(x,z)=Cts

= gradf(x,v,z) = Vf(x,y,z) = 6xy T+ 3x% ] + k

= gradf(1,2,-2) =Vf(1,2,-2) =2i+ 3] + k



[ Divergence operator:

The divergence operator is a differential operator that applies to a vector field and

returns a scalar field. It reads divergence and is noted:

divAorV.A

In the Cartesian coordinate system the Divergence of A is expressed as follows:

divd = .4 = 2% Oy | 04
WA A= ey Ty T oz
Properties:
Q div(A + B) = divA + divB Q div(ad) = a divA

a div(f/f) =f divA + gradf./f (with f is scalar function)

Demonstration : Home work (A4 «2aly)




1 Rotational operator:

The rotational operator is a differential operator that transforms a vector field into

another vector field. It reads rotational of/f and is noted:

rotd Or VAA

» |n the Cartesian coordinate system the Rotational of A is expressed as follows:

i J k
- - 0A, O0A 0A, O0A 04, 0A,\-
Prd=12 2 9|_(%%:_%NH);, (2_ 2+ (=2 -=2)k
dx 0y 0z dy 0z dz O0x dx a9y
A, A, A,
> Properties:
Q div(rotd) = V.(VAA) =0 Q rot(ad + BB) = aroté + BrotB
Q rotgradf =VAVf =0 Q rot(fA) =VA(fA) =VFANA+fVfAA

Demonstration : Home work (e w2)9)




1 Laplacian operator

Pierre-Simon Laplace

(1749 - 1827)

1. The Scalar Laplacian

The scalar Laplacian operator is a differential operator of order two that transforms a

scalar function into another scalar function. The scalar Laplacian is obtained by taking

the divergence of the gradient and denoted: Af = div (gradf) = sz

*f 0*f o0°*f

> In the Cartesian coordinate: Af = —+
f ax* dy?

> Properties :

QAlaf + Bg) = alf + BAg

QA(fg) = (Af)g + 2(Vf).(Vg) + f(Ag)

_|_

072




2. The Vector Laplacian:

Laplacian also applies to a vector field. In this case it returns another vector field

and denotes: A\ A

By definition, the vector Laplacian is obtained using the identity (Vector triple product ):

rotrot A=V A(VAA) =V(V.A) - V%A = grad(divA) -A A

] Properties :

I. 7ot (gradf) =0

I1. div(rot/f) =0



R
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Chapter 01: Kinematics of a material point

1.1. Objective:

The aim of kinematics is to describe in qualitative terms the motion of a body

without looking at the causes that produce it.

The study of the motion of a body is based on the study of its successive
positions relative to a reference frame, as well as its velocity and acceleration and the

relationships between these three quantities as a function of time.

1.2. Definitions:

 Material point (particle) : An object with negligible dimensions on a macroscopic

scale, which is assimilated to a geometric point.
In reality, the study of the motion of an object can be described by:
» Motion around its center of mass.

> Motion of its own center of mass



- S . . ~ - _—Q
1 Trajectory, Curvilinear Coordinates, Equations of motion-

Jwad) — Ldadd cbdlaay - A alf Luie il dilead

Consider "M" as a moving particle in space

» The trajectory "M" is the geometric locus of the successive

positions occupied by "M" over time.

»The algebraic value MyM(t) is called the Curvilinear Coordinate

» MyM(t) =S(t) :Equation of motion of « M »

» OM, et OM, : is a Position Vectors of « M » [« O »
» MM, (t) : Displacement vector of « M » from position M (t) to position M,(t+ At)

M M5 (8)| = [AOM(D)| = |[0M,(t) — OM{ ()| = |75 (t) — 71(D)|


https://en.wikipedia.org/wiki/Equation_of_time

Il. Curvilinear Motion .

The motion of "M" is defined by its position vector at each time "t" with:

OM(t) =7(t) = x(OT + y(O] + z(Dk,
I1.1. Velocity :

> Average Velocity:

L, AOM(t) M;M;(t) OM,(t+At)—OM;(t)
Vave =y T T A T At 5

In Cartesian coordinates: 0

OMl(t)—xll+y1]+Zlk 5 Xp—=X1, Y2—"V1., Z2—Z17p

= Vgpe = [+ Jj+ k
OMz(t) = le + y2] + sz e At At At
. Ax_> Ay, Az
Vave = 75 —J+—<k



» Instantaneous velocity | R -

We obtain it by computing the average velocity for a smaller time interval.

e AOM(t) dOM(t) dr(t)
mst = 500 MOy T aho At dt di

Operationally, the instantaneous velocity is found by observing the moving body
at two very close positions separated by the small distance dx and measuring the

small time interval dt required to go from one position to the other position.

En coordonnées cartésiennes :

dx dy% dz -

. p Vinst = V(t) — E dt] + dtk
y. =%
*oodt .

dy With [V| =V = \/sz +V,” +V,”
\Vy, =—
dt
v dz
L ? dt



—

_dOM@) _d(r(0u,) _dr®

V(t)

dt dt dt \
N o/
Calcul of .
dt
Uy = Upyl + Upy] = u,cosOT + u,sindj = cosOT + sindj
du_;_ ,0d94+ Hdé?a _deo g o7)
Tp = —Sinf—-i+cosd ] = E(—sm L+ cos0j
—_— —>+ - . 9—>+ 6—> dl—ir de(t)
Upg = —Upgy,l + Ugy] = —SInBT + cos = =
0 Ox 0yJ J dt dt
- dr(t) _, do(t) _,
=> V() = u, +r(t u
f dr(t) .
V.(t) = 1t Radial component
< do(o)
Vo(t) = 1(t) T Transverse component
\

>
9
*]
ﬁ)g Ug —
—s e Sy, Up
uei\\\\ 9 /’;15
V4 i d
L NATE Y
uex 0 urx x

Avec |V| = \/Vrz + ng




En coordonnées cylindrique :

O—I\/i(t) = 0—m>(t) + m_]\/f(t) = T(t)u_7f + Z(t)l_é .

dOM(t) dr(t)_ dﬁr+§zZ(t)E 71

Vi =—4 TRRACAFTIRS W -~

do(t) _, de{t)E [ T

. :dr(t)ﬁ -
dt ¢ di

= V(t) 1t u, +
dr(t)

dt
do
Vo) =r D

.-----l-l"' Bk bbb L LT ) Trag, E
- -
et * Y, H
o* e, .
- R .
** ‘e .
°* | .
bt
-
e ®
%
.
3 >
. H
* -~ »
dZ(t) % ~~~~ K —
V (t) = X e uo
- .
L7 dt :
‘e
 —
“a

.
.
.
.
.
......
L] e
-------------------------

r(t)

(
| (t) =

A

”V” = Jvrz + Vez + sz r(t): Rayonpolaire(r: 0 — o)
0(t): Anglepolaire(6: 0 — 2m)
Z(t): Cote(z: —00 » +00)



,ﬁ

Intrinsic Coordinates of Velocity : (Tangential and Normal compents)

—

(Gabilil] g duulaad) de gl LAl Sl pal] My(t=t) BtV

M, (t,=t+At)

. . - M M,(t) dOM(¢t)
Vinse () =V () = tilirglﬁ =

Let’s call M; M, (t) length of arc having from M1 to M2

We have:

= MM, (t) MM, (¢) M M,(t) . M;M,(t)
V(t) = lim — = lim ———— lim ———
t,-ts M{M,(t) t, —t, ta~ts MM, (t) t2>t1 ty — tg

M, M, (t)

When: t; —» t, = M, M,(t M; M, (t —
en:ity —t; = My 2()—>“ 1 2()” :>M1M2(t)

= U,

_ dMM,(t) ., dS(t)_,
= V(t) = 1dt2 = — 1,




The intrinsic coordinate system for each point of the trajectory is defined as a

system of reference formed by two axes:

Tangent axis: its direction is tangent to the trajectory and is positive in the same

direction than the velocity at that point. It is defined by the unit vector

 Normal axis: it is perpendicular to the trajectory and is positive toward the

center of curvature of the trajectory. It is defined by the unit vector u

This reference system is used to "observe" the changes in the magnitude

and direction of the velocity vector.




> Average Acceleration:

a M, (t1=t)
. V,0-Vi® wme |0 1
Agve = t —t ~ T At '\_7>
2 1 M ,(t=t+At)
In Cartesian coordinates:
. Vxl _) sz f’\
Vil Vya |, V2| Vy2 - @—> >
Vzl VzS o 1
_) Ve, = Ve, Vy,=Vy, , Vi =V o
Aype = L+ J+
2 — 14 t, — 4 t, —t4
AV, =V,, —V,,
Aype = —AVx L+ —AVy j+ —AVZ k av, =V,, -V,
At At At



li
’ A0 At oot by — b dt
In Cartesian coordinates: LT dVy]_, LT
inst dt _dt _dt
( dx
Vx — d_
> a=——-1 I -
4 Vy = E dtZ dtz ] dtz
v = dz
L Z dt
([ dV,  d%
=g T e
Y odt  dt?
_ dv, B d?z
Y2 T ar T are




In Polar coordinates:

i

”B

. dr(t do(t) i av  d (dr(®)_, do
Vit = 7;l(tr)urJrr(t) d(t)u9 »at) =g = dt( :l(tt) u”) < ® (t) )
Ere) . driin, | dr©ds o) do (¢ 4.2%[\
T T4z W :u: \ch, ar ar v TTO—5 () t}'\ dte,:'
\¢/ o’
d@(t)ﬁ d@i(t)
dt 0 dt U,T
L, dr(t)_ dr()de(t)_, dr(t) dH(t) d29(t) do(t) do(t) _,
Pa=—gm Ut Yot g g de (O g —r(O) =g g U
L dzr(t) do(t) dr(t) do(t) d?e(t)\ _,
=a=|—0 r(t) < ) u, + <2 % ar T r(t) 172 )ue

J

d,

\ J




e ——

ﬁ
In Cylindrical coordinates:
. dr(t) do (t) dZ -
V(t) It g T+ E
L. dfdr(®)_ d do(t) _, d?*Z -
:a(t)_dt< dt ur> <T() >+Wk

Using the same method, we find:

2 2
. (d r(t) ® (d@(t)) )ur+ (2 dr(t) do(t) +r(t)d e(::))u d? ZE

dt2 dt dt dt2 Taz

d | Y ' .

Qg

1]l = a =+a,2+a,? + a,?



Intrinsic compents of acceleration:
w V) = B0 LM(t+AY
We V. V(t) —_ dt ut ﬁNz 2
, AV d (dS(t) d*s)_, dS (t):dut \ qutz
a=—"= Ue | = Up + !
dt dt\ dt dt? dt \dt ) L :
Calcul du T ]® > >
alculation of —— 1 ’ =
4 dt i 0o 1 )

O Property:

1
1
The derivative of a unit vector is a vector orthbgonal to that vector

|
, di du;  du, | |
ldll=1 =214, =—t=""ty ! Tl = |17
t dt t dt dr W '; lueq |l = [[ug|l

I

On the other hand, we have: ’.'
I

1

E— I_ — _ — _
AuL____u.tZ___utl t, > t, = Aut - dut = “dut” - ”ut”da =da
. - e
B ]| = Wi lisings . \%72 ga (sinda ~ da)
\ du; du,, da




d?s(t)_, dS(t)da_ dZS dSdads

e T T T T L A T T T
as _
qa P Trajectory Radius
d25(t) 1/dS(t)\° dv(t)
i = U, +—|—| u + — V )%y
TS ut+p( at ) "N T Tdr T ()%
\ ) | _') )
a, ay
(d2s  dv ~ ﬁ
17 dqp Tangential component of a related to the change in modulus of V
\
lfl_s = l V: Normal component of a related to the change in direction of V
pat p

d=a,+ayiy ldl=a=ya?+ay?



I1.3. Transition from speed ;o distance travelled — Intm

s»Let be a mobile “M" moving with a constant velocity in rectilinear motion
A V(m/s)

v v Ax  x, — x4
= = V;: = = =

KnowingVandXx, att = t;, = x, =x; +V(t, — t;)

The distance Ax traveled between t; and t, is measured

by the area under the curve V(t): Ax =V (ty — t4)

** When the velocity is not constant Ax is always equal to the

area under the curve V(t) (Ax =V, = V)(t, — t1))




I1.4- Transition from acceleration to velocity:

If the motion is defined by the given acceleration, the velocity is equal to the

integral of the acceleration (acceleration is the derivative of velocity).

Vs to
dVv
a=—> dV = adt
dt

Geometrically:

» The acceleration will be the curve tangent of V(t)

V-1

a=tga =
AU



Exemple :

An object moves in an oriented straight line with a velocity that obeys the law:
a=4-—t*(m/s?)
- Find, as a function of time, the expressions for velocity and position.
We give: t=3s=>V=2m/s,x =9m.

- Represent the velocity and acceleration vectors at t = 1s.

Solution :

t3
1. V=]adt =f(4—t2)dt =4-3 4c
33 £3
t=3s=V=2m/s 22=43-7+C =C=-1 =SV =4t——-1
[(s-5-1) :
_ =|(4t—=—-1)dt 92 o4 '
x—Jth 3 22—t —t 4+ C
1
t=3s=2>x=9m=>C(C" =3/4 =>x=—ﬁt4+2t2—t+3/4




Echelle: x:1cm - 1m

Vilem - 2m/s

a:lcm - 1.5m/s?

x=—it4+2t2—t+3/4
12
] t3

V=——+4t—1
3

2. \a =4 —t*

( 1
=——+4+2—-14+3/4=1.6
X 12+ + 3/ m

1
V=—§+4—1=2.6m/s

la=4—-1=3m/s?

<!

1162 3 4 5  x(m)



Summary

O MM, (t) = S(t) :Curvilinear Coordinate

L OM; et OM, : is a Position Vectors of « M » /« O »

d |M1M2(t)| = |AOM(t)| = |0M2(t) — 0M1(t)| : Displacement vector

Velocity (m/s)

Average Velocity (Vave (1))

Instantaneous velocity Vinst =V

At At At At At

AOM(t M{M,(t) Ax A Az
O _ M0 _dx, Ay, bro

o BOM(D) _dOM()
seVaeve = T AT T T 4

Acceleration

Average Acceleration(a .. (t))

Instantaneous Acceleration d;, i, = d

AV(t) AV,. AV, AV,-
©) _ AV, Yi+—2Lk
At At At At

lima ] AV())  dV(e)
e Gave = AT Ay T T4




Cartesian Coordinates ) ., o . L =
i %) Polar Coordinates (u,., Ug) Cylindric Coordinates (u,, Uy, k)
DM (t)| x()i + y(©)] + z(Dk r(t)u, r(Ou, + z(Hk
— dx dyﬁ dz dr(t) _, do(t) _, dr(t) _, do(t) ., dz(t)-
YO | it ad Ta” ac O =g ar T g e vk
d?’r(t) de(t)
d2r(t) (dem) ) ae "W U
2 2 2 ( ) Uy
= | d*x d Y., d z dt dr(t) dO(t) d20(t)
a' T @) e RCLUCIS 0\ 2 @ @ U
2@ ar "W gz Ve dzZTé
Tarz
Intrinsec coordinates (u,, Uy)
: ),
Velocity V(t) = d—(tut = V(t)u,
. _ av(e) _,
Acceleration a(t) = U + — p V(t) Uy = a, + ayuy




Ill. Some specific movements

I11.1. Rectilinear motion:

In this type of motion, the trajectories are straight lines and the position of the mobile is

described by a single coordinate x(t) equivalent to the path traveled S(t).

lil.1.1. Uniform Rectilinear Motion (URM): 4efiiicl) Lasdicual) 45 a))

t t
Characterized by V(t) = Cts = V N ! ! ! . LS

X X x(m)

dx x t
V=E=>dx=th =)de=Jth =>x—x9=V(t—ty)
X0 t

0

= Equation of Motion: | x(t) =V (t — ty) + x,

A V(m/s)

|4




e f =
111.1.2. Uniformly Varied Rectilinear Motion(UVRM):

plﬁﬂ@ b _ptial J.a,ﬁim.f/ 45 Al

X =X
Characterize by a(t) = Cts = a t=1: 1y = Vo
dV vV t
a=— >dV =adt = dV=ajdt >V =V, =a(t —ty)
dt Vo to

= V(t) = a(t — to) + VO

1 Equation of Motion

dx X t t
V(t) = I = f dx = f vdt = | (a(t —ty) +Vy)dt
X0

to to

1
= x — X, =§a(t—t0)2 + Vo (t — to)

1 : :
= x = Ea(t —t9)% + Vo(t — tg) + X (Equation of Motion)




V(m/s)

A




Remark:

The acceleration or deceleration of a uniformly varying motion is defined by

the sign of the dot product @.V :

a.V >0 : Two possible cases:

d > 0etV > 0: M. Accelerated Uniformly in the positive direction of motion

d < 0etV < 0: M. Accelerated Uniformly in the negative direction of motion

a.V< 0 :Two possible cases :

d < 0 etV > 0: M. decelerated Uniformly in the positive direction of motion

d > 0 etV < 0: M. decelerated Uniformly in the negative direction of motion




lll.2. Circular Motion:

This type of motion is characterized by a circular trajectory with a constant radius :
r(t) =cte=R

In polar coordinates:  #(t) = Ru,

- dr(t) _, do(t)
V(t) = - ur r(t) ;1o
. d
=> V() =R
do(t)
Tl w(t) : Called Angular Velocity, [w] = rad/s
= V(t) = Rw(t)i,
En coordonnées intrinséques : V(t) = ds(t) U,
dt
ae(t)

S(t) = RO(t) = V(t) =R

dt ﬁt = R(l)(t)'l_it

= V(t) = Rw(t)Uy = Rw(t)U,




Acceleration Expression:

O Inintrinsic coordinates: g = atﬁt + apliy = d‘;it) ﬁt + %VzﬁN
fp =R )
V = Rw R dw(t) g N dze(t) _, de(t)\”_,
<w=d—0 = a(t)=R 7 U + Rw*(t)uy =R T u, + R o) N
\ dt

1 In polar coordinates:

o (d% () do(O)\*\ _ dr(t) do(t) d26(t)\ _
a=< 752 —r(t)(—dt ))ur+(2 a4t + r(t) 752 )ue

2 2 2
r)=R>d= dtz —R(dg—(t)> )ﬁr+<2d—R (t)+Rd Q(t)>ﬁ9

dt dY dt dt?
2
a= —R( 1t ) u,.+R 152 Uy = —Rw*“(t)u, + R(t) It Uy

dw(t)

= a: Angular acceleration, [a] = rad/s?




I11.2.1. Uniform Circular Motion(UCM):  “eBiisl| 4 i) 45 s

This type of motion is characterized by a constant angular velocity:

V(t) = Cst = Rw(t) = w(t) = Cst

p
( _p dw(t) 0 N a, = —Rw?(t)
j=lu=R——= Or a—<a0=Rda)(t)=
\aN = R(,()2 \ dt
O Equation of motion:
do(t) 0(t) t
W= = dO(t) = wdt = dH(t)=fwdt = 0(t) — 0, = w (t — ty)
8o to

So the equation of this motion is given by:

0(t) = w(t —ty) + 6,




I11.2.2. Uniformly Variable Circular Motion (UVCM): pLELL 5 psial) 4 dlal| 4S )

This type of motion is characterized by constant tangential acceleration: a,(t) = Cst

77N,

'élw(t\)\\ do(t W = Wy
at(t)le‘\d—t/,'zCst = di):azcst = dw(t) = adt <t=t0: {9:00>
o) t
= f do(t) = j adt = w(t) = a(t—ty) + wg
(00 1) tO

On the other hand, we have:

de(t) o) [t t
w(t)=7 =>J90 d9(t)—ft0w(t)dt = to(a(t—t0)+a)0)dt

1
= Q(t) — 90 = Ea(t — to)z + a)o(t — to)

1
o(t) = Ea(t —to)? + wo(t—ty) + 0, (Equation of UVCM)




Application : Motion of a projectile

EII70: The initial velocity of the projectile (t; = 0) AV

Qinthiscase: a =g = —gJ
R Vo, = Vocosa
— ? ? A
VO —Voxl‘l‘V()y] Where Vox =V0 sin a . I—/ :
O On the other hand, at a given point M (x, y), Voy|--- Oﬁ MCxy)
we have: 17=51(t—t0)+l_/>0 i ih
oY :
DAt tO =0: — VO
A X
Vai+V,j=—gtj+Vy 1+ Vy. ] =V, ?+(V —gt)f = B = Vo,
X y X y 0x Oy I/y=V0y—gt
[ Also, we have:
. 1, . .
0M:F:x?-|—y]_) =§a(t—t0)2+V0(t—t0)+r0
1 x=V0xt
Th =
Att — O. 0 - —>= _ 2- - - — 1
0 {az—g = xt+Yyj th J+ Vo, tt+ Vot y=—§gt2+Voyt




R

W The time requiered for the projectile to reach the highest Point A is obtained by setting

Vy = 0. in this point the velocity is horizontal

: Vo
Then: y — o=y, —gt=0 =t=—1
Vosina
=t =—o
g9

L h is obtained by substituting this value of t in Vo,

e

2

1 VOZ sin

2

(44

9

O The time requiered for the projectile to return to ground level at point B can be obtainde by

. ] 1
the equation of y: Y= ——gt2 4V, t
2 y
1 Vysin®a Vo sina
ﬁh:—_ +VO
2 g° Y9
1V, sin a Vysina
= -2 +V,sina — = h =
2 g g
makingy = 0
1 1 .
=>—§gt2+Voyt=0 =>—§gt+V051na=O

=t

2Vysina
g9




I11.3. Harmonic Motion (Sinusoidal Rectilinear Motion ): 4wl 45t/

is consider as the projection, on a diameter, of an uniform circular motion of a point

"P" of an angular velocity w on a circle of radius R, With 6(t) = wt + 6,
O Let "M" be the projection of "P" on (x x):

OM(t) = x7 = RcosO(t)T = Reos(w t + 0,)7

w t + 6,: Motion Phase

8, Initial phase or phase at the origin of time

—R < x < +R:is called amplitude



that the angle wt increases by 2t

/ Lo
T = — ! Presents the period of motion :' L i
[ ) 1 L_1 )
1 - /|
. . ] \ 0 L M MO X
» w = 2mf: Pulsation or angular frequency (rad/s) \ /
\\ ,I

N 4
> f=== 5. - is the frequency of motion = Oscillation RN <

--------

numbers per unit of time related to the period (1/s, Hz)

7 2 dx_) - g . -
V="Vt =—i =—(Reos(wt+6p))i |= V(t) = —Rwsin(wt+ )i
- - dV'X,'—> . -> 2 -
a=ayl =—_-1 =7 (—Rwsin(w t + 0y))T = —Rw?*cos(w t + ;)1

= d(t) = —w?*xl

This indicates that the acceleration in harmonic motion is opposite to the position vector

—

>d=—-w’0M



(OM(t) = Rcos(wt + 0T
V = —Rwsin(wt + 0,)1 )
\d = —Rw?cos(wt + 0,)T = —w20M

A

OM=x=0

Q60,=0andt=0: cos(wt+00)=0:>{ 0
a =

sin(wt+60y) =11 =V = +Rw




IV. Relative Motion

IV.1. Change of reference system:

—

In relative physics, rest, like motion, are relative notions, they depend on the position of

‘NNN“’%

the mobile in relation to other bodies which serve as referencsN 11_

Vil

c T 7 !
O Let R(0, xyz) be a supposedly fixed coordinate system, called / .
Jdv
an absolute coordinate system. 4 -" \\\"//’ - (t)
’ = "
. . : I'ﬁ&“:
d Let R'(0',x'y'z") be a coordinate system in motion SIS \;\ 3
NN
with respect to R, called a relative coordinate system. ‘
I

OM(t)/R = xT+y] + zk

OM(t) R’: ’l._;+y,7+Z’P

To an observer bound to the R, the motion of R'(0'x'y'z') is known via the motion of O’/0O,

and the ways in which the axes Ox', Oy', and Oz' rotate around O'



 Relationship between positions: OM(t) = 00’(t) 0 M(t)

XT+yj+zk=00 +x7 +yj + 72K

Relation entre les vitesses:

dOM(t)  d00'(t) , d0M ()

v =—0 & dt x_k
_dx. dy. dzn _d0—0’>+dx’__; di o dy'—, . dj Lz dk’
dt”de’ Tde T dr T de dt  dt dt © 7 dt

dx_ dy . dzE_dx’,_,>+dy’7+dz’_,>+d00’+ dl+ d7+ ik’
dt,_\dtl at’ T dt || dt FTRRAT Zdt,

- . . |
V,(t): Absolute Velocity V,.(t) : Relative Velocity V,(t) : Training Velocity

> V() = V(1) + V(D)

Remark:

- —

If the coordinate system R’ is translational only with respect to R: i’ j', E’) = Cst

di _dj _dK _ doo’
at = ar a2V =—g



S ) dv
Relationship between accelerations:

Cl(t)=E
d (dx. dy. dz.\_d(dx'o dy dz'_ +d<d0—0’)+ dl+ dj’
de\de " acd Tac) T ac\ de at ) T dr dt \ dt xdt Y dt

d?x . d¥y . d?z- dix'_ dx'di d%y’

dk
+ 7z —

dt

. . N ,_;_I_dy’d]T’) L7 dz' dk’
a2 Tz T e T et Tardc T acr? Tdar ar Taee dt dt
d200’ dx'd? i i N dj | d% dz'dk  d*K
+ + + vy + + z
dt? dt dt X e dt dt dt? = dt dt dt?
. d*x_ d*y. d?z- ,
a, = Wl + 172 j+ 172 k :Absolute Acceleration
d’x' dly'. d’7' d,=d,+d,+d
a. = T i’ + — " k' : Relative Acceleration a r e C
= gz +dt2] +dt2k
_ d¥*00  a* 4% 4K ,
a, = a2 + x' a2 +y' di2 +z Ere) : Training Acceleration

ar =2 (dx’ di + dy’ dj + dz dk’) : Coriolis acceleration
¢ dt dt dt dt ' dt dt

3



o _doo’ i dj’ ,dk' doo . - -

dOO = — doo" .,
(xl+y] +zk) >V, = dt +wANO'M

. (dx di’ dy'd7’+dz'd?> (3 o Ay o e
- - = w l w w
2- Q¢ = “\Tgr dec ' dt dt | dt dt J

dx,—> dy,—> dZ,—> — N —
= 2w i ! ’ > dc=2w AV
Za)/\(dt dt] + k) C r

3- For d,: d2?=d<d?>:i(_> —,’) dd - _ di dd -
dt? dt \dt dt

We replace in a, and we find:

_, d?00 dwo .
=3 +=EA0M+w/\(w/\OM)




apter vnamics of a MatertatPomt™

11.1. Objective :

The purpose of kinematics is to study the movements of particles as a

function of time, without taking into account the causes that cause them.
Dynamics is the science that studies (or determines) the causes of the

motions of these particles.

» Why do bodies near the surface of the earth fall with constant

! acceleration?

» Why does the earth move around the sun in an elliptical orbit ?

» Why do atoms bind together to form molecules?
(Pourquoi les atomes se lient-ils entre eux pour former des molécules ?)

— » Why does a spring oscillate when it is stretched?
(Pourquoi un ressort oscille-t-il lorsqu'il est tendu ?)



»\\

11.2. The Law of Inertia (Galileo’s law of Inertia):

Called Newton's first law, which reads as follows: ‘\ .

o
Galelio Galilée (1564-1642)

“Every body preservs in its state of rest, or of uniform motion in a right line, unless it

Is compelled to change that state by impressed forces”.

Or

a free particle always moves with constant velocity, or without acceleration.

Q In other words:  If no force acts on an object or if the resultant force is zero:

» An object at rest remains at rest.

» A moving object contained to move at a constant velocity.




11.3. Inertial frame of reference (Galilean frame of refer :

Is defined as a frame of reference in which Newton's first law holds.

According to this definition, there is no such thing as an inertial frame of reference;

Only approximate frames of reference are available.

Examples:

O For most experiments on Earth, the ground-bound frame of reference is a good inertial frame.

L whereas for the motion of the planets, this ground-bound frame of reference is not an inertial

frame.
: . I _ = "Vers l'étoilea ~ ~ _
L Copernican Frame of Reference (Heliocentric): is the PR _— o N
, TReferentlel AN
frame of reference centered on the center of mass of / heliocentrique
!
Vers \
the solar system and whose three axes point to three | Soleil — |’&toile 7,Il
\
distant stars. \\ Ve vl //
. . N 'etoile T 7
U Geocentric frame of reference: is the frame of S N _ _ -
~N o~ = —_’>
reference centered on the center of mass of the earth -

and whose axes are parallel to those of the Copernican

frame of reference.



Remarks:

O Any coordinate system that moves at a constant velocity relative to an inertial

frame of reference, can it self be considered as an inertial frame of reference.

O The velocities and accelerations of bodies, measured in Galilean reference frames,
are said to be absolute, and those measured in non-Galilean reference frames are

said to be relative.



11.4.Momentum (Quantity of motion:

11.4.1. Definition: The momentum of a particle of mas of "m“ and moving at velocity Vis

defined by :

P = P|l=Kg.m/s
P=mV [ ] g-m/ falling mass

(] 2D Motion:

+* The principle of inertia can then be stated as follows:

"A free particle moves with a constant momentum in a Galilean frame of reference"”

Remark: . B T
dP _d(mV) dvi_ .
dt = dt = m‘\d—/, =ma =F

= The derivative of the momentum vector of a body is equal to the sum of the external

forces applied to that body: — dP
z Fext = E



11.4.2. Conservation of momentum:

A system is said to be isolated if it is not subject to any external (interaction) forces.

F=0=m—=0 =>—=0 > P = C(Cte
dt dt

» For a system of two particles with m,; and m, isolated masses:

The total momentum of the system at time t is:
ﬁzﬁl‘l‘ﬁz =m1171+m2172
At the moment t' we have: P'=P'; +P', =m,V'{ + m,V’,

Isolated System = Total momentum is retained:

— e

P = ’$ﬁ1+ﬁ2=ﬁl+?2$ ’1_P1 2_,2

— A—P)l = —A—P)Z

n
» For an isolated system of interacting "n" particles: 1_57, = z Fi = Cte




Example:

A rifle of mass m of 0.8 kg fires a bullet of mass of 0.016 kg with a velocity of 700 m/s.

Calculate the recoil velocity of the rifle.

Solution:

The system consists of two bodies: Rifle + Bullet

Principle of conservation of momentum: PBefore = PAfter

Before Shooting: Total momentum is zero

After Shooting: Total momentum: FAfter=ﬁR + ﬁB
ﬁR-I_ﬁB =6$mf‘_jp+mBI—/}B =6

mpg
By projection: Mr(=Vg)0 + mpVp = 0=V, = m_VB
R

. 0,016
N-A: Ve = =52=700 = 14m/s




II.5. Newtonian Definition of Force:

 Any cause capable of modifying the momentum vector of a material point, in a

Galilean frame of reference, is called “ FORCE ".

O So, force is a mathematical notion that, by definition, is equal to the derivative of

momentum with respect to time.

» We defined the average force, during a time interval At, as:

. AP
FavezA_t

» The instantaneous force is therefore given by:

5 = AP _dP  dV
inst =8 = WA ~ dt. e

[F] = Kg.ms=2 = Newton (N)



11.5.1. Moment of a Force about a Point (Torque):

A moment of a force is the tendency of that force to cause a

rotation of a body about an axis,

L Vector Expression

The moment of the force F about the point O, 1
— (0
denoted Mﬁ( ) ,is:
— (00 —— =
Mz ~=O0AANF
— (0)

.|| = |[0A|||F||sin6 = F.dsine

 In other words:

F

— (0
[Mﬁ( )] =N.m

The magnitude of the moment of a force about a point is (the magnitude of the force) x (the

perpendicular distance of the line of action of the force from the point).



— /___________.-5%

Example:
Find the moment of F about P when 8 = 35 oFF =8N andd = 14m.

Solution:
— (P) —_— >
M; ~=POAF
Vv (P) DN ~ . _—
= HMﬁ = ||Po]|||F||sin6 ; ||PO] =d
= ||| = Fiasing

= 8.14.sin 35° = 64,24 Nm



11.5.2. Center of Inertia or Barycenter: (Center of Gravity)

m, m
In equilibrium, the sum of the moments of ﬁ\ 0 B
the forces about "O" equal zero: l/F'}A A »L 45
(Clockwise moments will equal anticlockwise moments),
. (0) - N (0) N (O) N — - B — - _ -

= 0AAMG+O0BAmMyg=0 :(m1ﬁ+m2ﬁ)/\g’=6

= m,04 + m,0B = 0

For a system of m masses (G is a center of gravity):

m,GM; + my,GM, + ---m,,GM,, = 0 = ZmiGMi =0
i



On the other hand, according to the diagram opposite,

i ' ' :: M,(m,) (mi) \\‘
with G is a center of gravity, we have: \ !
0G + GM; = OM; = GM; =0M; —0G EA _____ P

R
-
——————

ZmiGMl- =6 =>Zml(0Ml — OG) =6 X
i i

— ml-OMl- = mLOG = 0G =
: i 2

Y.im; = M, With M is the total mass of the system.

— 1 s
l

This last relation gives the center of inertia of a system consisting of masses m; located at the
points M;

_ 1 _—
» For a continuous environment, the sum becomes integral: 0G = Mﬂf OMdM



11.5.3.Newton’s Laws of Motion

(J Newton's First Law:

Newton’s first law states that every object will remain at rest or in uniform motion in

a straight line unless compelled to change its state by the action of an external force.
F = 6 V = Cst

1 Newton’s Second Law (Fundamental Principle of Dynamics):

In a Galilean frame of reference, the sum of the external forces applied to a system is

equal to the derivative of the momentum vector of the center of inertia of that system.

Zﬁ _dP _d(mV) av | o
ext == —mdt—ma (m = cts)



> Anqular Momentum Theorem for a particle:

Consider a particle M of mass m, moving in plan (0, x, y) with velocity vector V relative to

inertial frame R. N Z

— — AN
The particle M has the momentum P = mV relative to R.

Qu

The angular momentum & (or L ) of M with respect to O is given by:

k
G=0MAP 0

=d=7FAmV =mPAV (E’L (?,V))

F = R_>r - — —
= ¢ = mR?w(U, N lUp)

V= Rwug

— 0 = mR%wk




[7 - Vr’l_l,)r + Vgag 1, 1

o

g =m7r AV =mru. N(Vu, +Voup) = m.rVu AU, + m.rVpel, Alg -

=0 =m.rVyk

Vo =rd—9 =>0—mr2d—9§
dt dt
O The derivative of o with respect to time is given by:
do d(r £mb) fdr}A mV + # Ab,;lﬁ\‘ % m170+ r /\f@‘l PAF
dt dt \d t \odt ) \ati
—— 7N -
F:is the resultant force | = % ={:\1T4)I—5(0),:‘r ---> (Moment of Force F)

Theorem: the derivative, with respect to time, of the angular momentum of a particle is

equal to the moment of the force applied to it when both are measured with respect to
the same point.




** In case of central Force: /ﬁ

A force whose direction always passes through a fixed point is called a central force

FIOM =-—=0MAF=0 = &= Cte

Exercise: (Simple Pendulum)
Find the differential equation to write the equation of motion

of a simple pendulum 9(t).

I- We apply the Newton'’s second law : Z ﬁext —md =>W+T=ma

By projection:
- ( o\’
u,: W —T=ma, mgcosd — T = —ml (—) e (1)
dt
— =
Uy:  —Wp =may o 40 ]
\ mg sin m 7r2 TR ¢2)
2 . d’6 g
(2) @mld >+ mgsingd =0 = lF+ —sind =0

2 2
a,:(d r(t) e degﬂ>:> {ggr(ta dH(t) t)d 0(t)> i,

dt?



— . . do _, 0 - . .
Wehave: G =0MAmMs =114, A mlaue — ml? = (circular motion)
= do = ml? dzBE 1
at =m ae PR (& B
On the other hand, we have:
Q Mz =0MAT =1u,A(-Tu,)=0
— 0] - —> -
Q MW( ) _ OMAW =1uU,. A(mgcosBiu, —mgsinbuyg) =—Ilmgsinbk
— (0 — (0 R
My  +Mz  =-lmgsinfk... ... .. (2)
d?e . - d’e g
_ 2 _ : Mt A _
1) =2) = ml Wk = —-lmgsinfk = iz + ] sind =0
d’e g

For small oscillations, we have:

sinf =~ 0

E i 990
—aez 't




J Newton’s Third Law (3rd law of dynamics: Principle of action and reaction):

Let two particles (1) and (2) interacting with each other, the action of (1) on (2) (131) is

equal and opposite to that exerted by (2) on (1) (ﬁz)

In the other word: o (2)

If a particle (1) exerts a force (ﬁl) on a particle (2), then (2) exerts a force (ﬁz) on (1) in the opposite

direction with the same magnitude.

Fr = —F (|F ] = |I72])
Example:

A person of mass 85 kg is standing in a lift which is accelerating downwards at 0.45 ms~2.

Draw a diagram to show the forces acting on the person and calculate the force the

person exerts on the floor of the lift.

Solution: using Newton’s second law gives: Z Fext = md

—R+W =md

By projection: W —R=ma = R=W —Ra =mg-—ma

R=7956N



11.6. Some laws of forces:

1.6.1. Newton’s Law of Universal Gravitation (1666):

This law explains the motions of the planets around the sun.

The force of attraction between M and m is given by: M = m
@’_) L FA{/B 5 )
GMm = =

- . N F — —F —
FA/B = — 2 u ( A/B B/A) FB/A
With:
G = 6,67259.10711 m3Kg~1s72 : Universal gravitational constant

45| P GMm AB GMm _
r = e = — — = — r

Y B



———

Special case: The weight of an object placed on the surface of the earth

S GM-rm
P Tm _,

Rt 0
- GMT—> = -
Weposit: §=—-——ii =F=mg KJ
Rt M

g : Gravitational Field of Earth,

(My = 5,9737 x 1024 Kg ; Ry = 6371 km ;G = 6,67259.1011 m3Kg~1s72)

¢ At the surface level of the earth: g = g, = % =9,820251 m.s?
T

GMr _ GMr Ryp?
(Rr+h)2 — (Rp+h)2 Ry?

% At an altitude h of the earth's surface: g =

=9

B GMT< Ry )2 B ( Ry )2 (Neglecting the rotational speed of the
= = = go

R;* \Rp +h Ry +h earth upon itself).



11.6.2. Contact forces: e

U Support Reaction: m
» The force that a mass m, placed on a horizontal support, == |
undergoes from the support is called the “support force" s ~
W
\/

» The support reaction on m is distributed over the entire "support-object" contact surface
I_fN : Represents the resultant of all actions exerted on the contact surface.
> In equilibrium : I_fN +W=0= I_fN =—W

L Frictional forces:

» Frictional forces are forces that appear:
- Either when an object is moving (Soit lors de mouvement d’un objet),

- Or that object is subjected to a force that tends to want to move it

(Cet objet est soumis a une force qui tend a vouloir de le déplacé).

» We distinguish two types of friction forces:
- Viscous friction (contact: solid — fluid).

- Solid friction (contact: solid-solid).



//______-——-—a

O Viscous friction:

Viscous friction is related to the movement of an object M in a fluid medium (air,

liguid or other) Solide en
mouvement
At low velocities, the friction ( in magnitude) is proportional
to the velocity at which the object is moving. ’)
Friction Force |«—F = —kV —» Object velocity F v

l oo liquide

Positive constant

We give: k =—Kn

K: Depends on the geometric shape of the body

n: Fluid viscosity coefficient, depends on internal fluid friction,

Remark: For higher speeds, experiments have shown that the frictional forces in

this case are given by:

F = —kV™i with n > 2



VS 1)

 Solid friction: .
: Force of entrainment C: Contact force C E Co=R
_________ =
Cy = R: Surface reaction force T Py
- - P e
Cr = Fy: Friction force (Sliding friction) GCr= > >

» The body is initially at rest;

» We increase gradually the value of ﬁe

—

» Each time I:"; e is increased, the value of the frictional force ﬁf increases until it

reaches a maximum value ﬁfo = 5T0 which corresponds to the beginning of the

object's slippage. — This position is called: Limit equilibrium state,

Applying the Newton’s second law in this case:

— = C =F
¢+ By projection on the (Ox) and (Oy) axes: Fo=Cro=0 _, ) %10 €
Cno—W =0 0

> The static coefficient of friction is defined as:

C
Us =tge = C—TO : characterizes the limit equilibrium state
NO



» When ﬁe > ﬁfo, the object begins to move from its steady state with uniformly -

accelerated motion

» Applying the Newton’s second law in this case: z ﬁext =md =W+C+ L =md
AY
By projection on the (Ox) and (Oy) axes: ¢ L
_________ , CNzR
F, — Cr = ma Cr =F,—ma =
= - - X
{CN—W=O { Cy=W Cr = - ﬁ__,
» The dynamic coefficient of friction is then defined: W

Cr F,—ma

=t = =
Ha = LG9 Cx mg

Remarks:

Q ug and u, depend on the nature of the surfaces in contact,
O ugy is less than ug
O ug is substantially independent of speed

O ug4 is substantially independent of the surface area of the surfaces in contact and depends

only on their nature



Application: Inclined Plane

O At the limit equilibrium state: Z Fop=0 = P+

By projection:

Pe—Cro=0 _ Psinay = Cr ... ... ... ... (1)
Cno— Py, =0 Pcosay = Cy ... ... ... (2)
Cr
1)/(2) = tgag == ps
N
O In the state of motion: ¢, > a (a = ay + da)

zFethmC_i =>ﬁ+5=mc7,

By projection:

P,—Cr =ma _ Psina —ma = Cr ...(1)
Cy—P, =0 Pcosa = Cy ... ... ... (2)

Cr Psina —ma gsina — a

=tga = = —
Ha Y Cy Pcosa gcosa




3. Elastic Strength:

F=—-koM = proportional and opposite to the position vector oM

k : Stiffness Constant

By projection on the axis (Ox): F = —kxi

Example:

F = —kOM=—k(l — 1,7

TN
Il

—k(l - ly)d




> Let (R)a Galilean frame of reference and (R') a non-Galilean frame of reference. .
N\
o

» R'is in moving relative to R. R

= R is the absolute frame of reference and R' is the relative AZ
frame of reference

) A 2.
ﬁZ};‘ext=Tn«6_ia' =mC_ir+mC_l>e+C_l>C _.k
l —> >
. : : OJ y
In the R’ coordinate system, the PFD is: X
- - - (R)

mé, = md, —md, — d, = zFext + B+

ee = —mad,est la force d'inertie d'entrainement,

ﬁc = —mad_ is the Coriolis force of inertia,

- -

F, et F are non-real forces, they depend on the motion of R’/R.



—
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apter ork and Emergy—

ll.1. Introduction :

If we know the positions and velocity of the particles of a system and all the forces
acting on these particles, we can predict, using Newton's laws, the evolution of this
system over time. But in practice, we can't always know all the forces that come into
play, and even if we do, the equations to solve are too many or too complicated. For

this reason, we appeal to new notions such as “work and energy».

lll.2. Work of a Force:

111.2.1. Constant Force on a Straight Displacement:

» A force is said to be constant when his magnitude and direction do not change over
time.

» A force is said to work when its point of application moves.



“ Ii g \\{ .— — A —

» If an object M moves through a rectilinear displacement m

force F is acting on it: F
The force does an amount of work equal to: A a B
Wz = F.AB = F.ABcosa ([W] = Joule) ’ —>
Remarks: T_FT M
1. ;1 o > q = r = Wz=0 F doesn't work

2

4
/é; > 0<a<E=WF>0 : Motor work

M

F

\sa T .

. > —<a<tm= W-=<0 :Resistance work
M B 2 F

2. If several different (constant) forces act on a mass while it moves though a displacement

A—B: then we can talk about the net work done by the forces:

n
Wnet = ﬁlA_B> + ﬁzA_B> + ﬁgA_B> ...... +P_>'nA_B> = Z i'/l_B)



Examples of works:

1.

2.

The work done bay the force F on this lawnmower is (FxXdxcos@)

A person holding a briefcase does no work on it because there is @

no motion (d=0)

The person moving the briefcase horizontaly at a constant speed deos %
g =90°

no work on it.

Work is done on the briefcase by carrying it upstairs at a constant

speed becasue there is necessarily a component of force F in the

direction of the motion.

The work done by a constant force can be calculated as the area

under the force-displacement graph




Exercise:

A block of stone moves upwards on a plane inclined at 30° under the action of several forces
including: F; = 45 N horizontal. F,
F, = 25 N Normal to the inclined plane. L

F3 = 35 N parallel to the inclined plane.

It will be considered that all the forces acting on the block have

their point of application at the center of mass G of the block.

Calculate the work of forcesF1,F, and F3 when the block rises 1.5 m on the inclined plane.

Solution:

1-W, = F;.AB = F;.AB.cosa = 45.1,5.cos 30 = 58,46]
2- W, =ﬁ2_ﬁ (ﬁz J_ﬁ?)) > W;=0

3-W; = F;.AB (F5 | AB) = W5 = F3.AB = 35.1,5 = 52,5]



l1.2.2. Elementary work: g =

O When the force F which acts on M is not constant during displacement:

By definition, elementary work is given by:
B

dWﬁ=ﬁ._l> ﬁWﬁ=jﬁ._l)

A o d
F=FEl+F,j+FEk B
A * . = dW = F,dx+ F,dy + F,dz
dl =dxi +dyj+ dzj

111.2.3. Work Done By Gravitational Force:
. V4
Gravitational force Fj is the force that keeps anything with a

In Cartesian coordinates:

mass m attracted to the earth.

Mr » — - - — N > -
WﬁngM Fg.dl, F;=-mgk, dl=dxi+dyj+dzk
MI
= Wﬁg = f —mg.dz =-mg(Zy, —Zy)
M

Either:h=Zy —Zy, | = Wﬁg =mgh




111.2.4. Work done b)} an elastic force:

S
)
=
Q
<
®
i

1
=W = —Ekx2 + Cts

When F moves from the X1 position to x, position , We have :

X2 1
W = —kj xdx = —Ek(xzz — x12)
X1

The work of this force does not depend on the path followed but only on the initial and

final position of the spring



111.2.5. Power of Force:

Power is the rate at which work is done or energy is transferred in a unit of time.

_ AW

O Average Power: Prye = At

dw 2 ([P] = Watt)
O Instantaneous Power:  p, . = P(t) = y F
t

The power of a force F in a time interval dt manages to move a mobile by a distance dl can

be written by:

_ _nat g% g
P(t) =— dt x 5V



I11.3. Energy

Energy, in physics, is the capacity for doing work. Energy can neither be created nor

destroyed, and it can only be transformed from one form to another.

U Types of Energy

¢ Mechanical energy ¢ lonization energy

** Chemical energy ¢ Elastic energy

¢ Electric energy ¢ Gravitational energy
* Magnetic energy ** Thermal energy

¢ Radiant energy ¢ Heat Energy

% Nuclear energy

O All forms of energy are either kinetic or potential:
v The energy in motion is known as Kinetic Energy.
v' Whereas Potential Energy is the energy stored in an object and is measured by

the amount of work done.



lll. 3.1. Kinetic energy

We define the kinetic energy of a material point M, of mass m and animated with a

velocity /', by the quantity Ec, such that :

E _1! V2
c—zm

» Let a material point M, of mass m, moves between points A and

B under the action of an external force F.

» According to the fundamental principle of dynamics, we have:




—_—

dv 1
= dW; = mE.th =mVdV =d (Esz) = dE_

So the work done between A and B is given by:

B B

Kinetic enerqy theorem:

In a Galilean frame of reference, the change in kinetic energy of a material point
subjected to a set of external forces between a position A and another position B is

equal to the sum of the works of these forces between these two points:

AEc = E¢(B) —Ec(A) =% WA%B(F)ext)




111.3.2. Conservative and non-conservative forces:

[ Forces are said to be conservative when:

1- Their work does not depend on the path followed but only on the point of departure

and the point of arrival. 4

For example:

according to the figure on the right: W

Wi(A - B) = W,(A - B) = W;3(A - B)
2- The total work on a closed path (i.e. a round trip) is zero.

WA —->A) =W (A->B)+W3(B->A4)=0

Examples of conservative forces:

Gravitational forces, elastic forces, gravitational forces......

O Forces are said to be non-conservative when their work depends on the path taken.

Example of non-conservative forces: Frictional forces.




lll. 3.1. Potential Enerqgy:

The potential energy of a body or physical system is the energy that is present in it

and has the potential to transform into kinetic energy.

» Consider an object near the earth's surface as a system with
initially upward velocity.

» Once the object is released, the gravitational force, acting as
an external force, does a negative amount of work on the
object, and the kinetic energy decreases until the object
reaches its highest point, at which its kinetic energy is zero.

» The gravitational force then does a positive job until the
object returns to its original starting point with a downward

velocity.

» If we ignore the effects of air resistance, then the descending
object will have the same kinetic energy as when it was
launched.

» All kinetic energy has been completely recovered

v =

Negative work
done by the
gravitational
force

)

0

Positive work
done by the
gravitational
force

A\t
L
'



— We define the potential energy Ep as the quantity of energy that must be

added to the kinetic energy E. so that their sum is constant:
E- + Ep = Cte
» For a displacement producing a change in kinetic energy AE, the corresponding

change in potential energy AEp can be given by:

With F, is a conservative force

B
A



Using the notion of elementary work dW of a conservative force ﬁc:

dW == ﬁca - dEp - —ﬁcm

We have:
) fe=Eit byt Fz"_} = F¢.dl = F,dx + F,dy + F,dz
dl = dxt + dyj + dzk
0Ep 0Ep 0Ep _ _ _
2— dEp = de + Edy + Edz (Total differential of a function)
L J0Ep 0Ep 0Ep
dEp = —F..dl = de + Wdy + Edz = —Fdx — F,dy — F,dz
([ 0Ep
oo 0E 0E 0E
aEP - - i P> P P37 =
= —— E 1+ F Ek=———1- — = —VE
=\ dy = B+ B+ Ek ox ' oy’ oz d
. 0Ep
2T T oz = F¢ = —gradEp




lll. 3.1.1. Potential Energy of the Force of Gravity:

B
AEp = Ep(B) — Ep(4) = —j E,.dl
A

—_—

F W = —mgk ; dl = dxi + dyj + dzk

AEp = j mgdz = mg(Zg — Z,) = mgh

lll. 3.1.2. Potential Enerqgy of an Elastic Force:

, OF dE
F = —gradEp = —a—;i’ :>d_; = kx

1
Ep = jkxdx = Ekx2 + Cte

G

| K&




‘2

lll. 3.1.3. Potential Enerqy of a Gravitational Force:

S GMm _ _ GMm, [ T

F(r) =-— r2 U =3 r r /
S . dEp(r) _, dEp(r) GMm 0
F(r) = —gradEp(r) = — - u = g - 2 k

GMm
- dEp(r) = 7"2 dr p— EP(r) = f r2 dr = —




111.3.2. Mechanical energy

Let be a system moving between points A and B under the effect of conservative and

non-conservative forces. According to the kinetic energy theorem, we have:
Ec(B) — Ec(A) = z Wasg (ﬁc) + Z Wag (ﬁNC)
With :ﬁ'C: Conservative force and ﬁNC: non-conservative force
We have: z WAQB(F)'C) = —(EP(B) - EP(A))
= B¢ (B) — Ec(A) = ~(Ep(B) — Ep()) + ) Wia(Fuc)

= (Ec(B) + Ep(B)) — (Ec(A) + Ep(4)) = Z W (Fnc)

» E.+ Ep = E : Called « Machanical energy (Totale)

= E(B) —E(4) = Z WA%B(FNC)




Mechanical Enerqy Theorem:

The change in the mechanical energy of a system, moving between two points A and B, is
equal to the sum of the works of the non-conservative external forces applied to that

system :

E(B) — EA) = ) Wap(Fuc)

However, when the system is isolated (i.e., it is not subject to any non-conservative

external forces) the mechanical energy is conserved = AE = 0.



Exercise: L=50cm

< >
A small object of mass m modeled by a point is D-\ ."i‘\O !
hung at the end of an inextensible thread of length L. ‘\\ ','l"'i \9\ /”
The other end is attached to a bracket(see figure). \\\ ./l : \‘\‘ //',
We do the study in the terrestrial frame of reference. \\.': _____ i_ _,:'r’/
C B m A

The initial angle is@ = 20°, Length L =50 cm.

a. Trace the forces acting on the object.

b. We let go of the object from point A. Using the kinetic energy theorem, express its
velocity Vy at point B as a function of g, L, and 8 , and then calculate it.

c. What is its velocity at point C?
d. We now throw the object from point A with speed I_/>A tangent to the circle, towards the

left. Express the minimum value of the norm of V, for the object to go to point D as a

function of g, L and 6. Calculate it.



Solution:

a. the forces acting on the object are:
Object Weight W and Thread tension T

b. In A, the velocity being zero E-(4) = 0.
In B The kinetic energy is E.(B) = %mVB2

Applying the kinetic energy theorem
AEc = E¢(B) — Ec(A) = YWy p(Fext) = Waop(T) +Wa p(W)
> The tension of the wire T~ is perpendicular to the trajectory, its work is always zero.

» The weight W is a conservative force, its work depends only on the start and end

positions, and therefore on the difference in altitude h between point A and point B.



h=AB=0B—0A4" =1L — Lcos L=50cm

<€

: 0 !
= h = L(1 — cos0) \ \ O :
. \\\ L III

AE; = E¢(B) — 0 = W,_p(P)

1 2 \\\ ///
= omVp" = mgh =mgL(1 — cos6) A =
~__B____— A

= Vg =+/2gL(1 — cos@) =+/2.9,8.0,5(1 — c0s20°) = 0,77m/s

C. Point Cis at the same height as point A, if no energy is lost, the object

is in C with zero velocity, all the mechanical energy is grouped in the potential energy.

D. the object reaches point D with zero velocity

Applying the principle of conservation of mechanical energy between A and D

AE, =0 = E,,(D) — E,,(4) =0



= (Ec(D) + Ep(D)) — (Ec(A) + Ep(4)) =0

(E.(D)=0
Epr(D) = mglL

1 2
Ec(A) = EmVA

(Ep(A) = mgL(1 — cosB)

1 1
= mglL = EmVAZ + mgL(1 — cosf) = EmVA2 + mgL — mgLcos@

=V, =./2gLcos6 =3 m/s
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