
Chapter 0: Mathematical reminders

I.1. Generalities on Physical quantities (المقادير الفيزيائية )

• A physical quantity [A] is a quantity wich can be measured, with instruments or 

even by using our senses, and wich that reports a physical property.

𝑎 =
𝐴

𝐴

numerical magnitude

Physical quantity

Unit

• For example: length, mass, time, temperature, electric current, light intensity, 
volume…. etc

The Velocity   V = 10 m/s

•Physical quantities [A] have numerical magnitude “a” and unit 𝐴

Example:



➢There are two types of measurable quantities

▪ Scalar quantities:

▪ Vector quantities:

Length, mass, time, energy………..

Velocity, Acceleration, Electric and magnetic field……



International System of Units(Called « SI » System)

➢ This system is composed of the following fundamental units:

Unit Physical quantuty

Meter (m) Length

Kilogram (Kg) Mass

Second (S) Time

Ampere (A) Electric current intensity

Kelvin (K) Temperature

Candela (Cd) Luminous intensity

Mole Quantity of matter

➢ The First Fourth units form the system  MKSA



Derived quantities

➢These quantities are expressed as a combination of fundamental 

quantities.

Exemple : 

Area : m2

velocity : m.s-1 .

Force : Newton (N) = Kg.m.s-2 . 

Energy : Joule (J) =Kg m2.s-2

➢The units of all quantities other than fundamental units is called derived 

unit. 

➢Derived units are obtained in terms of fundamental quantities.



I.2. Equation for dimensions (Dimensional Equations)

➢Determine derived units based on fundamental units  nombres réels

𝐴 = 𝑀𝛼𝐿𝛽𝑇𝛾𝐼𝜆
𝜶, 𝜷, 𝜸, 𝝀: 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓𝒅

➢ This equation consists of the equation for dimensions of a quantity A, with:

     M : Mass, L : Length, T : Time, I : Current intensity

Examples:

𝑉 = 𝐿. 𝑇−1(𝑚/𝑠)❖Velocity :

❖Acceleration: 𝑎 = 𝐿. 𝑇−2(𝑚/𝑠2)

❖Force : Ԧ𝐹 = 𝑚 Ԧ𝑎 ⇒ 𝐹 = 𝑀𝐿. 𝑇−2(𝑘𝑔. 𝑚. 𝑠−2 = 𝑁𝑒𝑤𝑡𝑜𝑛)

❖Work : 𝑊 = න Ԧ𝐹. 𝑑𝑙 ⇒ 𝑊 = 𝐹 𝑑𝑙 = 𝑀𝐿𝑇−2𝐿 = 𝑀𝐿2𝑇−2(𝐾𝑔. 𝑚2/𝑠2 = 𝐽𝑜𝑢𝑙𝑒)



Remark :

• The dimensional equation is used to check the homogeneity of the physical 

formulas.

Example :

The period of oscillation of a simple pendulum of length L is it given by:

𝑇 = 2𝜋
𝑔

𝐿
. . . . . . . . . . . . . . . . . 𝐼 Ou par 𝑇 = 2𝜋

𝐿

𝑔
. . . . . . . . . . . . . . . . . 𝐼𝐼

• 𝐼 ⇒ 𝑇 = 2𝜋𝑔1/2𝐿−1/2 ⇒ 𝑇 = 𝐿𝑇−2 1/2𝐿−1/2 = 𝑇−1 ⇒ 𝑇 = 𝑇−1 𝐹𝑎𝑙𝑠𝑒

• 𝐼𝐼 ⇒ 𝑇 = 2𝜋𝐿1/2𝑔−1/2 ⇒ 𝑇 = 𝐿1/2 𝐿𝑇−2 −1/2 = 𝑇 ⇒ 𝑇 = 𝑇 𝑟𝑖𝑔ℎ𝑡



•Its magnitude which presents the length AB. It is noted 𝐴𝐵

➢A vector is characterized by:𝑨𝑩

II. Reminder on vectors

A

B

➢Mathematical entity defined by multiple numeric values.

➢ Unit vector or orth is a vector whose length is equal to one.

➢These values describe the magnitude and orientation of the vector.

•Its origin or point of application.

•Its direction, which is the direction of movement of a mobile having 

from point A to point B.



II.1- Projecting a vector onto an axis: 

𝑢  represent unit vector, with 𝑢 =1 

𝑨′𝑩′ = 𝑨𝑩 𝐜𝐨𝐬 𝜽

A’ and B’ are perpendicular projections of A and B on the axis (D)

𝒖

𝒖′

A

B

q

A’ B’
(D)

𝐴𝐵 = 𝐴𝐵 𝑢

𝐴′𝐵′ = 𝐴′𝐵′ 𝑢′



➢ If a vector 𝐴𝐵 set by the coordinates of the points 𝐴(𝐴𝑥 ; 𝐴𝑦; 𝐴𝑧) and 𝐴(𝐵𝑥; 𝐵𝑦; 𝐵𝑧) 

can be found using the following formula:

II.2- The components of a vector:

Ԧ𝐴 = 𝐴𝑥Ԧ𝑖 + 𝐴𝑦 Ԧ𝑗 + 𝐴𝑧𝑘 Or      Ԧ𝐴

𝐴𝑥

𝐴𝑦

𝐴𝑧

Tel that Ԧ𝐴 = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 is the magnitude of Ԧ𝐴

𝑨𝑩 = 𝑩𝒙 − 𝑨𝒙 Ԧ𝒊 + 𝑩𝒚 − 𝑨𝒚 Ԧ𝒋+ 𝑩𝒛 − 𝑨𝒛 𝒌

𝑨

𝑨′

𝐴𝑦

𝒙

𝒚

𝒛

𝑶
Ԧ𝑖

Ԧ𝑗
𝑘

𝝋
𝐴𝑥

𝐴𝑧



Vector operations:

Ԧ𝐴

𝐴𝑥

𝐴𝑦

𝐴𝑧

𝐵

𝐵𝑥

𝐵𝑦

𝐵𝑧
et 

Ԧ𝐴

𝐵

Ԧ𝐴 + 𝐵

Geometrically

Analytically : Ԧ𝐴 ± 𝐵

𝐴𝑥 ± 𝐵𝑥

𝐴𝑦 ± 𝐵𝑦

𝐴𝑧 ± 𝐵𝑧

I. Addition

Properties : 

➢ Ԧ𝐴 + 𝐵 = 𝐵 + Ԧ𝐴

➢ Ԧ𝐴 + 𝐵 + Ԧ𝐶 = Ԧ𝐴 + 𝐵 + Ԧ𝐶

Ԧ𝐴 + 𝐵 ≠ Ԧ𝐴 + 𝐵➢
➢

෍

𝑖=1

𝑛

𝐴𝑖 = ෍

𝑖=1

𝑛

𝐴𝑥𝑖
Ԧ𝑖 + ෍

𝑖=1

𝑛

𝐴𝑦𝑖
Ԧ𝑗 + ෍

𝑖=1

𝑛

𝐴𝑧𝑖
𝑘

Ԧ𝐴

𝐴𝑥

𝐴𝑦

𝐴𝑧

⇒ − Ԧ𝐴

−𝐴𝑥

−𝐴𝑦

−𝐴𝑧

➢



II. multiplication of two vectors:

II.1 Scalar multiplication:

𝑨. 𝑩 = 𝑨 𝑩 𝐜𝐨𝐬 ෢𝑨, 𝑩

❑ In Cartesian coordinates:

𝑨. 𝑩 = 𝑨𝒙𝑩𝒙 + 𝑨𝒚𝑩𝒚 + 𝑨𝒛𝑩𝒛

𝐜𝐨𝐬 𝜽 =
𝑨𝒙𝑩𝒙 + 𝑨𝒚𝑩𝒚 + 𝑨𝒛𝑩𝒛

𝑨𝒙
𝟐 + 𝑨𝒚

𝟐 + 𝑨𝒛
𝟐. 𝑩𝒙

𝟐 + 𝑩𝒚
𝟐 + 𝑩𝒛

𝟐

❑ The angle q between 𝑨 and 𝑩 is given by:  

𝑨

𝑩

𝜽



Properties :

➢ Ԧ𝐴. 𝐵 = 𝐵. Ԧ𝐴

➢ Ԧ𝐴. 𝐵 + Ԧ𝐶 = Ԧ𝐴. 𝐵 + Ԧ𝐴. Ԧ𝐶

➢ Ԧ𝐴. 𝐵. Ԧ𝐶 = Ԧ𝐴. 𝐵 . Ԧ𝐶

➢ Ԧ𝐴. Ԧ𝐴 = Ԧ𝐴
2

➢ 𝜆 Ԧ𝐴 . 𝐵 = 𝜆 Ԧ𝐴. 𝐵 = Ԧ𝐴. 𝜆𝐵

➢ Ԧ𝐴 ⊥ 𝐵 ⇒ Ԧ𝐴. 𝐵 = 0 Ԧ𝐴 and 𝐵 are ortogonal



➢ Ԧ𝐶 is perpendicular to the plane formed by the vectors Ԧ𝐴 and 𝐵

II.2.  Vector multiplication :

The vector multiplication of vectors 𝑨 and 𝑩 , denoted 𝑨 ∧ 𝑩 , is a vector 𝑪  with:

➢ the magnitude of Ԧ𝐶 corresponds to the area 

of the parallelogram constructed on 𝐴 and 𝐵

𝑪 = 𝑨 ∧ 𝑩 = 𝑨 . 𝑩 . 𝐬𝐢𝐧
෢

𝑨, 𝑩

➢ The direction is given by using the right-hand rule.                          

⇒ 𝑨𝑩𝑪 make a direct trihedron (ثلاثية مباشرة) . 

Analytically :



Ԧ𝐶 = Ԧ𝐴 ∧ 𝐵

= 𝐴𝑥𝐵𝑥Ԧ𝑖 ∧ Ԧ𝑖 + 𝐴𝑥𝐵𝑦Ԧ𝑖 ∧ Ԧ𝑗 + 𝐴𝑥𝐵𝑧Ԧ𝑖 ∧ 𝑘

Ԧ𝑖 Ԧ𝑗

𝑘

+

++

𝑘 ∧ Ԧ𝑖 = Ԧ𝑗

⇒ Ԧ𝐴 ∧ 𝐵 = 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 Ԧ𝑖 − 𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥 Ԧ𝑗 + 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 𝑘

❑ Cartesian coordinates of      :Ԧ𝐶

Ԧ𝑖 ∧ Ԧ𝑗 = 𝑘

Ԧ𝑗 ∧ 𝑘 = Ԧ𝑖

➢ Ԧ𝑖 ∧ Ԧ𝑖 = Ԧ𝑖 Ԧ𝑖 sin Ԧ𝑖, Ԧ𝑖 = 0

Ԧ𝐴

𝐴𝑥

𝐴𝑦

𝐴𝑧

𝐵

𝐵𝑥

𝐵𝑦

𝐵𝑧

et 

= 𝐴𝑥Ԧ𝑖 + 𝐴𝑦 Ԧ𝑗 + 𝐴𝑧𝑘 ∧ 𝐵𝑥Ԧ𝑖 + 𝐵𝑦 Ԧ𝑗 + 𝐵𝑧𝑘

Also Ԧ𝑗 ∧ Ԧ𝑗 = 𝑘 ∧ 𝑘 = 0

+𝐴𝑦𝐵𝑥 Ԧ𝑗 ∧ Ԧ𝑖 + 𝐴𝑦𝐵𝑦 Ԧ𝑗 ∧ Ԧ𝑗 + 𝐴𝑦𝐵𝑧 Ԧ𝑗 ∧ 𝑘

+𝐴𝑧𝐵𝑥𝑘 ∧ Ԧ𝑖 + 𝐴𝑧𝐵𝑦𝑘 ∧ Ԧ𝑗 + 𝐴𝑧𝐵𝑧𝑘 ∧ 𝑘



Ԧ𝐴 ∧ 𝐵 =
Ԧ𝑖 Ԧ𝑗 𝑘

𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

=

+ +-

-

❖ Determinant method:

+𝑘 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥

+Ԧ𝑖 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 −Ԧ𝑗 𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥-

⇒ Ԧ𝐴 ∧ 𝐵 = 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 Ԧ𝑖 − 𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥 Ԧ𝑗 + 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 𝑘

2. Ԧ𝐴//𝐵 ⇒ Ԧ𝐴 ∧ 𝐵 = 0

❑ Properties:

1. Ԧ𝐴 ∧ 𝐵 = − 𝐵 ∧ Ԧ𝐴



𝑩

𝑪

𝑨

II.3. Mixed product:

Mixed product is a triple vector product that combines the concept of scalar and 

vectorial products to yield a scalar value: 𝑚 = Ԧ𝐴. 𝐵 ∧ Ԧ𝐶

❑ The absolute value m of the mixed product is the volume of the parallelepiped 

formed by the vectors Ԧ𝐴, 𝐵 𝑎𝑛𝑑 Ԧ𝐶.

Geometric interpretation:

❑ The vector 𝐵 ∧ Ԧ𝐶 is perpendicular of the base of The parallelepiped  and its 

magnitude equal the area of the base: 𝒃 = 𝑩 ∧ 𝑪

❑ The altitude of the parallelepiped 

ℎ is given by: 𝒉= 𝑨 cos 𝜶

𝒉= 𝑨 cos 𝜶
𝜶

Base

𝑩
∧

𝑪

𝜶

➢ Therefor, the volume is given by :

𝑨. 𝑩 ∧ 𝑪 = 𝑩 ∧ 𝑪 . 𝑨 𝒄𝒐𝒔 𝜶

𝒃 𝒉

𝑽 = 𝑩𝒂𝒔𝒆(𝒃) × 𝒉



❑ If any two of vectors Ԧ𝐴, 𝐵 and 𝐶 are parallel, or if Ԧ𝐴, 𝐵 and 𝐶 are Coplanar, then:          

𝑨. 𝑩 ∧ 𝑪 = 𝟎

Mixed product properties :

❑ Ԧ𝐴. 𝐵 ∧ Ԧ𝐶 = 𝐵. Ԧ𝐶 ∧ Ԧ𝐴 = Ԧ𝐶. Ԧ𝐴 ∧ 𝐵 = 𝐵 ∧ Ԧ𝐶 . Ԧ𝐴 = Ԧ𝐶 ∧ Ԧ𝐴 . 𝐵 = Ԧ𝐴 ∧ 𝐵 . Ԧ𝐶

❑ Ԧ𝐴. 𝐵 ∧ Ԧ𝐶 = − Ԧ𝐴. Ԧ𝐶 ∧ 𝐵 = −𝐵. Ԧ𝐴 ∧ Ԧ𝐶 = − Ԧ𝐶. 𝐵 ∧ Ԧ𝐴

❑ Analytically, if:  Ԧ𝐴

𝑎𝑥

𝑎𝑦

𝑎𝑧

,  𝐵

𝑏𝑥

𝑏𝑦

𝑏𝑧

and   Ԧ𝐶

𝑐𝑥

𝑐𝑦

𝑐𝑧

:  

𝑨. 𝑩 ∧ 𝑪 =
𝒂𝒙 𝒂𝒚 𝒂𝒛

𝒃𝒙

𝒄𝒙

𝒃𝒚

𝒄𝒚

𝒃𝒛

𝒄𝒛

= 𝒂𝒙 𝒃𝒚𝒄𝒛 − 𝒃𝒛𝒄𝒚 − 𝒂𝒚 𝒃𝒙𝒄𝒛 − 𝒃𝒛𝒄𝒙 + 𝒂𝒛 𝒃𝒙𝒄𝒚 − 𝒃𝒚𝒄𝒙



𝑨 ∧ 𝑩 ∧ 𝑪 = 𝑨. 𝑪 𝑩 − 𝑨. 𝑩 𝑪 = 𝑩 𝑨. 𝑪 − 𝑪 𝑨. 𝑩

Properties:

❑ Non-Associativity: 𝑨 ∧ 𝑩 ∧ 𝑪 ≠ 𝑨 ∧ 𝑩 ∧ 𝑪

➢ 𝑨 ∧ 𝑩 ∧ 𝑪 = 𝑨. 𝑪 𝑩 − 𝑨. 𝑩 𝑪

➢ 𝑨 ∧ 𝑩 ∧ 𝑪 = 𝑨. 𝑪 𝑩 − 𝑩. 𝑪 𝑨

❑ The vector 𝑨 ∧ 𝑩 ∧ 𝑪  is in the plane defined by 𝑩 and 𝑪

❑ The vector 𝑨 ∧ 𝑩 ∧ 𝑪is in the plane defined by 𝑨 and 𝑩

II.4. Vector triple product



II.5. Differential Operators :

❑ Operator Nabla : ∇=
𝜕

𝜕𝑥
Ԧ𝑖 +

𝜕

𝜕𝑦
Ԧ𝑗 +

𝜕

𝜕𝑧
𝑘 ∇=

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧

Ou 

❑ Gradient operator :

∇𝑓 𝑥, 𝑦, 𝑧, 𝑡 =
𝜕𝑓 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑥
Ԧ𝑖 +

𝜕𝑓 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑦
Ԧ𝑗 +

𝜕𝑓 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑧
𝑘

The gradient operator is a differential operator that applies to a scalar function 

dependent on space and time and transforms it into a vector dependent on space and 

time. It is read “gradient f” or “nabla f” and is noted :

𝒈𝒓𝒂𝒅𝒇   or    𝜵𝒇

In the Cartesian coordinate system the gradient is expressed as follows:



Example:

𝑓 𝑥, 𝑦, 𝑧 = 3𝑥2𝑦 + 𝑧

𝑔𝑟𝑎𝑑𝑓 𝑥, 𝑦, 𝑧 = ቤ
𝜕𝑓

𝜕𝑥
(𝒚, 𝒛)=𝑪𝒕𝒔

Ԧ𝑖 + ቤ
𝜕𝑓

𝜕𝑦
(𝒙, 𝒛)=𝑪𝒕𝒔

Ԧ𝑗 + ቤ
𝜕𝑓

𝜕𝑧
(𝒙,𝒚)=𝑪𝒕𝒔

𝑘

⟹ 𝑔𝑟𝑎𝑑𝑓 𝑥, 𝑦, 𝑧 = ∇𝑓 𝑥, 𝑦, 𝑧 = 6𝑥𝑦 Ԧ𝑖 + 3𝑥2 Ԧ𝑗 + 𝑘

▪ Calculate 𝑔𝑟𝑎𝑑𝑓 𝑥, 𝑦, 𝑧  in point M(1, 2, -2)

Sol:

⟹ 𝑔𝑟𝑎𝑑𝑓 1, 2, −2 = ∇𝑓 1, 2, −2 = 𝟐Ԧ𝒊 + 𝟑Ԧ𝑱 + 𝒌

Properties:

❑ ∇ 𝛼𝑓 + 𝛽𝑔 = 𝛼∇𝑓 + 𝛽∇𝑔 (with 𝛼, 𝛽 ∈ ℝ2

❑ ∇ 𝑓. 𝑔 = 𝑓∇𝑔 + 𝑔∇𝑓



❑ Divergence operator:

𝑑𝑖𝑣 Ԧ𝐴 = ∇. Ԧ𝐴 =
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧

The divergence operator is a differential operator that applies to a vector field and 

returns a scalar field. It reads divergence and is noted: 

In the Cartesian coordinate system the Divergence of Ԧ𝐴  is expressed as follows:

𝑑𝑖𝑣 Ԧ𝐴 or ∇. Ԧ𝐴

Properties:

❑ 𝑑𝑖𝑣 Ԧ𝐴 + 𝐵 = 𝑑𝑖𝑣 Ԧ𝐴 + 𝑑𝑖𝑣𝐵 ❑ 𝑑𝑖𝑣 𝛼 Ԧ𝐴 = 𝛼 𝑑𝑖𝑣 Ԧ𝐴

❑ 𝑑𝑖𝑣 𝑓 Ԧ𝐴 = 𝑓 𝑑𝑖𝑣 Ԧ𝐴 + 𝑔𝑟𝑎𝑑𝑓. Ԧ𝐴 (with 𝑓 is scalar function)

Demonstration : Home work  ( واجب منزلي)



❑ Rotational operator:

𝜵 ∧ 𝑨 =

Ԧ𝒊 Ԧ𝒋 𝒌
𝝏

𝝏𝒙

𝝏

𝝏𝒚

𝝏

𝝏𝒛
𝑨𝒙 𝑨𝒚 𝑨𝒛

=
𝝏𝑨𝒛

𝝏𝒚
−

𝝏𝑨𝒚

𝝏𝒛
Ԧ𝒊 +

𝝏𝑨𝒙

𝝏𝒛
−

𝝏𝑨𝒛

𝝏𝒙
Ԧ𝒋 +

𝝏𝑨𝒚

𝝏𝒙
−

𝝏𝑨𝒙

𝝏𝒚
𝒌

The rotational operator is a differential operator that transforms a vector field into 

another vector field. It reads rotational of Ԧ𝐴 and is noted:

➢ In the Cartesian coordinate system the Rotational of Ԧ𝐴  is expressed as follows:

𝑟𝑜𝑡 Ԧ𝐴 Or  ∇ ∧ Ԧ𝐴

➢ Properties:

❑ 𝑟𝑜𝑡 𝛼 Ԧ𝐴 + 𝛽𝐵 = 𝛼𝑟𝑜𝑡 Ԧ𝐴 + 𝛽𝑟𝑜𝑡𝐵❑ 𝑑𝑖𝑣 𝑟𝑜𝑡 Ԧ𝐴 = ∇. ∇ ∧ Ԧ𝐴 = 0

❑ 𝑟𝑜𝑡𝑔𝑟𝑎𝑑𝑓 = ∇ ∧ ∇𝑓 = 0 ❑ 𝑟𝑜𝑡 𝑓 Ԧ𝐴 = ∇ ∧ 𝑓 Ԧ𝐴 = ∇𝑓 ∧ Ԧ𝐴 + 𝑓∇𝑓 ∧ Ԧ𝐴

Demonstration : Home work  ( واجب منزلي)



The scalar Laplacian operator is a differential operator of order two that transforms a 

scalar function into another scalar function. The scalar Laplacian is obtained by taking 

the divergence of the gradient and denoted: 𝜟𝒇 = 𝒅𝒊𝒗 𝒈𝒓𝒂𝒅𝒇 = 𝜵𝟐𝒇

𝜟𝒇 =
𝝏𝟐𝒇

𝝏𝒙𝟐 +
𝝏𝟐𝒇

𝝏𝒚𝟐 +
𝝏𝟐𝒇

𝝏𝒛𝟐

❑ Laplacian operator

1. The Scalar Laplacian

Pierre-Simon Laplace

 (1749 - 1827) 

➢ In the Cartesian coordinate:    

➢ Properties :

❑ ∆ 𝛼𝑓 + 𝛽𝑔 = 𝛼∆𝑓 + 𝛽∆𝑔

❑ ∆ 𝑓𝑔 = ∆𝑓 𝑔 + 2 ∇𝑓 . ∇𝑔 + 𝑓 ∆𝑔



❑ Properties :

𝐼. 𝑟𝑜𝑡 𝑔𝑟𝑎𝑑𝑓 = 0

𝐼𝐼. 𝑑𝑖𝑣 𝑟𝑜𝑡 Ԧ𝐴 = 0

2. The Vector Laplacian:

Laplacian also applies to a vector field. In this case it returns another vector field 

and denotes: △ 𝑨

By definition, the vector Laplacian is obtained using the identity (Vector triple product ):

𝒓𝒐𝒕 𝒓𝒐𝒕 𝑨 = 𝜵 ∧ 𝜵 ∧ 𝑨 = 𝜵 𝜵. 𝑨 − 𝜵𝟐𝑨 = 𝒈𝒓𝒂𝒅 𝒅𝒊𝒗𝑨 −△ 𝑨



Chapter 01: Kinematics of a material point

The aim of kinematics is to describe in qualitative terms the motion of a body 

without looking at the causes that produce it.

The study of the motion of a body is based on the study of its successive 

positions relative to a reference frame, as well as its velocity and acceleration and the 

relationships between these three quantities as a function of time.

I.2. Definitions:

❑Material point (particle) : An object with negligible dimensions on a macroscopic 

scale, which is assimilated to a geometric point.

In reality, the study of the motion of an object can be described by:

➢Motion around its center of mass.

➢Motion of its own center of mass

I.1. Objective:



𝑀0 𝑡 = 0

𝑀 𝑡

❑ Trajectory, Curvilinear Coordinates, Equations of motion

المسار        –الاحداثيات المنحنية     -المعادلة الزمنية للحركة     

Consider "M" as a moving particle in space

➢ The trajectory "M" is the geometric locus of the successive 

positions occupied by "M" over time.

➢The algebraic value ෣𝑴𝟎𝑴 𝒕 is called the Curvilinear Coordinate

➢ : Equation of motion of « M »𝑀0𝑀 𝑡 = 𝑆(𝑡)

➢ 𝑶𝑴𝟏 𝒆𝒕 𝑶𝑴𝟐 :  is a Position Vectors of « M » /« O »

𝑥

𝑦

𝑧

𝑂

➢ : Displacement vector of « M » from position M1 (t) to position M2(t+ t)

𝑀1 𝑡

𝑴𝟐 𝒕 + ∆𝒕

𝑴𝟏𝑴𝟐 𝒕 = ∆𝑶𝑴 𝒕 = 𝑶𝑴𝟐 𝒕 − 𝑶𝑴𝟏 𝒕 = 𝒓𝟐 𝒕 − 𝒓𝟏 𝒕

https://en.wikipedia.org/wiki/Equation_of_time


𝒗𝒂𝒗𝒆 =
∆𝑶𝑴 𝒕

∆𝒕
=

𝑴𝟏𝑴𝟐 𝒕

∆𝒕
=

𝑶𝑴𝟐 𝒕 + ∆𝒕 − 𝑶𝑴𝟏 𝒕

∆𝒕

𝑦

𝑥

𝑧

𝑂 Ԧ𝑖

Ԧ𝑗

𝑥2𝑥1

II. Curvilinear Motion

II.1. Velocity :

The motion of "M" is defined by its position vector at each time "t" with: 

𝑀1 𝑡

𝑦2

𝑦1

𝑀 𝑡

𝑥

𝑦
➢ Average Velocity:

In Cartesian coordinates:

𝑶𝑴 𝒕 = 𝒓 𝒕 = 𝒙(𝒕)Ԧ𝒊 + 𝒚(𝒕)Ԧ𝒋 + 𝒛(𝒕)𝒌

𝒗𝒂𝒗𝒆 =
∆𝒙

∆𝒕
Ԧ𝒊 +

∆𝒚

∆𝒕
Ԧ𝒋 +

∆𝒛

∆𝒕
𝒌

𝑴𝟐 𝒕 + ∆𝒕

∆𝑶𝑴 𝒕 = 𝑴𝟏𝑴𝟐 𝒕

𝒓 𝒕

ൡ
𝑂𝑀1 𝑡 = 𝑥1Ԧ𝑖 + 𝑦1 Ԧ𝑗 + 𝑧1𝑘

𝑂𝑀2 𝑡 = 𝑥2Ԧ𝑖 + 𝑦2 Ԧ𝑗 + 𝑧2𝑘
⇒ Ԧ𝑣𝑎𝑣𝑒 =

𝑥2 − 𝑥1

∆𝑡
Ԧ𝑖 +

𝑦2 − 𝑦1

∆𝑡
Ԧ𝑗 +

𝑧2 − 𝑧1

∆𝑡
𝑘



➢ Instantaneous velocity

We obtain it by computing the average velocity for a smaller time interval.

En coordonnées cartésiennes : 

𝑽𝒊𝒏𝒔𝒕 = 𝒍𝒊𝒎
∆𝒕→𝟎

𝑽𝒎𝒐𝒚 = 𝒍𝒊𝒎
∆𝒕→𝟎

∆𝑶𝑴 𝒕

∆𝒕
=

𝒅𝑶𝑴 𝒕

𝒅𝒕
=

𝒅𝒓 𝒕

𝒅𝒕

𝑽𝒊𝒏𝒔𝒕 = 𝑽 𝒕 =
𝒅𝒙

𝒅𝒕
Ԧ𝒊 +

𝒅𝒚

𝒅𝒕
Ԧ𝒋 +

𝒅𝒛

𝒅𝒕
𝒌

𝑽𝒙 =
𝒅𝒙

𝒅𝒕

𝑽𝒚 =
𝒅𝒚

𝒅𝒕

𝑽𝒛 =
𝒅𝒛

𝒅𝒕

With 𝑽 = 𝑽 = 𝑽𝒙
𝟐 + 𝑽𝒚

𝟐 + 𝑽𝒛
𝟐

Operationally, the instantaneous velocity is found by observing the moving body 

at two very close positions separated by the small distance 𝒅𝒙 and measuring the 

small time interval 𝒅𝒕 required to go from one position to the other position.



𝑴 𝒕

In polar coordinates (2d):

𝜃 𝑡

𝑂𝑀 𝑡 = Ԧ𝑟 𝑡 = 𝑟 𝑡 𝑢𝑟

𝑉 𝑡 =
𝑑𝑂𝑀 𝑡

𝑑𝑡
=

𝑑 𝑟 𝑡 𝑢𝑟

𝑑𝑡

𝑢𝑟 = 𝑢𝑟𝑥Ԧ𝑖 + 𝑢𝑟𝑦 Ԧ𝑗

𝑢𝜃 = −𝑢𝜃𝑥Ԧ𝑖 + 𝑢𝜃𝑦 Ԧ𝑗 = −𝑠𝑖𝑛𝜃Ԧ𝑖 + 𝑐𝑜𝑠𝜃Ԧ𝑗

𝑑𝑢𝑟

𝑑𝑡
= −𝑠𝑖𝑛𝜃

𝑑𝜃

𝑑𝑡
Ԧ𝑖 + 𝑐𝑜𝑠𝜃

𝑑𝜃

𝑑𝑡
Ԧ𝑗

⇒ 𝑽 𝒕 =
𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 + 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽

𝑽𝒓 𝒕 =
𝒅𝒓 𝒕

𝒅𝒕
𝑹𝒂𝒅𝒊𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕

𝑽𝜽 𝒕 = 𝒓 𝒕
𝒅𝜽 𝒕

𝒅𝒕
𝑻𝒓𝒂𝒏𝒔𝒗𝒆𝒓𝒔𝒆 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕

Avec   𝑽 = 𝑽𝒓
𝟐 + 𝑽𝜽

𝟐

( 𝒖𝒓 = 𝒖𝜽 = 𝟏)
𝑦

𝑥

𝑂
Ԧ𝒊

Ԧ𝒋

𝒓 𝒕

𝒖𝒓
𝒖𝒓

𝒖𝜽

𝑂

𝑦

𝑥

Ԧ𝒋

Ԧ𝒊

𝒖𝒓𝒖𝜽

𝒖𝒓𝒙

𝒖𝒓𝒚

𝒖𝜽𝒙

𝒖𝜽𝒚

𝒖𝜽

=
𝒅𝜽

𝒅𝒕
−𝒔𝒊𝒏𝜽Ԧ𝒊 + 𝒄𝒐𝒔𝜽Ԧ𝒋

⇒
𝒅𝒖𝒓

𝒅𝒕
=

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽

Calcul of 
𝒅𝒖𝒓

𝒅𝒕
:

𝒓 𝒕 , 𝜽 𝒕 : Polar coordinates

𝜃

𝜃

= 𝑢𝑟𝑐𝑜𝑠𝜃Ԧ𝑖 + 𝑢𝑟𝑠𝑖𝑛𝜃Ԧ𝑗 = 𝑐𝑜𝑠𝜃Ԧ𝑖 + 𝑠𝑖𝑛𝜃Ԧ𝑗

=
𝑑𝑟 𝑡

𝑑𝑡
𝑢𝑟 +𝑟 𝑡

𝑑𝑢𝑟

𝑑𝑡



𝒌

Ԧ𝒊

Ԧ𝒋

z

x

y
O

M

𝒖𝒓
m

𝒓 𝒕𝜽 𝒕
𝒖𝜽

𝒌

𝒖𝒓

𝒖𝜽

𝒌
Z

En coordonnées cylindrique : 

𝑂𝑀 𝑡 = 𝑂𝑚 𝑡 + 𝑚𝑀 𝑡 = 𝑟 𝑡 𝑢𝑟 + 𝑍 𝑡 𝑘

𝑉 𝑡 =
𝑑𝑂𝑀 𝑡

𝑑𝑡
=

𝑑𝑟 𝑡

𝑑𝑡
𝑢𝑟 + Ԧ𝑟 𝑡

𝑑𝑢𝑟

𝑑𝑡
+

𝑑𝑍 𝑡

𝑑𝑡
𝑘

⇒ 𝑽 𝒕 =
𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 + 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽 +

𝒅𝒁 𝒕

𝒅𝒕
𝒌

𝑽𝒓 𝒕 =
𝒅𝒓 𝒕

𝒅𝒕

𝑽𝜽 𝒕 = 𝒓 𝒕
𝒅𝜽 𝒕

𝒅𝒕

𝑽𝒛 𝒕 =
𝒅𝒁 𝒕

𝒅𝒕

𝑽 = 𝑽𝒓
𝟐 + 𝑽𝜽

𝟐 + 𝑽𝒁
𝟐

൞

𝑟(𝑡): Rayonpolaire 𝑟: 0 → ∞

𝜃 𝑡 : Anglepolaire 𝜃: 0 → 2𝜋

𝑍 𝑡 : Cote 𝑧: −∞ → +∞



𝑽

Intrinsic Coordinates of Velocity : (Tangential and Normal compents)

(والناظميةالمماسية)المركبات الذاتية للسرعة  M1(𝒕𝟏=t)
M2(𝒕𝟐=t+t)

𝒖𝒕

𝒖𝑵

𝑉𝑖𝑛𝑠𝑡 𝑡 = 𝑉 𝑡 = lim
𝑡2→𝑡1

𝑀1𝑀2 𝑡

𝑡2 − 𝑡1

𝑉 𝑡 = lim
𝑡2→𝑡1

𝑀1𝑀2 𝑡

෣𝑴𝟏𝑴𝟐 𝒕

෣𝑴𝟏𝑴𝟐 𝒕

𝑡2 − 𝑡1

When: 𝑡1 → 𝑡2 ⇒ ෣𝑀1𝑀2 𝑡 → 𝑀1𝑀2 𝑡 ⇒
𝑀1𝑀2 𝑡

෣𝑀1𝑀2 𝑡
= 𝑢𝑡

= lim
𝑡2→𝑡1

𝑀1𝑀2 𝑡

෣𝑀1𝑀2 𝑡
lim

𝑡2→𝑡1

෣𝑀1𝑀2 𝑡

𝑡2 − 𝑡1

⟹ 𝑽 𝒕 =
𝒅 ෣𝑴𝟏𝑴𝟐 𝒕

𝒅𝒕
𝒖𝒕 =

𝒅𝑺 𝒕

𝒅𝒕
𝒖𝒕

Let’s call ෣𝑴𝟏𝑴𝟐 𝒕 length of arc having from M1 to M2

We have:

=
𝑑𝑂𝑀 𝑡

𝑑𝑡



This reference system is used to "observe" the changes in the magnitude 

and direction of the velocity vector.

The intrinsic coordinate system for each point of the trajectory is defined as a 

system of reference formed by two axes:

• Tangent axis: its direction is tangent to the trajectory and is positive in the same 

direction than the velocity at that point. It is defined by the unit vector 𝑢𝑡 

• Normal axis: it is perpendicular to the trajectory and is positive toward the 

center of curvature of the trajectory. It is defined by the unit vector 𝑢𝑁



II.2. Acceleration:

➢Average Acceleration:

−𝑽𝟏

In Cartesian coordinates:

൞

𝜟𝑽𝒙 = 𝑽𝒙𝟐
− 𝑽𝒙𝟏

𝜟𝑽𝒚 = 𝑽𝒚𝟐
− 𝑽𝒚𝟏

𝜟𝑽𝒛 = 𝑽𝒛𝟐
− 𝑽𝒛𝟏

𝑽𝟏

𝑽𝟐
∆𝑽

𝒂𝒂𝒗𝒆

𝑦

𝑥

𝑧

𝑂

M1(𝒕𝟏=t)

M2(𝒕𝟐=t+t)

Ԧ𝒊

Ԧ𝒋

𝒂𝒂𝒗𝒆 =
𝑽𝟐 𝒕 − 𝑽𝟏 𝒕

𝒕𝟐 − 𝒕𝟏

𝑉1

𝑉𝑥1

𝑉𝑦1

𝑉𝑧1

, 𝑉2

𝑉𝑥2

𝑉𝑦2

𝑉𝑧3

𝒂𝒂𝒗𝒆 =
∆𝑽𝒙

∆𝒕
Ԧ𝒊 +

∆𝑽𝒚

∆𝒕
Ԧ𝒋 +

∆𝑽𝒁

∆𝒕
𝒌

=
∆𝑽 𝒕

∆𝒕

𝒂𝒂𝒗𝒆 =
𝑽𝒙𝟐

− 𝑽𝒙𝟏

𝒕𝟐 − 𝒕𝟏
Ԧ𝒊 +

𝑽𝒚𝟐
− 𝑽𝒚𝟏

𝒕𝟐 − 𝒕𝟏
Ԧ𝒋 +

𝑽𝒛𝟐
− 𝑽𝒛𝟏

𝒕𝟐 − 𝒕𝟏
𝒌



➢Instantaneous acceleration

In Cartesian coordinates:

𝒂𝒊𝒏𝒔𝒕 = 𝒂 = 𝒍𝒊𝒎
∆𝒕→𝟎

𝒂𝒂𝒗𝒆

𝒂𝒊𝒏𝒔𝒕 =
𝒅𝑽𝒙

𝒅𝒕
Ԧ𝒊 +

𝒅𝑽𝒚

𝒅𝒕
Ԧ𝒋 +

𝒅𝑽𝒁

𝒅𝒕
𝒌

𝑎𝑥 =
𝑑𝑉𝑥

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2

𝑎𝑦 =
𝑑𝑉𝑦

𝑑𝑡
=

𝑑2𝑦

𝑑𝑡2

𝑎𝑧 =
𝑑𝑉𝑧

𝑑𝑡
=

𝑑2𝑧

𝑑𝑡2

𝒂 = 𝒂 = 𝒂𝒙
𝟐 + 𝒂𝒚

𝟐 + 𝒂𝒛
𝟐

⟹ 𝒂 =
𝒅𝟐𝒙

𝒅𝒕𝟐
Ԧ𝒊 +

𝒅𝟐𝒚

𝒅𝒕𝟐
Ԧ𝒋 +

𝒅𝟐𝒛

𝒅𝒕𝟐
𝒌

= 𝒍𝒊𝒎
∆𝒕→𝟎

∆𝑽 𝒕

∆𝒕
= 𝒍𝒊𝒎

𝒕𝟐→𝒕𝟏

𝑽𝟐 𝒕 − 𝑽𝟏 𝒕

𝒕𝟐 − 𝒕𝟏
=

𝒅𝑽 𝒕

𝒅𝒕

𝑽𝒙 =
𝒅𝒙

𝒅𝒕

𝑽𝒚 =
𝒅𝒚

𝒅𝒕

𝑽𝒛 =
𝒅𝒛

𝒅𝒕



⇒ 𝒂 =
𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓 + 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

In Polar coordinates:

𝑎𝑟 𝑎𝜃

⇒ Ԧ𝑎 𝑡 =
𝑑𝑉

𝑑𝑡
=

𝑑

𝑑𝑡

𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 +

𝑑

𝑑𝑡
𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽𝑉 𝑡 =

𝑑𝑟 𝑡

𝑑𝑡
𝑢𝑟 + 𝑟 𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃

=
𝑑2𝑟 𝑡

𝑑𝑡2 𝑢𝑟 +
𝑑𝑟 𝑡

𝑑𝑡

𝑑𝑢𝑟

𝑑𝑡
+

𝑑𝑟 𝑡

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 +𝑟 𝑡

𝑑2𝜃 𝑡

𝑑𝑡2 𝑢𝜃 +𝑟 𝑡
𝑑𝜃 𝑡

𝑑𝑡

𝑑𝑢𝜃

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 −

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝑟

⇒ Ԧ𝑎 =
𝑑2𝑟 𝑡

𝑑𝑡2 𝑢𝑟 +
𝑑𝑟 𝑡

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 +

𝑑𝑟 𝑡

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 + 𝑟 𝑡

𝑑2𝜃 𝑡

𝑑𝑡2 𝑢𝜃 − 𝑟 𝑡
𝑑𝜃 𝑡

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝑟



In Cylindrical coordinates:

Using the same method, we find:

𝑎𝑟 𝑎𝜃
𝑎𝑧

⇒ Ԧ𝑎 𝑡 =
𝑑

𝑑𝑡

𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 +

𝑑

𝑑𝑡
𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽 +

𝑑2𝑍

𝑑𝑡2
𝑘

𝑉 𝑡 =
𝑑𝑟 𝑡

𝑑𝑡
𝑢𝑟 + 𝑟 𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 +

𝑑𝑍

𝑑𝑡
𝑘

⇒ 𝒂 =
𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓 + 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽 +

𝒅𝟐𝒁

𝒅𝒕𝟐
𝒌

𝒂 = 𝒂 = 𝒂𝒓
𝟐 + 𝒂𝜽

𝟐 + 𝒂𝒛
𝟐



Intrinsic compents of acceleration:

The derivative of a unit vector is a vector orthogonal to that vector

❑ Property :

On the other hand, we have:

We’v ∶ 𝑽 𝒕 =
𝒅𝑺 𝒕

𝒅𝒕
𝒖𝒕

Ԧ𝑎 =
𝑑𝑉

𝑑𝑡
=

𝑑

𝑑𝑡

𝑑𝑆 𝑡

𝑑𝑡
𝑢𝑡 =

𝑑2𝑆 𝑡

𝑑𝑡2
𝑢𝑡 +

𝑑𝑆 𝑡

𝑑𝑡

𝑑𝑢𝑡

𝑑𝑡

𝑢𝑡 = 1 𝒖𝒕𝟏 = 𝒖𝒕𝟐

ቐ
∆𝑢𝑡 = 𝑢𝑡2 − 𝑢𝑡1

∆𝑢𝑡 = 𝑢𝑡1 𝑠𝑖𝑛𝛼
𝑡1 → 𝑡2 ⇒ ൝

∆𝑢𝑡 → 𝑑𝑢𝑡

𝛼 → 𝑑𝛼 𝑠𝑖𝑛𝑑𝛼 ≈ 𝑑𝛼

⇒ 𝑑𝑢𝑡 = 𝑢𝑡 𝑑𝛼 = 𝑑𝛼

⇒
𝑑𝑢𝑡

𝑑𝑡
=

𝑑𝑢𝑡

𝑑𝑡
𝑢𝑁 =

𝑑𝛼

𝑑𝑡
𝑢𝑁

Calculation of
𝒅𝒖𝒕

𝒅𝒕
:

𝒖𝒕𝟏
𝒖𝑵𝟏

𝒖𝒕𝟐

𝒖𝑵𝟐

𝑦

𝑥

𝑧

𝑂

M1(t)

M2(t+t)

Ԧ𝑱

Ԧ𝒊

𝛼

𝒖𝒕𝟐

𝒖𝒕𝟏

∆𝒖𝒕

⇒
𝑑𝑢𝑡

𝑑𝑡
⊥ 𝑢𝑡 ⇒

𝑑𝑢𝑡

𝑑𝑡
=

𝑑𝑢𝑡

𝑑𝑡
𝑢𝑁



𝑑𝑆

𝑑𝛼
= 𝜌:

Ԧ𝑎 =
𝑑2𝑆 𝑡

𝑑𝑡2 𝑢𝑡 +
𝑑𝑆 𝑡

𝑑𝑡

𝑑𝛼

𝑑𝑡
𝑢𝑁

=
𝑑𝑉 𝑡

𝑑𝑡
𝑢𝑡 +

1

𝜌
𝑉 𝑡 2𝑢𝑁Ԧ𝑎 =

𝑑2𝑆 𝑡

𝑑𝑡2
𝑢𝑡 +

1

𝜌

𝑑𝑆 𝑡

𝑑𝑡

2

𝑢𝑁

=
𝑑2𝑆

𝑑𝑡2 𝑢𝑡 +
𝑑𝑆

𝑑𝑡

𝑑𝛼

𝒅𝑺

𝒅𝑺

𝑑𝑡
𝑢𝑁

𝒂𝒕 𝒂𝑵

𝑑2𝑆

𝑑𝑡2
=

𝑑𝑉

𝑑𝑡
:

1

𝜌

𝑑𝑆

𝑑𝑡
=

1

𝜌
𝑉:

𝒂 = 𝒂𝒕𝒖𝒕 + 𝒂𝑵𝒖𝑵
𝒂 = 𝒂 = 𝒂𝒕

𝟐 + 𝒂𝑵
𝟐

Trajectory Radius

Tangential component of 𝒂 related to the change in modulus of 𝑽

Normal component of 𝒂 related to the change in direction of 𝑽



II.3. Transition from speed to distance travelled – Integral calculation :

❖Let be a mobile “M" moving with a constant velocity in rectilinear motion

⇒ 𝑉𝑚𝑜𝑦 = 𝑉𝑖𝑛𝑠𝑡 = 𝑉 =
Δ𝑥

Δ𝑡
=

𝑥2 − 𝑥1

𝑡2 − 𝑡1

Knowing V and x1 at 𝒕 = 𝒕𝟏 ⇒ 𝑥2 = 𝑥1 + 𝑉 𝑡2 − 𝑡1

The distance ∆𝒙 traveled between 𝒕𝟏 and 𝒕𝟐 is measured 

by the area under the curve 𝑽 𝒕 :   ∆𝒙 = 𝑽 𝒕𝟐 − 𝒕𝟏
𝑽 𝒎/𝒔

𝑡 𝑠

𝑉1

𝑡1 𝑡2

𝑉2

❖ When the velocity is not constant Δ𝑥 is always equal to the 

area under the curve 𝑽(𝒕) Δ𝑥 = 𝑉2 − 𝑉1 𝑡2 − 𝑡1

𝑽 𝒎/𝒔

𝑡 𝑠

𝑽

𝑡1 𝑡2

∆𝒙

𝒙𝟐 − 𝒙𝟏

𝑽 = 𝒄𝒕𝒔

𝑽 ≠ 𝒄𝒕𝒔

∆𝒙



II.4- Transition from acceleration to velocity:

If the motion is defined by the given acceleration, the velocity is equal to the 

integral of the acceleration (acceleration is the derivative of velocity).

𝑽 𝒎/𝒔

𝒕 𝒔

𝑉1

𝑡1 𝑡2

𝑉2

Geometrically:

𝑎 = 𝑡𝑔𝛼 =
𝑉2 − 𝑉1

𝑡2 − 𝑡1

➢The acceleration will be the curve tangent of V(t)

𝑎 =
𝑑𝑉

𝑑𝑡
⇒ න

𝑉1

𝑉2

𝑑𝑉 = න

𝑡1

𝑡2

𝑎𝑑𝑡

𝜶



⇒ 2 = 4.3 −
33

3
+ 𝐶

Exemple :

An object moves in an oriented straight line with a velocity that obeys the law:

𝑎 = 4 − 𝑡2 𝑚/𝑠2

- Find, as a function of time, the expressions for velocity and position.

     We give: 𝑡 = 3𝑠 ⇒ 𝑉 = 2𝑚/𝑠, 𝑥 = 9𝑚.

- Represent the velocity and acceleration vectors at t = 1s.

Solution :

𝑉 = න𝑎𝑑𝑡 = න 4 − 𝑡2 𝑑𝑡
= 4𝑡 −

𝑡3

3 +𝐶

𝑡 = 3𝑠 ⇒ 𝑉 = 2𝑚/𝑠 ⇒ 𝐶 = −1 ⇒ 𝑉 = 4𝑡 −
𝑡3

3
− 1

1.

𝑥 = න𝑉𝑑𝑡
= න 4𝑡 −

𝑡3

3
− 1 𝑑𝑡 = 2𝑡2 −

1

12
𝑡4 − 𝑡 + 𝐶′

𝑡 = 3𝑠 ⇒ 𝑥 = 9𝑚 ⇒ 𝐶′ = 3/4 ⇒ 𝑥 = −
1

12
𝑡4 + 2𝑡2 − 𝑡 + 3/4



0 x(m)1 2 3 4 5

2.  

⇒ 𝑡

= 1𝑠:

𝑥 = −
1

12
+ 2 − 1 + 3/4 = 1.6𝑚

𝑉 = −
1

3
+ 4 − 1 = 2.6𝑚/𝑠

𝑎 = 4 − 1 = 3𝑚/𝑠2

1.6

Echelle : 𝑥: 1𝑐𝑚 → 1𝑚

𝑉: 1𝑐𝑚 → 2𝑚/𝑠

𝑎: 1𝑐𝑚 → 1.5𝑚/𝑠2

𝑥 = −
1

12
𝑡4 + 2𝑡2 − 𝑡 + 3/4

𝑉 = −
𝑡3

3
+ 4𝑡 − 1

𝑎 = 4 − 𝑡2

𝑽

𝒂



Summary

𝒙
𝒚

𝒛

𝑶

𝑀2 𝑡 + ∆𝑡

𝑀1 𝑡❑ ෣𝑴𝟏𝑴𝟐 𝒕 = 𝑺(𝒕) :Curvilinear Coordinate

❑ 𝑶𝑴𝟏 𝒆𝒕 𝑶𝑴𝟐 :  is a Position Vectors of « M » /« O »

❑ 𝑴𝟏𝑴𝟐 𝒕 = ∆𝑶𝑴 𝒕 = 𝑶𝑴𝟐 𝒕 − 𝑶𝑴𝟏 𝒕 : Displacement vector

Velocity Τ𝒎 𝒔

Average Velocity (𝑽𝒂𝒗𝒆(𝒕)) Instantaneous velocity 𝑽𝒊𝒏𝒔𝒕 = 𝑽

∆𝑶𝑴 𝒕

∆𝒕
=

𝑴𝟏𝑴𝟐 𝒕

∆𝒕
=

∆𝒙

∆𝒕
Ԧ𝒊 +

∆𝒚

∆𝒕
Ԧ𝒋 +

∆𝒛

∆𝒕
𝒌 𝒍𝒊𝒎

∆𝒕→𝟎
𝑽𝒂𝒗𝒆 = 𝒍𝒊𝒎

∆𝒕→𝟎

∆𝑶𝑴 𝒕

∆𝒕
=

𝒅𝑶𝑴 𝒕

𝒅𝒕

Acceleration

Average Acceleration(𝒂𝒂𝒗𝒆(𝒕)) Instantaneous Acceleration 𝒂𝒊𝒏𝒔𝒕 = 𝒂

∆𝑽 𝒕

∆𝒕
=

∆𝑽𝒙

∆𝒕
Ԧ𝒊 +

∆𝑽𝒚

∆𝒕
Ԧ𝒋 +

∆𝑽𝒁

∆𝒕
𝒌 𝒍𝒊𝒎

∆𝒕→𝟎
𝒂𝒂𝒗𝒆 = 𝒍𝒊𝒎

∆𝒕→𝟎

∆𝑽 𝒕

∆𝒕
=

𝒅𝑽 𝒕

𝒅𝒕

𝒎



𝒂
𝒅𝟐𝒙

𝒅𝒕𝟐
Ԧ𝒊 +

𝒅𝟐𝒚

𝒅𝒕𝟐
Ԧ𝒋 +

𝒅𝟐𝒛

𝒅𝒕𝟐
𝒌

𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓

+ 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓

+ 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

+
𝒅𝟐𝒁

𝒅𝒕𝟐
𝒌

Intrinsec coordinates (𝒖𝒕, 𝒖𝑵)

Cartesian Coordinates

(Ԧ𝒊, Ԧ𝒋, 𝒌)
Polar Coordinates (𝒖𝒓, 𝒖𝜽) Cylindric Coordinates (𝒖𝒓, 𝒖𝜽, 𝒌)

𝑶𝑴(𝒕) 𝒙(𝒕)Ԧ𝒊 + 𝒚(𝒕)Ԧ𝒋 + 𝒛(𝒕)𝒌 𝒓 𝒕 𝒖𝒓 𝒓 𝒕 𝒖𝒓 + 𝒛(𝒕)𝒌

𝑽(𝒕)
𝒅𝒙

𝒅𝒕
Ԧ𝒊 +

𝒅𝒚

𝒅𝒕
Ԧ𝒋 +

𝒅𝒛

𝒅𝒕
𝒌

𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 + 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽

𝒅𝒓 𝒕

𝒅𝒕
𝒖𝒓 + 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽 +

𝒅𝒛(𝒕)

𝒅𝒕
𝒌

Velocity 𝑽 𝒕 =
𝒅𝑺 𝒕

𝒅𝒕
𝒖𝒕 = 𝑽(𝒕)𝒖𝒕

Acceleration 𝒂 𝒕 =
𝒅𝑽 𝒕

𝒅𝒕
𝒖𝒕 +

𝟏

𝝆
𝑽 𝒕 𝟐𝒖𝑵 = 𝒂𝒕𝒖𝒕 + 𝒂𝑵𝒖𝑵



III. Some specific movements

III.1. Rectilinear motion:

In this type of motion, the trajectories are straight lines and the position of the mobile is 

described by a single coordinate 𝑥(𝑡) equivalent to the path traveled 𝑆(𝑡).

III.1.1. Uniform Rectilinear Motion  (URM): الحركة  المستقيمة المنتظمة

Characterized by V(t) = Cts = V

𝑉 =
𝑑𝑥

𝑑𝑡
⇒ 𝑑𝑥 = 𝑉𝑑𝑡 ⇒ 𝑥 − 𝑥0 = 𝑉 𝑡 − 𝑡0

𝒙𝟎 𝒙(𝒎)𝒙

𝑡0
𝒕

⇒ Equation of Motion : 𝑥 𝑡 = 𝑉 𝑡 − 𝑡0 + 𝑥0

⇒ න
𝑥0

𝑥

𝑑𝑥 = න
𝑡0

𝑡

𝑉𝑑𝑡

0

𝑉 𝑚/𝑠

𝑡 𝑠0 𝑡0

𝑥0

𝑡 𝑠

𝑥 𝑚

𝑉



III.1.2. Uniformly Varied Rectilinear Motion(UVRM):

بإنتظامالحركة    المستقيمة      المتغيرة       

Characterize by  𝒂(𝒕) = 𝑪𝒕𝒔 = 𝒂

𝑎 =
𝑑𝑉

𝑑𝑡
⇒ 𝑉 − 𝑉0 = 𝑎 𝑡 − 𝑡0

⇒ 𝑽 𝒕 = 𝒂 𝒕 − 𝒕𝟎 + 𝑽𝟎

⟹ න
𝑥0

𝑥

𝑑𝑥 = න
𝑡0

𝑡

𝑉𝑑𝑡

⇒ 𝒙 =
𝟏

𝟐
𝒂 𝒕 − 𝒕𝟎

𝟐 + 𝑽𝟎 𝒕 − 𝒕𝟎 + 𝒙𝟎
(Equation of Motion)

⇒ 𝑥 − 𝑥0 =
1

2
𝑎 𝑡 − 𝑡0

2 + 𝑉0 𝑡 − 𝑡0

❑ Equation of Motion

𝑉 𝑡 =
𝑑𝑥

𝑑𝑡
= න

𝑡0

𝑡

𝑎 𝑡 − 𝑡0 + 𝑉0 𝑑𝑡

⇒ 𝑑𝑉 = 𝑎𝑑𝑡 ⇒ න
𝑉0

𝑉

𝑑𝑉 = 𝑎 න
𝑡0

𝑡

𝑑𝑡

𝒕 = 𝒕𝟎 ∶ ቊ
𝒙 = 𝒙𝟎

𝑽 = 𝑽𝟎



𝑡𝑡0

𝑎0

𝑥0

𝑎 𝑚/𝑠2

𝑡 𝑠
0

𝑉 − 𝑉0

𝑡 𝑠

𝑉 𝑚/𝑠

𝑉0

𝛼

𝑎 = 𝑡𝑔𝛼

𝒙 − 𝒙𝟎

𝑡 𝑠

𝑥 𝑚

0 𝑡

𝒂 > 𝟎

𝑡 𝑠

𝑥 𝑚

0

𝒂 < 𝟎

𝑡0

𝑡𝑡0

𝑡𝑡0

𝑥0



Remark:

The acceleration or deceleration of a uniformly varying motion is defined by 

the sign of the dot product 𝒂. 𝑽 :

𝒂 > 𝟎 𝒆𝒕 𝑽 > 𝟎: M. Accelerated Uniformly in the positive direction of motion

𝒂 < 𝟎 𝒆𝒕 𝑽 < 𝟎: M. Accelerated Uniformly in the negative direction of motion

𝒂. 𝑽< 0 : Two possible cases :

𝒂. 𝑽 >0 :  Two possible cases:

𝒂 < 𝟎 𝒆𝒕 𝑽 > 𝟎: M. decelerated Uniformly in the positive direction of motion

𝒂 > 𝟎 𝒆𝒕 𝑽 < 𝟎: M. decelerated Uniformly in the negative direction of motion



𝒓 𝒕 =R𝒖𝒓
𝒖𝜽

III.2. Circular Motion:

This type of motion is characterized by a circular trajectory with a constant radius :    

𝒓(𝒕) = 𝒄𝒕𝒆 = 𝑹

In polar coordinates:

0
𝑴(𝒕, 𝜽)

𝜃 𝑴𝟎 𝒕𝟎, 𝜽𝟎

R

𝑺 𝒕 = 𝑹𝜽 𝒕

En coordonnées intrinsèques : 

Ԧ𝑟 𝑡 = 𝑅𝑢𝑟

⇒ 𝑽 𝒕 = 𝑹
𝒅𝜽 𝒕

𝒅𝒕
𝒖𝜽

𝑉 𝑡 =
𝑑𝑆 𝑡

𝑑𝑡
𝑢𝑡

⇒ 𝑽 𝒕 = 𝑹𝝎 𝒕 𝒖𝜽 = 𝑹𝝎 𝒕 𝒖𝒕

𝒖𝒕

𝒖𝑵

: Called Angular Velocity, 𝝎 = 𝒓𝒂𝒅/𝒔
𝒅𝜽(𝒕)

𝒅𝒕
= 𝝎(𝒕)

𝑆 𝑡 = 𝑅𝜃 𝑡 ⇒ 𝑉 𝑡 = 𝑅
𝑑𝜃 𝑡

𝑑𝑡
𝑢𝑡 = 𝑅𝜔 𝑡 𝑢𝑡

𝑉 𝑡 =
𝑑𝑟 𝑡

𝑑𝑡
𝑢𝑟 + 𝑟 𝑡

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃 =

𝑑𝑅

𝑑𝑡
𝑢𝑟 + 𝑅

𝑑𝜃 𝑡

𝑑𝑡
𝑢𝜃

⇒ 𝑽 𝒕 = 𝑹𝝎 𝒕 𝒖𝜽



Acceleration Expression:

❑ In intrinsic coordinates:

❑ In polar coordinates: 

⇒ Ԧ𝑎 𝑡 = 𝑅
𝑑𝜔(𝑡)

𝑑𝑡
𝑢𝑡 + 𝑅𝜔2 𝑡 𝑢𝑁

Ԧ𝑎 = 𝑎𝑡𝑢𝑡 + 𝑎𝑁𝑢𝑁 =
𝑑𝑉 𝑡

𝑑𝑡
𝑢𝑡 +

1

𝜌
𝑉2𝑢𝑁

𝑟 𝑡 = 𝑅 ⇒ Ԧ𝑎 =
𝑑2𝑅

𝑑𝑡2
− 𝑅

𝑑𝜃 𝑡

𝑑𝑡

2

𝑢𝑟 + 2
𝑑𝑅

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
+ 𝑅

𝑑2𝜃 𝑡

𝑑𝑡2
𝑢𝜃

𝒂 = −𝑹
𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓 + 𝑹
𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

0 0

𝜌 = 𝑅
𝑉 = 𝑅𝜔

𝜔 =
𝑑𝜃

𝑑𝑡

𝒅𝝎 𝒕

𝒅𝒕
= 𝜶: Angular acceleration, 𝜶 = 𝒓𝒂𝒅/𝒔𝟐

= 𝑹
𝒅𝟐𝜽(𝒕)

𝒅𝒕𝟐 𝒖𝒕 + 𝑹
𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝑵

= −𝑹𝝎𝟐 𝒕 𝒖𝒓 + 𝑹 𝒕
𝒅𝝎 𝒕

𝒅𝒕
𝒖𝜽

Ԧ𝑎 =
𝑑2𝑟 𝑡

𝑑𝑡2 − 𝑟 𝑡
𝑑𝜃 𝑡

𝑑𝑡

2

𝑢𝑟 + 2
𝑑𝑟 𝑡

𝑑𝑡

𝑑𝜃 𝑡

𝑑𝑡
+ 𝑟 𝑡

𝑑2𝜃 𝑡

𝑑𝑡2 𝑢𝜃



III.2.1. Uniform Circular Motion(UCM):     الحركة  الدائرية  المنتظمة

This type of motion is characterized by a constant angular velocity:

Or

❑ Equation of motion:

So the equation of this motion is given by:

𝑉 𝑡 = 𝐶𝑠𝑡 = 𝑅𝜔 𝑡 ⇒ 𝜔 𝑡 = 𝐶𝑠𝑡

Ԧ𝑎 = ൞
𝑎𝑡 = 𝑅

𝑑𝜔 𝑡

𝑑𝑡
= 0

𝑎𝑁 = 𝑅𝜔2

Ԧ𝑎 = ൞
𝑎𝑟 = −𝑅𝜔2 𝑡

𝑎𝜃 = 𝑅
𝑑𝜔 𝑡

𝑑𝑡
= 0

𝜔 =
𝑑𝜃 𝑡

𝑑𝑡

𝜽 𝒕 = 𝝎 𝒕 − 𝒕𝟎 + 𝜽𝟎

⇒ 𝑑𝜃 𝑡 = 𝜔𝑑𝑡 ⇒ න
𝜃0

𝜃 𝑡

𝑑𝜃 𝑡 = න
𝑡0

𝑡

𝜔 𝑑𝑡 ⟹ 𝜃 𝑡 − 𝜃0 = 𝜔 𝑡 − 𝑡0



III.2.2. Uniformly Variable Circular Motion (UVCM): الحركة  الدائرية   المتغيرة   بانتظام

This type of motion is characterized by constant tangential acceleration: 𝑎𝑡 𝑡 = 𝐶𝑠𝑡

𝑎𝑡 𝑡 = 𝑅
𝑑𝜔(𝑡)

𝑑𝑡
= 𝐶𝑠𝑡

⇒ 𝝎(𝒕) = 𝜶 𝒕 − 𝒕𝟎 + 𝝎𝟎

On the other hand, we have:

𝜔 𝑡 =
𝑑𝜃 𝑡

𝑑𝑡

⇒ 𝜃 𝑡 − 𝜃0 =
1

2
𝛼 𝑡 − 𝑡0

2 + 𝜔0 𝑡 − 𝑡0

𝜽 𝒕 =
𝟏

𝟐
𝜶 𝒕 − 𝒕𝟎

𝟐 + 𝝎𝟎 𝒕 − 𝒕𝟎 + 𝜽𝟎 (Equation of UVCM)

⇒
𝑑𝜔 𝑡

𝑑𝑡
= 𝛼 = 𝐶𝑠𝑡 ⇒ 𝑑𝜔 𝑡 = 𝛼𝑑𝑡

⇒ න
𝜃0

𝜃(𝑡)

𝑑𝜃 𝑡 = න
𝑡0

𝑡

𝜔 𝑡 𝑑𝑡 = න
𝑡0

𝑡

𝛼 𝑡 − 𝑡0 + 𝜔0 𝑑𝑡

⇒ න
𝜔0

𝜔 𝑡

𝑑𝜔 𝑡 = න
𝑡0

𝑡

𝛼𝑑𝑡

𝒕 = 𝒕𝟎: ቊ
𝝎 = 𝝎𝟎

𝜽 = 𝜽𝟎



Application : Motion of a projectile

𝛼𝑂

𝑀(𝑥, 𝑦)

𝒈 𝑉0𝑥

𝑉0𝑦
𝒈

𝑉

❑In this case:  Ԧ𝑎 = Ԧ𝑔 = −𝑔Ԧ𝑗

❑𝑉0: The initial velocity of the projectile (𝑡0 = 0 )

𝑉0 = 𝑉0𝑥Ԧ𝑖 + 𝑉0𝑦 Ԧ𝑗 Where ൝
𝑉0𝑥 = 𝑉0 cos 𝛼

𝑉0𝑥 = 𝑉0 sin 𝛼

❑On the other hand, at a given point 𝑀(𝑥, 𝑦), 

we have: 𝑉 = Ԧ𝑎 𝑡 − 𝑡0 + 𝑉0

❑At 𝑡0 = 0 :  

𝑉𝑥Ԧ𝑖 + 𝑉𝑦 Ԧ𝑗 = −𝑔𝑡Ԧ𝑗 + 𝑉0𝑥Ԧ𝑖 + 𝑉0𝑦 Ԧ𝑗 = 𝑉0𝑥Ԧ𝑖 + 𝑉0𝑦 − 𝑔𝑡 Ԧ𝑗

𝒉

❑ Also, we have:

𝑂𝑀 = Ԧ𝑟 = 𝑥Ԧ𝑖 + 𝑦Ԧ𝑗

⟹ 𝑥Ԧ𝑖 + 𝑦Ԧ𝑗 = −
1

2
g𝑡2 Ԧ𝑗 + 𝑉0𝑥𝑡Ԧ𝑖 + 𝑉0𝑦𝑡Ԧ𝑗

=
1

2
Ԧ𝑎 𝑡 − 𝑡0

2 + 𝑉0 𝑡 − 𝑡0 + Ԧ𝑟0

⟹ ൝
𝑉𝑥 = 𝑉0𝑥

𝑉𝑦 = 𝑉0𝑦 − 𝑔𝑡

⟹ ቐ

𝑥 = 𝑉0𝑥
𝑡

𝑦 = −
1

2
𝑔𝑡2 + 𝑉0𝑦𝑡

At 𝑡0 = 0 :  ቊ
𝑟0 = 0
𝑎 = −𝑔

𝑨

𝑩

𝑦

𝑉0

𝑥



𝛼

𝑉0

𝑦

𝑥

𝑂

𝑀(𝑥, 𝑦)

𝒈

𝑉0

𝑉0𝑥

𝑉0𝑦

𝒈

𝑉
𝒈

𝑉 = 𝑉𝑥

𝑉

𝒉

𝑉

𝑨

𝑩

❑The time requiered for the projectile to reach the highest Point A is obtained by setting 

𝑉𝑦 = 0. in this point the velocity is horizontal

Then: 𝑉𝑦 = 0 ⟹ 𝑉0𝑦
− 𝑔𝑡 = 0

❑𝒉 is obtained by substituting this value of 𝑡 in 

the equation of 𝑦:

⟹ ℎ = −
1

2
𝑔

𝑉0
2 𝑠𝑖𝑛2 𝛼

𝑔2 + 𝑉0𝑦

𝑉0 sin 𝛼

𝑔

⟹ 𝒉 =
𝟏

𝟐

𝑽𝟎
𝟐 𝒔𝒊𝒏𝟐 𝜶

𝒈= −
1

2

𝑉0
2 𝑠𝑖𝑛2 𝛼

𝑔
+ 𝑉0 sin 𝛼

𝑉0 sin 𝛼

𝑔

𝑦 = −
1

2
𝑔𝑡2 + 𝑉0𝑦𝑡

⟹ 𝑡 =
𝑉0𝑦

𝑔

⟹ 𝒕 =
𝑽𝟎 𝐬𝐢𝐧 𝜶

𝒈

❑The time requiered for the projectile to return to ground level at point B can be obtainde by 

making 𝑦 = 0

⟹ −
1

2
𝑔𝑡2 + 𝑉0𝑦𝑡 = 0 ⟹ −

1

2
𝑔𝑡 + 𝑉0 sin 𝛼 = 0 ⟹ 𝒕 =

𝟐𝑽𝟎 𝒔𝒊𝒏 𝜶

𝒈



𝜽 𝒕

III.3. Harmonic Motion (Sinusoidal Rectilinear Motion ): الجيبيةالحركة  

is consider as the projection, on a diameter, of an uniform circular motion of a point 

"P" of an angular velocity 𝜔 on a circle of radius R,

𝑴

𝑷

Ԧ𝒊

❑ Let "M" be the projection of "P" on (x’x):

𝑂𝑀 𝑡 = 𝑥Ԧ𝑖 = 𝑅𝑐𝑜𝑠𝜃 𝑡 Ԧ𝑖 = 𝑅𝑐𝑜𝑠 𝜔 𝑡 + 𝜃0 Ԧ𝑖

𝑹

𝑥’ 𝑥

With 𝜃 𝑡 = 𝜔 𝑡 + 𝜃0

𝜔 𝑡 + 𝜃0: Motion Phase

𝜃0 Initial phase or phase at the origin of time

−𝑅 < 𝑥 < +𝑅: is called amplitude



𝝎𝒕

𝜽𝟎

𝑷𝟎

𝑴𝟎

𝑷

𝑴𝑶 𝒙Ԧ𝒊

➢ The motion of "P" reproduces itself identically each time 

that the angle ωt increases by 2π

𝑻 =
𝟐𝝅

𝝎
: Presents the period of motion

➢ 𝝎 = 𝟐𝝅𝒇: Pulsation or angular frequency (rad/s)

➢ 𝒇 =
𝟏

𝑻
=

𝝎

𝟐𝝅
: is the frequency of motion ≡ Oscillation 

numbers per unit of time related to the period (1/s, Hz) 

𝑉 = 𝑉𝑥Ԧ𝑖

Ԧ𝑎 = 𝑎𝑥Ԧ𝑖

⟹ 𝒂 𝒕 = −𝝎𝟐𝒙Ԧ𝒊

This indicates that the acceleration in harmonic motion is opposite to the position vector

⇒ 𝒂 = −𝝎𝟐𝑶𝑴

=
𝑑𝑥

𝑑𝑡
Ԧ𝑖 =

𝑑

𝑑𝑥
𝑅𝑐𝑜𝑠 𝜔 𝑡 + 𝜃0 Ԧ𝑖 ⟹ 𝑽 𝒕 = −𝑹𝝎𝒔𝒊𝒏 𝝎 𝒕 + 𝜽𝟎 Ԧ𝒊

=
𝑑𝑉𝑥

𝑑𝑡
Ԧ𝑖 =

𝑑

𝑑𝑥
−𝑅𝜔𝑠𝑖𝑛 𝜔 𝑡 + 𝜃0 Ԧ𝑖 = −𝑅𝜔2𝑐𝑜𝑠 𝜔 𝑡 + 𝜃0 Ԧ𝑖



൞

𝑂𝑀 𝑡 = 𝑅𝑐𝑜𝑠 𝜔𝑡 + 𝜃0 Ԧ𝑖

𝑉 = −𝑅𝜔𝑠𝑖𝑛 𝜔𝑡 + 𝜃0 Ԧ𝑖

Ԧ𝑎 = −𝑅𝜔2𝑐𝑜𝑠 𝜔𝑡 + 𝜃0 Ԧ𝑖 = −𝜔2𝑂𝑀

,

❑ 𝜽𝟎 = 𝟎 and 𝒕 = 𝟎: 𝒄𝒐𝒔 𝝎𝒕 + 𝜽𝟎 = 𝟎

𝒔𝒊𝒏 𝝎𝒕 + 𝜽𝟎 = ±𝟏

⇒ ቊ
𝑶𝑴 = 𝒙 = 𝟎
𝒂 = 𝟎

⇒ 𝑽 = ±𝑹𝝎



IV. Relative Motion

IV.1. Change of reference system:

In relative physics, rest, like motion, are relative notions, they depend on the position of 

the mobile in relation to other bodies which serve as references.

❑ Let 𝑅(𝑂, 𝑥𝑦𝑧) be a supposedly fixed coordinate system, called 

an absolute coordinate system.

❑ Let 𝑅′(𝑂′, 𝑥′𝑦′𝑧′) be a coordinate system in motion 

with respect to R, called a relative coordinate system.

𝑶′
Ԧ𝒋′

𝒊 ′

ൗ𝑂𝑀 𝑡
𝑅 = 𝑥Ԧ𝑖 + 𝑦Ԧ𝑗 + 𝑧𝑘

൘𝑂′𝑀 𝑡
𝑅′

= 𝑥′𝑖′ + 𝑦′𝑗′ + 𝑧′𝑘′

To an observer bound to the R, the motion of R'(O'x'y'z') is known via the motion of O’/O,

𝑴 𝒕

𝒙
𝑦

𝒛

𝑂

and the ways in which the axes Ox', Oy', and Oz' rotate around O'



𝑶𝑴 𝒕 = 𝑶𝑶′ 𝒕 + 𝑶′𝑴 𝒕

𝑥Ԧ𝑖 + 𝑦Ԧ𝑗 + 𝑧𝑘 = 𝑂𝑂′ + 𝑥′𝑖′ + 𝑦′𝑗′ + 𝑧′𝑘′

𝒙 𝒚

𝑧

𝑂

𝑴 𝒕

❑ Relationship between positions:

Relation entre les vitesses:

𝑉 𝑡 =
𝑑𝑂𝑀 𝑡

𝑑𝑡

⟹
𝑑𝑥

𝑑𝑡
Ԧ𝑖 +

𝑑𝑦

𝑑𝑡
Ԧ𝑗 +

𝑑𝑧

𝑑𝑡
𝑘 =

𝑑𝑥′

𝑑𝑡
𝑖′ +

𝑑𝑦′

𝑑𝑡
𝑗′ +

𝑑𝑧′

𝑑𝑡
𝑘′ +

𝑑𝑂𝑂′

𝑑𝑡
+ 𝑥′

𝑑𝑖′

𝑑𝑡
+ 𝑦′

𝑑𝑗′

𝑑𝑡
+ 𝑧′

𝑑𝑘′

𝑑𝑡

: Relative Velocity𝑽𝒓 𝒕

⇒ 𝑽𝒂 𝒕 = 𝑽𝒓 𝒕 + 𝑽𝒆 𝒕

If the coordinate system 𝑅′ is translational only with respect to 𝑅:

⟹ 𝑽𝒆 𝒕 =
𝒅𝑶𝑶′

𝒅𝒕

: Training Velocity𝑽𝒆 𝒕: Absolute Velocity𝑽𝒂 𝒕

Remark:

𝒊′, 𝒋′, 𝒌′ = 𝑪𝒔𝒕

𝑑𝑖′

𝑑𝑡
=

𝑑𝑗′

𝑑𝑡
=

𝑑𝑘′

𝑑𝑡
= 0

=
𝑑𝑂𝑂′ 𝑡

𝑑𝑡
+

𝑑𝑂′𝑀 𝑡

𝑑𝑡

⟹
𝑑𝑥

𝑑𝑡
Ԧ𝑖 +

𝑑𝑦

𝑑𝑡
Ԧ𝑗 +

𝑑𝑧

𝑑𝑡
𝑘 =

𝑑𝑂𝑂′

𝑑𝑡
+

𝑑𝑥′

𝑑𝑡
𝑖′ + 𝑥′

𝑑𝑖′

𝑑𝑡
+

𝑑𝑦′

𝑑𝑡
𝑗′ + 𝑦′

𝑑𝑗′

𝑑𝑡
+

𝑑𝑧′

𝑑𝑡
𝑘′ + 𝑧′

𝑑𝑘′

𝑑𝑡



Relationship between accelerations: Ԧ𝑎 𝑡 =
𝑑𝑉

𝑑𝑡

𝑑2𝑥

𝑑𝑡2 Ԧ𝑖 +
𝑑2𝑦

𝑑𝑡2 Ԧ𝑗 +
𝑑2𝑧

𝑑𝑡2 𝑘 =

+
𝑑2𝑂𝑂′

𝑑𝑡2

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡
Ԧ𝑖 +

𝑑𝑦

𝑑𝑡
Ԧ𝑗 +

𝑑𝑧

𝑑𝑡
𝑘 =

𝑑

𝑑𝑡

𝑑𝑥′

𝑑𝑡
𝑖′ +

𝑑𝑦′

𝑑𝑡
𝑗′ +

𝑑𝑧′

𝑑𝑡
𝑘′ +

𝑑

𝑑𝑡

𝑑𝑂𝑂′

𝑑𝑡
+ 𝑥′

𝑑𝑖′

𝑑𝑡
+ 𝑦′

𝑑𝑗′

𝑑𝑡
+ 𝑧′

𝑑𝑘′

𝑑𝑡

𝑑2𝑥′

𝑑𝑡2 𝑖′ +
𝑑𝑥′

𝑑𝑡

𝑑𝑖′

𝑑𝑡

𝒂𝒂 =
𝒅𝟐𝒙

𝒅𝒕𝟐
Ԧ𝒊 +

𝒅𝟐𝒚

𝒅𝒕𝟐
Ԧ𝒋 +

𝒅𝟐𝒛

𝒅𝒕𝟐 𝒌 : Absolute Acceleration

𝒂𝒓 =
𝒅𝟐𝒙′

𝒅𝒕𝟐
𝒊′ +

𝒅𝟐𝒚′

𝒅𝒕𝟐
𝒋′ +

𝒅𝟐𝒛′

𝒅𝒕𝟐
𝒌′ : Relative Acceleration

𝒂𝒆 =
𝒅𝟐𝑶𝑶′

𝒅𝒕𝟐
+ 𝒙′

𝒅𝟐𝒊′

𝒅𝒕𝟐
+ 𝒚′

𝒅𝟐𝒋′

𝒅𝒕𝟐
+ 𝒛′

𝒅𝟐𝒌′

𝒅𝒕𝟐
: Training Acceleration

𝒂𝑪 = 𝟐
𝒅𝒙′

𝒅𝒕

𝒅𝒊′

𝒅𝒕
+

𝒅𝒚′

𝒅𝒕

𝒅𝒋′

𝒅𝒕
+

𝒅𝒛′

𝒅𝒕

𝒅𝒌′

𝒅𝒕
: Coriolis acceleration

𝒂𝒂 = 𝒂𝒓 + 𝒂𝒆 + 𝒂𝑪

+
𝑑2𝑦′

𝑑𝑡2 𝑗′ +
𝑑𝑦′

𝑑𝑡

𝑑𝑗′

𝑑𝑡
+

𝑑2𝑧′

𝑑𝑡2 𝑘′ +
𝑑𝑧′

𝑑𝑡

𝑑𝑘′

𝑑𝑡

+
𝑑𝑥′

𝑑𝑡

𝑑𝑖′

𝑑𝑡
+ 𝑥′

𝑑2𝑖′

𝑑𝑡2
+

𝑑𝑦′

𝑑𝑡

𝑑𝑗′

𝑑𝑡
+ 𝑦′

𝑑2𝑗′

𝑑𝑡2 +
𝑑𝑧′

𝑑𝑡

𝑑𝑘′

𝑑𝑡
+ 𝑧′

𝑑2𝑘′

𝑑𝑡2



Remarks: It is accepted that:

𝑑𝑖′

𝑑𝑡
= 𝜔 ∧ 𝑖′ ,

𝑑𝑗′

𝑑𝑡
= 𝜔 ∧ 𝑗′ ,

𝑑𝑘′

𝑑𝑡
= 𝜔 ∧ 𝑘′

𝑉𝑒 =
𝑑𝑂𝑂′

𝑑𝑡
+ 𝑥′

𝑑𝑖′

𝑑𝑡
+ 𝑦′

𝑑𝑗′

𝑑𝑡
+ 𝑧′

𝑑𝑘′

𝑑𝑡
=

𝑑𝑂𝑂′

𝑑𝑡
+ 𝑥′𝜔 ∧ 𝑖′ + 𝑦′𝜔 ∧ 𝑗′ + 𝑧′𝜔 ∧ 𝑘′

=
𝑑𝑂𝑂′

𝑑𝑡
+ 𝜔 ∧ 𝑥′𝑖′ + 𝑦′𝑗′ + 𝑧′𝑘′ ⇒ 𝑽𝒆 =

𝒅𝑶𝑶′

𝒅𝒕
+ 𝝎 ∧ 𝑶′𝑴

1-

2- Ԧ𝑎𝐶 = 2
𝑑𝑥′

𝑑𝑡

𝑑𝑖′

𝑑𝑡
+

𝑑𝑦′

𝑑𝑡

𝑑𝑗′

𝑑𝑡
+

𝑑𝑧′

𝑑𝑡

𝑑𝑘′

𝑑𝑡
= 2

𝑑𝑥′

𝑑𝑡
𝜔 ∧ 𝑖′ +

𝑑𝑦′

𝑑𝑡
𝜔 ∧ 𝑗′ +

𝑑𝑧′

𝑑𝑡
𝜔 ∧ 𝑘′

= 2𝜔 ∧
𝑑𝑥′

𝑑𝑡
𝑖′ +

𝑑𝑦′

𝑑𝑡
𝑗′ +

𝑑𝑧′

𝑑𝑡
𝑘′ ⇒ 𝒂𝑪 = 𝟐𝝎 ∧ 𝑽𝒓

3- For  𝒂𝒆: 𝑑2𝑖′

𝑑𝑡2 =
𝑑

𝑑𝑡

𝑑𝑖′

𝑑𝑡
=

𝑑

𝑑𝑡
𝜔 ∧ 𝑖′ =

𝑑𝜔

𝑑𝑡
∧ 𝑖′ + 𝜔 ∧

𝑑𝑖′

𝑑𝑡
=

𝑑𝜔

𝑑𝑡
∧ 𝑖′ + 𝜔 ∧ 𝜔 ∧ 𝑖′

We replace in 𝒂𝒆 and we find:

𝒂𝒆 =
𝒅𝟐𝑶𝑶′

𝒅𝒕𝟐
+=

𝒅𝝎

𝒅𝒕
∧ 𝑶′𝑴 + 𝝎 ∧ 𝝎 ∧ 𝑶′𝑴



Chapter II: Dynamics of a Material Point

II.1. Objective : 

The purpose of kinematics is to study the movements of particles as a

function of time, without taking into account the causes that cause them.

Dynamics is the science that studies (or determines) the causes of the

motions of these particles.

➢ Why do bodies near the surface of the earth fall with constant 

acceleration?

➢ Why does the earth move around the sun in an elliptical orbit ?

➢ Why do atoms bind together to form molecules?
(Pourquoi les atomes se lient-ils entre eux pour former des molécules ?)

➢ Why does a spring oscillate when it is stretched?
(Pourquoi un ressort oscille-t-il lorsqu’il est tendu ?)



Called Newton's first law, which reads as follows:

❑ In other words:

➢An object at rest remains at rest.

➢A moving object contained to move at a constant velocity.

II.2. The Law of Inertia (Galileo’s law of Inertia): 

a free particle always moves with constant velocity, or without acceleration.

“Every body preservs in its state of rest, or of uniform motion in a right line, unless it 

is compelled to change that state by impressed forces”.

Or

If no force acts on an object or if the resultant force is zero:



II.3. Inertial frame of reference (Galilean frame of reference):

According to this definition, there is no such thing as an inertial frame of reference;

Only approximate frames of reference are available.

Examples:

❑ whereas for the motion of the planets, this ground-bound frame of reference is not an inertial

frame.

❑ Geocentric frame of reference: is the frame of

reference centered on the center of mass of the earth

and whose axes are parallel to those of the Copernican

frame of reference.

❑ Copernican Frame of Reference (Heliocentric): is the

frame of reference centered on the center of mass of

the solar system and whose three axes point to three

distant stars.

Is defined as a frame of reference in which Newton's first law holds.

❑ For most experiments on Earth, the ground-bound frame of reference is a good inertial frame. 



❑ Any coordinate system that moves at a constant velocity relative to an inertial

frame of reference, can it self be considered as an inertial frame of reference.

Remarks:

❑ The velocities and accelerations of bodies, measured in Galilean reference frames,

are said to be absolute, and those measured in non-Galilean reference frames are

said to be relative.



The momentum of a particle of mas of "𝑚“ and moving at velocity 𝑽 is 

defined by : 

II.4.1. Definition:

II.4.Momentum (Quantity of motion:

𝑷 = 𝒎𝑽

"A free particle moves with a constant momentum in a Galilean frame of reference"

Remark:
𝑑𝑃

𝑑𝑡
= = 𝑚 Ԧ𝑎 = Ԧ𝐹

⟹ The derivative of the momentum vector of a body is equal to the sum of the external 

forces applied to that body:

❖ The principle of inertia can then be stated as follows:

❑ 2D Motion:

x

y

m

𝑽

𝑃 = 𝐾𝑔. 𝑚/𝑠
falling mass

m

𝑷 = 𝒎𝑽𝑷

෍ 𝑭𝒆𝒙𝒕 =
𝒅𝑷

𝒅𝒕

𝑑 𝑚𝑉

𝑑𝑡
= 𝑚

𝑑𝑉

𝑑𝑡



➢ For a system of two particles with 𝒎𝟏 and 𝒎𝟐 isolated masses:

The total momentum of the system at time 𝒕 is:

𝑃 = 𝑃1 + 𝑃2 = 𝑚1𝑉1 + 𝑚2𝑉2

At the moment 𝒕′ we have: 𝑃′ = 𝑃′1 + 𝑃′2 = 𝑚1𝑉′1 + 𝑚2𝑉′2

Isolated System ⟹ Total momentum is retained:

𝑃 = 𝑃′ ⟹ 𝑃1 + 𝑃2 = 𝑃′1 + 𝑃′2 ⟹ 𝑃′
1 − 𝑃1 = 𝑃2 −𝑃′2

⟹ ∆𝑷𝟏 = −∆𝑷𝟐

➢ For an isolated system of interacting "n" particles: 𝑷𝑻 = ෍

𝒊=𝟏

𝒏

𝑷𝒊 = 𝑪𝒕𝒆

II.4.2. Conservation of momentum:

A system is said to be isolated if it is not subject to any external (interaction) forces.

Ԧ𝐹 = 0 ⟹ 𝑚
𝑑𝑉

𝑑𝑡
= 0 ⇒

𝑑𝑃

𝑑𝑡
= 0 ⇒ 𝑃 = 𝐶𝑡𝑒



Example:

A rifle of mass m of 0.8 kg fires a bullet of mass of 0.016 kg with a velocity of 700 m/s. 

Calculate the recoil velocity of the rifle.

Solution:

The system consists of two bodies: Rifle + Bullet

𝑷𝑩𝒆𝒇𝒐𝒓𝒆 = 𝑷𝑨𝒇𝒕𝒆𝒓

Before Shooting: Total momentum is zero

After Shooting: Total momentum:  𝑷𝑨𝒇𝒕𝒆𝒓=𝑃𝑅 + 𝑃𝐵

𝑃𝑅 + 𝑃𝐵 = 0 ⟹ 𝑚𝑓𝑉𝐹 + 𝑚𝐵𝑉𝐵 = 0

By projection: 𝑚𝑅 −𝑉𝑅 0 + 𝑚𝐵𝑉𝐵 = 0 ⟹ 𝑉𝑅 =
𝑚𝐵

𝑚𝑅
𝑉𝐵

N.A: 𝑉𝑅 =
0,016

0,8
700 = 14m/s

Principle of conservation of momentum:



II.5. Newtonian Definition of Force:

❑ Any cause capable of modifying the momentum vector of a material point, in a 

Galilean frame of reference, is called “ FORCE ".

❑ So, force is a mathematical notion that, by definition, is equal to the derivative of 

momentum with respect to time.

➢ We defined the average force, during a time interval Δt, as:

𝑭𝒂𝒗𝒆 =
∆𝑷

∆𝒕

➢ The instantaneous force is therefore given by:

𝑭𝒊𝒏𝒔𝒕 = 𝑭 = 𝐥𝐢𝐦
∆𝒕→𝟎

∆𝑷

∆𝒕
= 𝒎

𝒅𝑽

𝒅𝒕

Ԧ𝐹 = 𝐾𝑔. 𝑚𝑠−2 = 𝑁𝑒𝑤𝑡𝑜𝑛 (𝑁)

=
𝒅𝑷

𝒅𝒕



II.5.1. Moment of a Force about a Point (Torque):

A moment of a force is the tendency of that force to cause a 

rotation of a body about an axis,

❑ Vector Expression

The moment of the force 𝑭 about the point O, 

denoted 𝑀 Ԧ𝐹

(𝑂)
 , is:

𝑀 Ԧ𝐹

(𝑂)

𝑴𝑭

(𝑶)
= 𝑶𝑨 ∧ 𝑭

𝑭
O

A
𝜽𝑀 Ԧ𝐹

(𝑂)
= 𝑂𝐴 Ԧ𝐹 sin 𝜃

𝑀 Ԧ𝐹

(𝑂)
= 𝑁. 𝑚

The magnitude of the moment of a force about a point is (the magnitude of the force) × (the

perpendicular distance of the line of action of the force from the point).

❑ In other words:

𝑑 sin 𝜃= 𝐹. 𝑑 sin 𝜃
𝒅



Example:

𝑑 sin 𝜃 𝑃𝑂 = 𝑑

𝜃

Ԧ𝐹

𝑃
𝑂 𝑑

Find the moment of  Ԧ𝐹 about 𝑃 when 𝜃 = 35 ∘,𝐹 = 8𝑁 and 𝑑 = 14𝑚.

Solution:

𝑀 Ԧ𝐹

(𝑃)
= 𝑃𝑂 ∧ Ԧ𝐹

⟹ 𝑀 Ԧ𝐹

𝑃
= 𝑃𝑂 Ԧ𝐹 sin 𝜃  ;

⟹ 𝑀 Ԧ𝐹

𝑃
= 𝐹. 𝑑 sin 𝜃

= 8.14. sin 35° = 64,24 𝑁𝑚



A BO

𝒎𝟏 𝒎𝟐

In equilibrium, the sum of the moments of 

the forces about "O" equal zero:

For a system of m masses (G is a center of gravity):

෍ 𝑀 Ԧ𝐹𝑖

(𝑂)
= 0 ⇒ 𝑀 Ԧ𝐹𝐴

(𝑂)
+ 𝑀 Ԧ𝐹𝐵

(𝑂)
= 0

⇒ 𝑂𝐴 ∧ 𝑚1 Ԧ𝑔 + 𝑂𝐵 ∧ 𝑚2 Ԧ𝑔 = 0 ⇒ 𝑚1𝑂𝐴 + 𝑚2𝑂𝐵 ∧ Ԧ𝑔 = 0

⇒ 𝒎𝟏𝑶𝑨 + 𝒎𝟐𝑶𝑩 = 𝟎

𝑚1𝐺𝑀1 + 𝑚2𝐺𝑀2 + ⋯ 𝑚𝑛𝐺𝑀𝑛 = 0 ⟹ ෍

𝑖

𝑚𝑖𝐺𝑀𝑖 = 0

II.5.2. Center of Inertia or Barycenter: (Center of Gravity)

(Clockwise moments will equal anticlockwise moments),

⇒ 𝑂𝐴 ∧ Ԧ𝐹𝐴 + 𝑂𝐵 ∧ Ԧ𝐹𝐵 = 0



𝑴𝒊(𝒎𝒊)

𝑴𝟏(𝒎𝟏)

𝑴𝟐(𝒎𝟐)

𝑴𝟑(𝒎𝟑)
𝑮

⟹ 𝑂𝐺 =
σ𝑖 𝑚𝑖𝑂𝑀𝑖

σ𝑖 𝑚𝑖

➢For a continuous environment, the sum becomes integral:

This last relation gives the center of inertia of a system consisting of masses 𝑚𝑖 located at the 

points 𝑀𝑖

σ𝑖 𝑚𝑖 = 𝑀, With M is the total mass of the system. ⟹ 𝑶𝑮 =
𝟏

𝑴
෍

𝒊

𝒎𝒊𝑶𝑴𝒊

𝑶𝑮 =
𝟏

𝑴
ම 𝑶𝑴𝒅𝑴

⟹ ෍

𝑖

𝑚𝑖𝑂𝑀𝑖 = ෍

𝑖

𝑚𝑖𝑂𝐺

x
y

𝒛

i
j

k

O

On the other hand, according to the diagram opposite, 

𝑂𝐺 + 𝐺𝑀𝑖 = 𝑂𝑀𝑖

෍

𝑖

𝑚𝑖𝐺𝑀𝑖 = 0

⟹ 𝐺𝑀𝑖 = 𝑂𝑀𝑖 − 𝑂𝐺

⟹ ෍

𝑖

𝑚𝑖 𝑂𝑀𝑖 − 𝑂𝐺 = 0

with G is a center of gravity, we have:



❑ Newton’s Second Law (Fundamental Principle of Dynamics):

In a Galilean frame of reference, the sum of the external forces applied to a system is

equal to the derivative of the momentum vector of the center of inertia of that system.

෍ Ԧ𝐹𝑒𝑥𝑡 =
𝑑𝑃

𝑑𝑡
=

𝑑 𝑚𝑉

𝑑𝑡
= 𝑚

𝑑𝑉

𝑑𝑡
= 𝑚 Ԧ𝑎 (𝒎 = 𝒄𝒕𝒔)

❑ Newton's First Law:

Ԧ𝐹 = 0 , 𝑉 = 𝐶𝑠𝑡

II.5.3.Newton’s Laws of Motion

Newton’s first law states that every object will remain at rest or in uniform motion in 

a straight line unless compelled to change its state by the action of an external force.



𝑥

𝑦

𝑧

Ԧ𝒊
Ԧ𝒋

𝒌
𝑶

➢ Angular Momentum Theorem for a particle: 

The angular momentum 𝝈 (or 𝑳 ) of 𝑀 with respect to O is given by:

𝝈 = 𝑶𝑴 ∧ 𝑷

⟹ Ԧ𝜎 = Ԧ𝑟 ∧ 𝑚𝑉 = 𝒎𝒓 ∧ 𝑽 𝝈 ⊥ 𝒓, 𝑽

❖ In the case of a circular motion with constant velocity angular 𝝎 , we have:

⟹ Ԧ𝜎 = 𝑚𝑅2𝜔 𝑢𝑟 ∧ 𝑢𝜃

𝑶
𝑽

𝝈

𝑀

𝑹

𝑽
𝑀

𝒓

Ԧ𝜎

Consider a particle 𝑀 of mass 𝑚, moving in plan (𝑂, 𝑥, 𝑦) with velocity vector 𝑽 relative to 

inertial frame 𝑅. 

The particle M has the momentum 𝑷 = 𝑚𝑽 relative to R. 

Ԧ𝑟 = 𝑅𝑢𝑟

𝑉 = 𝑅𝜔𝑢𝜃
⟹ 𝝈  = 𝒎𝑹𝟐𝝎𝒌 𝑢𝑟

𝑢𝜃
𝑘



❖ In the case of a planar curvilinear motion (Polar coordinates):

𝑂𝑀 = Ԧ𝑟 = 𝑟𝑢𝑟 𝑉 = 𝑉𝑟𝑢𝑟 + 𝑉𝜃𝑢𝜃

𝑀

𝒓

𝑶

Ԧ𝜎 = 𝑚. 𝑟 ∧ 𝑉 = 𝑚. 𝑟𝑢𝑟 ∧ 𝑉𝑟𝑢𝑟 + 𝑉𝜃𝑢𝜃 = 𝑚. 𝑟𝑉𝑟𝑢𝑟 ∧ 𝑢𝑟 + 𝑚. 𝑟𝑉𝜃𝑢𝑟 ∧ 𝑢𝜃

𝑶 𝒌

⟹ 𝝈 = 𝒎. 𝒓𝑽𝜽𝒌

𝑉𝜃 = 𝑟
𝑑𝜃

𝑑𝑡
⟹ Ԧ𝜎 = 𝑚𝑟2

𝑑𝜃

𝑑𝑡
𝑘

❑ The derivative of 𝝈 with respect to time is given by:

𝑑𝜎

𝑑𝑡
=

𝑑 Ԧ𝑟 ∧ 𝑚𝑉

𝑑𝑡
= 𝑉 ∧ 𝑚𝑉 + Ԧ𝑟 ∧

𝑑𝑃

𝑑𝑡

𝑶

⟹
𝒅𝝈

𝒅𝒕
= 𝑴𝑭

(𝑶) (Moment of Force 𝑭)

Theorem: the derivative, with respect to time, of the angular momentum of a particle is 

equal to the moment of the force applied to it when both are measured with respect to 

the same point.

𝑽
𝒙

𝒚
𝒖𝒓

𝒖𝜽
𝒌

=
𝑑𝑟

𝑑𝑡
∧ 𝑚𝑉 + Ԧ𝑟 ∧ 𝑚

𝑑𝑉

𝑑𝑡
= 𝒓 ∧ 𝑭

Ԧ𝐹: is the resultant force

𝝈



𝒂 =
𝒅𝟐𝒓 𝒕

𝒅𝒕𝟐
− 𝒓 𝒕

𝒅𝜽 𝒕

𝒅𝒕

𝟐

𝒖𝒓 + 𝟐
𝒅𝒓 𝒕

𝒅𝒕

𝒅𝜽 𝒕

𝒅𝒕
+ 𝒓 𝒕

𝒅𝟐𝜽 𝒕

𝒅𝒕𝟐
𝒖𝜽

𝜽
𝒍

𝑴

𝑶

❖ In case of central Force:

A force whose direction always passes through a fixed point is called a central force

Ԧ𝐹 ∥ 𝑂𝑀 ⟹ 𝝈 = 𝑪𝒕𝒆

𝑀

𝑀′

𝑀′′

𝑭

𝑭′

𝑭′′

𝑶Exercise: (Simple Pendulum)

I- We apply the Newton’s second law : ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⇒ 𝑊 + 𝑇 = 𝑚 Ԧ𝑎

By projection:

2 ⟺ 𝑚𝑙
𝑑2𝜃

𝑑𝑡2
+ 𝑚𝑔𝑠𝑖𝑛𝜃 = 0

𝑠𝑖𝑛𝜃 ≈ 𝜃 ⟹
𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝜽 = 𝟎 

Find the differential equation to write the equation of motion 

of a simple pendulum 𝜃(t). 

𝑾

𝑻⇒
𝑚𝑔𝑐𝑜𝑠𝜃 − 𝑇 = −𝑚𝑙

𝑑𝜃

𝑑𝑡

2

… … … . . (1) 

−𝑚𝑔 𝑠𝑖𝑛𝜃 = 𝑚𝑙
𝑑2𝜃

𝑑𝑡2
… … … … … (2)

⟹
𝑑 Ԧ𝜎

𝑑𝑡
= 𝑂𝑀 ∧ Ԧ𝐹 = 0

𝒖𝒓:

𝒖𝜽:
𝒖𝜽

𝒖𝒓

𝑊𝑟

𝑊𝜃

𝜽

𝑊𝑟 − 𝑇 = 𝑚𝑎𝑟

−𝑊𝜃 = 𝑚𝑎𝜃

⇒ 𝑙
𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0



𝑾

𝒖𝜽

𝒖𝒓

𝜽
𝒍

𝑴

𝑶
𝑑𝜎

𝑑𝑡
= 𝑀 Ԧ𝐹

(𝑂)
= 𝑀𝑊

(𝑂)
+ 𝑀𝑇

(𝑂)

We have: Ԧ𝜎 = 𝑂𝑀 ∧ 𝑚 Ԧ𝑣 = 𝑙 𝑢𝑟 ∧ 𝑚𝑙
𝑑𝜃

𝑑𝑡
𝑢𝜃 = 𝑚𝑙2

𝑑𝜃

𝑑𝑡
𝑘

⟹
𝒅𝝈

𝒅𝒕
= 𝒎𝒍𝟐

𝒅𝟐𝜽

𝒅𝒕𝟐
𝒌 … … … … … . . (𝟏)

On the other hand, we have:

❑ 𝑀𝑊

(𝑂)
= 𝑂𝑀 ∧ 𝑊

𝑊𝑟

𝑊𝜃

𝜽

= 𝑙 𝑢𝑟 = −𝑙𝑚𝑔 𝑠𝑖𝑛 𝜃𝑘

❑ 𝑀𝑇

(𝑂)
= 𝑂𝑀 ∧ 𝑇 = 𝑙 𝑢𝑟 ∧ −𝑇𝑢𝑟 = 0

II- Let's apply the angular momentum theorem with respect to O :

(circular motion) 𝑻

⟹ 𝑴𝑾

𝑶
+ 𝑴𝑻

𝑶
= −𝒍𝒎𝒈 𝒔𝒊𝒏 𝜽𝒌 … … … (𝟐)

𝟏 = 𝟐 ⟺ 𝒎𝒍𝟐
𝒅𝟐𝜽

𝒅𝒕𝟐
𝒌 = −𝒍𝒎𝒈 𝒔𝒊𝒏 𝜽𝒌 ⟹

𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝒔𝒊𝒏 𝜽 = 𝟎

∧ 𝑚𝑔 𝑐𝑜𝑠 𝜃 𝑢𝑟 − 𝑚𝑔 𝑠𝑖𝑛 𝜃 𝑢𝜃

For small oscillations, we have: 𝒔𝒊𝒏 𝜽 ≈ 𝜽 ⟹
𝒅𝟐𝜽

𝒅𝒕𝟐
+

𝒈

𝒍
𝜽 = 𝟎



❑ Newton’s Third Law (3rd law of dynamics: Principle of action and reaction):

Let two particles (1) and (2) interacting with each other, the action of (1) on (2) Ԧ𝐹1  is 

equal and opposite to that exerted by (2) on (1) Ԧ𝐹2 .

Ԧ𝐹1 = − Ԧ𝐹2 Ԧ𝐹1 = Ԧ𝐹2

𝑭𝟏 𝑭𝟐

𝟏 𝟐

If a particle (1) exerts a force Ԧ𝐹1 on a particle (2), then (2) exerts a force Ԧ𝐹2  on (1) in the opposite 

direction with the same magnitude.

In the other word:

Example: 

A person of mass 85 kg is standing in a lift which is accelerating downwards at 0.45 𝑚𝑠−2. 

Draw a diagram to show the forces acting on the person and calculate the force the 

person exerts on the floor of the lift. 

Solution: 

𝑹

𝑊

using Newton’s second law gives: ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎

⟹ 𝑅 + 𝑊 = 𝑚 Ԧ𝑎

By projection: 𝑊 − 𝑅 = 𝑚𝑎 ⟹ 𝑅 = 𝑊 − 𝑅𝑎 = 𝑚𝑔 − 𝑚𝑎

𝑅 = 795,6 𝑁



A B

𝑴 𝒎

II.6. Some laws of forces:

II.6.1. Newton’s Law of Universal Gravitation (1666):

This law explains the motions of the planets around the sun.

The force of attraction between 𝑴 and 𝒎 is given by:

Ԧ𝐹𝐴/𝐵 = −
𝐺𝑀𝑚

𝑟2 𝑢

With:

𝐺 = 6,67259. 10−11 𝑚3𝐾𝑔−1𝑠−2 : Universal gravitational constant

𝑟 = 𝐴𝐵 ⟹ Ԧ𝐹𝐴/𝐵 = −
𝐺𝑀𝑚

𝑟2

𝐴𝐵

𝐴𝐵
= −

𝐺𝑀𝑚

𝑟3 Ԧ𝑟

Ԧ𝐹𝐴/𝐵 = − Ԧ𝐹𝐵/𝐴

𝑭𝑨/𝑩𝒖

𝑭𝑩/𝑨

𝒓 = 𝑨𝑩



Special case: The weight of an object placed on the surface of the earth

𝑶

𝑀𝑇

Ԧ𝐹 = −
𝐺𝑀𝑇𝑚

𝑅𝑇
2 𝑢

We posit : ⟹ Ԧ𝐹 = 𝑚 Ԧ𝑔

𝑔 : Gravitational Field of Earth,

❖ At the surface level of the earth: 𝑔 = 𝑔0 =
𝐺𝑀𝑇

𝑅𝑇
2 = 9,820251 𝑚. 𝑠−2

❖ At an altitude 𝒉 of the earth's surface: 𝑔 =
𝐺𝑀𝑇

𝑅𝑇+ℎ 2 =
𝐺𝑀𝑇

𝑅𝑇+ℎ 2

𝑹𝑻
𝟐

𝑹𝑻
𝟐

⟹ 𝒈 =
𝑮𝑴𝑻

𝑹𝑻
𝟐

𝑹𝑻

𝑹𝑻 + 𝒉

𝟐

= 𝒈𝟎

𝑹𝑻

𝑹𝑻 + 𝒉

𝟐 (Neglecting the rotational speed of the 

earth upon itself).

𝒎

𝒖 𝑅𝑇

Ԧ𝑔 = −
𝐺𝑀𝑇

𝑅𝑇
2 𝑢

(𝑀𝑇 = 5,9737 × 1024 𝐾𝑔 ; 𝑅𝑇 = 6371 𝑘𝑚 ; 𝐺 = 6,67259. 1011 𝑚3𝐾𝑔−1𝑠−2)



II.6.2. Contact forces:

❑ Support Reaction: 𝒎

𝑮➢ The force that a mass 𝑚, placed on a horizontal support, 

undergoes from the support is called the "support force"

➢ The support reaction on 𝒎 is distributed over the entire "support-object" contact surface

𝑅𝑁 : Represents the resultant of all actions exerted on the contact surface.

➢ In equilibrium : 𝑅𝑁 + 𝑊 = 0 ⟹ 𝑅𝑁 = −𝑊

❑ Frictional forces:

➢ Frictional forces are forces that appear: 

- Either when an object is moving (Soit lors de mouvement d’un objet), 

- Or that object is subjected to a force that tends to want to move it

            (Cet objet est soumis à une force qui tend à vouloir de le déplacé).

➢ We distinguish two types of friction forces:

- Viscous friction (contact: solid – fluid).

- Solid friction (contact: solid-solid).

𝑅𝑁

𝑾



❑ Viscous friction:

Viscous friction is related to the movement of an object 𝑴 in a fluid medium (air, 

liquid or other)

At low velocities, the friction ( in magnitude) is proportional 

to the velocity at which the object is moving.

𝑭 = −𝒌𝑽

We give:

𝐾: Depends on the geometric shape of the body

𝜂: Fluid viscosity coefficient, depends on internal fluid friction,

𝒌 = −𝑲𝜼

Remark: For higher speeds, experiments have shown that the frictional forces in 

this case are given by:

𝑭 = −𝒌𝑽 𝒏𝒖 with 𝑛 ≥ 2

Object velocity

Positive constant

Friction Force



❑ Solid friction:

𝑪

𝝋

Ԧ𝐹𝑒: Force of entrainment Ԧ𝐶: Contact force

Ԧ𝐶𝑁 = 𝑅: Surface reaction force

Ԧ𝐶𝑇 = Ԧ𝐹𝑓: Friction force (Sliding friction)

➢ The body is initially at rest;

➢ We increase gradually the value of Ԧ𝐹𝑒

➢ Each time Ԧ𝐹𝑒 e is increased, the value of the frictional force Ԧ𝐹𝑓 increases until it

reaches a maximum value Ԧ𝐹𝑓0 = Ԧ𝐶𝑇0 which corresponds to the beginning of the

object's slippage. ⟹ This position is called: Limit equilibrium state,

Applying the Newton’s second law in this case: ෍ Ԧ𝐹𝑒𝑥𝑡 = 0 ⟹ 𝑊 + Ԧ𝐶 + Ԧ𝐹𝑒 = 0

G

𝑦

𝑥

❖ By projection on the (Ox) and (Oy) axes: ቊ
𝐹𝑒 − 𝐶𝑇0 = 0
𝐶𝑁0 − 𝑊 = 0

⟹ ቊ
𝐶𝑇0 = 𝐹𝑒

𝐶𝑁0 = 𝑊

➢ The static coefficient of friction is defined as:

𝝁𝒔 = 𝒕𝒈𝝋 =
𝑪𝑻𝟎

𝑪𝑵𝟎

: characterizes the limit equilibrium state

𝑾

Ԧ𝐹𝑒

Ԧ𝐶𝑁=𝑅

𝑪𝑻 = 𝑭𝒇



➢ When Ԧ𝐹𝑒 > Ԧ𝐹𝑓0, the object begins to move from its steady state with uniformly 

accelerated motion

➢ Applying the Newton’s second law in this case: ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⟹ 𝑊 + Ԧ𝐶 + Ԧ𝐹𝑒 = 𝑚 Ԧ𝑎

By projection on the (Ox) and (Oy) axes:

ቊ
𝐹𝑒 − 𝐶𝑇 = 𝑚𝑎
𝐶𝑁 − 𝑊 = 0

⟹ ቊ
𝐶𝑇 = 𝐹𝑒 − 𝑚𝑎

𝐶𝑁 = 𝑊

➢ The dynamic coefficient of friction is then defined:

𝜇𝑑 = 𝑡𝑔𝜑 =
𝐶𝑇

𝐶𝑁
=

𝐹𝑒 − 𝑚𝑎

𝑚𝑔Remarks:

❑ 𝜇𝑑 is less than 𝜇𝑆

❑ 𝜇𝑠 and 𝜇𝑑 depend on the nature of the surfaces in contact,

❑ 𝜇𝑑 is substantially independent of speed

❑ 𝜇𝑑 is substantially independent of the surface area of the surfaces in contact and depends 

only on their nature

Ԧ𝐶𝑁=𝑅𝑪

𝝋
G

𝑦

𝑥

𝑾

Ԧ𝐶𝑇 = Ԧ𝐹𝑓

Ԧ𝐹𝑒



Application: Inclined Plane

𝑃

Ԧ𝐶

Ԧ𝐶𝑁
Ԧ𝐶𝑇

𝑃𝑥𝑃𝑦

𝛼

❑ At the limit equilibrium state: ෍ Ԧ𝐹𝑒𝑥𝑡 = 0 ⟹ 𝑃 + Ԧ𝐶0 = 0

By projection:

ቊ
𝑃𝑥 − 𝐶𝑇0 = 0
𝐶𝑁0 − 𝑃𝑦 = 0 ⟹ ቊ

𝑃𝑠𝑖𝑛𝛼0 = 𝐶𝑇 … … … … 1

𝑃𝑐𝑜𝑠𝛼0 = 𝐶𝑁 … … … 2

1 / 2 ⟹ 𝑡𝑔𝛼0 =
𝐶𝑇

𝐶𝑁
= 𝜇𝑆

❑ In the state of motion:

෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⟹ 𝑃 + Ԧ𝐶 = 𝑚 Ԧ𝑎

By projection: ቊ
𝑃𝑥 − 𝐶𝑇 = 𝑚𝑎
𝐶𝑁 − 𝑃𝑦 = 0

⟹ ቊ
𝑃𝑠𝑖𝑛𝛼 − 𝑚𝑎 = 𝐶𝑇 … 1

𝑃𝑐𝑜𝑠𝛼 = 𝐶𝑁 … … … 2

𝜇𝑑 = 𝑡𝑔𝛼 =
𝐶𝑇

𝐶𝑁
=

𝑃𝑠𝑖𝑛𝛼 − 𝑚𝑎

𝑃𝑐𝑜𝑠𝛼
==

𝑔𝑠𝑖𝑛𝛼 − 𝑎

𝑔𝑐𝑜𝑠𝛼

𝛼0 → 𝛼 𝛼 = 𝛼0 + 𝑑𝛼



3. Elastic Strength:

Ԧ𝐹 = −𝑘𝑂𝑀 ⟹ proportional and opposite to the position vector 𝑂𝑀

𝑂

𝑘 ∶ Stiffness Constant

By projection on the axis (Ox): Ԧ𝐹 = −𝑘𝑥Ԧ𝑖

Example:

l0

Rest
O

Ԧ𝐹 = −𝑘𝑂𝑀=−𝑘 𝑙 − 𝑙0 Ԧ𝑖

l M Ԧ𝐹

l

𝑭

Ԧ𝐹 = −𝑘 𝑙 − 𝑙0 𝑢

Or

𝑥𝑀′𝑀𝑀′′

𝐹′′ Ԧ𝐹 𝐹′



II.6. Fundamental Principle of Dynamics in a Non-Galilean Frame of Reference

x
y

z

O

(R)

(R’)

➢ Let (R)a Galilean frame of reference and (R') a non-Galilean frame of reference.

➢ R' is in moving relative to R.

⟹ R is the absolute frame of reference and R' is the relative
frame of reference

Ԧ𝑎𝑎 = Ԧ𝑎𝑟 + Ԧ𝑎𝑒 + Ԧ𝑎𝐶

⟹ ෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎𝑎 = 𝑚 Ԧ𝑎𝑟 + 𝑚 Ԧ𝑎𝑒 + Ԧ𝑎𝐶

In the R' coordinate system, the PFD is:

𝑚 Ԧ𝑎𝑟 = 𝑚 Ԧ𝑎𝑎 − 𝑚 Ԧ𝑎𝑒 − Ԧ𝑎𝐶 = ෍ Ԧ𝐹𝑒𝑥𝑡 + Ԧ𝐹𝑒 + Ԧ𝐹𝐶

Ԧ𝐹𝑒 = −𝑚 Ԧ𝑎𝑒est la force d'inertie d'entraînement,

Ԧ𝐹𝐶 = −𝑚 Ԧ𝑎𝐶  is the Coriolis force of inertia,

Ԧ𝐹𝑒 et Ԧ𝐹𝐶  are non-real forces, they depend on the motion of R’/R.



Chapter III: Work and Energy

If we know the positions and velocity of the particles of a system and all the forces

acting on these particles, we can predict, using Newton's laws, the evolution of this

system over time. But in practice, we can't always know all the forces that come into

play, and even if we do, the equations to solve are too many or too complicated. For

this reason, we appeal to new notions such as “work and energy».

III.2. Work of a Force:

III.2.1. Constant Force on a Straight Displacement:

➢ A force is said to be constant when his magnitude and direction do not change over 

time.

➢ A force is said to work when its point of application moves.

III.1. Introduction : 



➢ If an object 𝑴 moves through a rectilinear displacement 𝑨𝑩 while a constant 

force Ԧ𝐹 is acting on it:

𝐴 B

Ԧ𝐹

𝜶

𝑾𝑭 = 𝑭. 𝑨𝑩 = 𝑭. 𝑨𝑩𝒄𝒐𝒔𝜶 𝑾 = 𝑱𝒐𝒖𝒍𝒆

Remarks:

𝐴 𝑀 B

Ԧ𝐹

𝜶 =
𝝅

𝟐
⟹ 𝑾𝑭 = 𝟎

𝐴 𝑀 B

Ԧ𝐹
𝜶

𝟎 < 𝜶 <
𝝅

𝟐
⟹ 𝑾𝑭 > 𝟎

𝜶

𝐴 𝑀 B

Ԧ𝐹
𝝅

𝟐
< 𝜶 < 𝝅 ⟹ 𝑾𝑭 < 𝟎

: Motor work

: Ԧ𝐹 doesn't work

: Resistance work

1.  

𝑊𝑛𝑒𝑡 = Ԧ𝐹1𝐴𝐵 + Ԧ𝐹2𝐴𝐵 + Ԧ𝐹3𝐴𝐵……+ Ԧ𝐹𝑛𝐴𝐵

2. If several different (constant) forces act on a mass while it moves though a displacement 

𝑨𝑩, then we can talk about the net work done by the forces: 

= ෍

𝑖=1

𝑛

Ԧ𝐹𝑖 . 𝐴𝐵

𝑴

The force does an amount of work equal to:



Examples of works:

1. The work done bay the force Ԧ𝐹 on this lawnmower is (𝑭 × 𝒅 × 𝒄𝒐𝒔 𝜽) 

2.  A person holding a briefcase does no work on it because there is 

no motion (d=0)

3. The person moving the briefcase horizontaly at a constant speed deos 

no work on it.

4. Work is done on the briefcase by carrying it upstairs at a constant 

speed becasue there is necessarily a component of force F in the 

direction of the motion.

The work done by a constant force can be calculated as the area 

under the force-displacement graph 



Exercise:

A block of stone moves upwards on a plane inclined at 30° under the action of several forces 

including:  𝑭𝟏 = 𝟒𝟓 𝑵 horizontal.

                   𝑭𝟐 = 𝟐𝟓 𝑵 Normal to the inclined plane.

                   𝑭𝟑 = 𝟑𝟓 𝑵 parallel to the inclined plane.

It will be considered that all the forces acting on the block have

their point of application at the center of mass 𝑮 of the block. 

Calculate the work of forces𝑭𝟏,𝑭𝟐 and 𝑭𝟑 when the block rises 1.5 𝑚 on the inclined  plane.

3- 𝑊3 = Ԧ𝐹3. 𝐴𝐵 Ԧ𝐹3 ∥ 𝐴𝐵

Solution:

1- 𝑊1 = Ԧ𝐹1. 𝐴𝐵

2- 𝑊2 = Ԧ𝐹2. 𝐴𝐵 Ԧ𝐹2 ⊥ 𝐴𝐵

𝑮 𝑭𝟏

𝑭𝟐

𝑭𝟑

𝜶 = 𝟑𝟎° 𝑾

= 𝐹1. 𝐴𝐵. 𝑐𝑜𝑠𝛼 = 45.1,5. cos 30 = 58,46𝐽

⇒ 𝑊2 = 0

⇒ 𝑊3 = 𝐹3. 𝐴𝐵 = 35.1,5 = 52,5𝐽



𝐴

B

III.2.2. Elementary work:

❑ When the force Ԧ𝐹 which acts on M is not constant during displacement:

𝑑𝑊 Ԧ𝐹 = Ԧ𝐹. 𝑑𝑙

𝑑𝑙

Ԧ𝐹 𝑀′By definition, elementary work is given by:

In Cartesian coordinates: ⟹ 𝒅𝑾 = 𝑭𝒙𝒅𝒙 + 𝑭𝒚𝒅𝒚 + 𝑭𝒛𝒅𝒛

⟹ 𝑊 Ԧ𝐹 = න

𝐴

𝐵

Ԧ𝐹. 𝑑𝑙

III.2.3. Work Done By Gravitational Force:

𝑊 Ԧ𝐹𝑔
= 𝑀׬

𝑀′ Ԧ𝐹𝑔. 𝑑𝑙 , Ԧ𝐹𝑔 = −𝑚𝑔𝑘 ,  𝑑𝑙 = 𝑑𝑥Ԧ𝑖 + 𝑑𝑦Ԧ𝑗 + 𝑑𝑧𝑘

⟹ 𝑊 Ԧ𝐹𝑔
= න

𝑀

𝑀′

−𝑚𝑔. 𝑑𝑧 = −𝑚𝑔 𝑍𝑀′ − 𝑍𝑀

Either : ℎ = 𝑍𝑀 − 𝑍𝑀′ ⟹ 𝑾𝑭𝒈
= 𝒎𝒈𝒉

Gravitational force Ԧ𝐹𝑔 is the force that keeps anything with a 

mass 𝑚 attracted to the earth.

𝒙

𝒚

𝒛

Ԧ𝒊
Ԧ𝒋

𝒌

𝑍𝑀

𝑍𝑀′

𝑀(𝑡)

𝑀′(𝑡′)

Ԧ𝐹𝑔 = 𝑊

𝒉

𝑀′

Ԧ𝐹 𝑀

𝑀

𝑑𝑙

ቐ
Ԧ𝐹 = 𝐹𝑥Ԧ𝑖 + 𝐹𝑦 Ԧ𝑗 + 𝐹𝑧𝑘

𝑑𝑙 = 𝑑𝑥Ԧ𝑖 + 𝑑𝑦Ԧ𝑗 + 𝑑𝑧Ԧ𝑗



III.2.4. Work done by an elastic force:

M
Ԧ𝐹

𝑙0 ∆𝑙

𝑙

O

➢ Ԧ𝐹 = −𝑘𝑂𝑀 = −𝑘 𝑙 − 𝑙0 Ԧ𝑖 = −𝑘𝑥Ԧ𝑖

➢ 𝑑𝑙 = 𝑑𝑥Ԧ𝑖

𝑊 = න Ԧ𝐹. 𝑑𝑙

When Ԧ𝐹 moves from the 𝑥1 position to 𝑥2 position , We have :

𝑾 = −𝒌 න
𝒙𝟏

𝒙𝟐

𝒙𝒅𝒙 = −
𝟏

𝟐
𝒌 𝒙𝟐

𝟐 − 𝒙𝟏
𝟐

𝑥1 𝑥2 

⟹ 𝑾 = −
𝟏

𝟐
𝒌𝒙𝟐 + 𝑪𝒕𝒔

The work of this force does not depend on the path followed but only on the initial and 

final position of the spring

We have :

⟹ 𝑊 = න −𝑘𝑥Ԧ𝑖. 𝑑𝑥Ԧ𝑖 = −𝑘 න 𝑥𝑑𝑥



III.2.5. Power of Force:

❑ Average Power: 𝑃𝑎𝑣𝑒 =
∆𝑊 Ԧ𝐹

∆𝑡

❑ Instantaneous Power: 𝑃𝑖𝑛𝑠𝑡 = 𝑃 𝑡 =
𝑑𝑊 Ԧ𝐹

𝑑𝑡

𝑷 = 𝑾𝒂𝒕𝒕

The power of a force Ԧ𝐹 in a time interval 𝑑𝑡 manages to move a mobile by a distance 𝑑𝑙 can 

be written by:

𝑃 𝑡 =
𝑑𝑊 Ԧ𝐹

𝑑𝑡
=

Ԧ𝐹. 𝑑𝑙

𝑑𝑡

Power is the rate at which work is done or energy is transferred in a unit of time.

= Ԧ𝐹.
𝑑𝑙

𝑑𝑡
= Ԧ𝐹. 𝑉



III.3. Energy

Energy, in physics , is the capacity for doing work. Energy can neither be created nor

destroyed, and it can only be transformed from one form to another.

❖ Mechanical energy  

❖ Chemical energy

❖ Electric energy

❖ Magnetic energy

❖ Radiant energy

❖ Nuclear energy

❖ Ionization energy

❖ Elastic energy

❖ Gravitational energy

❖ Thermal energy

❖ Heat Energy

❑ Types of Energy

❑ All forms of energy are either kinetic or potential: 

✓ Whereas Potential Energy is the energy stored in an object and is measured by 

the amount of work done.

✓ The energy in motion is known as Kinetic Energy. 



We define the kinetic energy of a material point M, of mass 𝑚 and animated with a

velocity 𝑉 , by the quantity 𝐸𝑐 , such that :

III. 3.1. Kinetic energy

𝐸𝐶 =
1

2
𝑚𝑉2

➢ Let a material point 𝑴, of mass 𝑚, moves between points A and 

B under the action of an external force Ԧ𝐹.

෍ Ԧ𝐹𝑒𝑥𝑡 = 𝑚 Ԧ𝑎 ⟹ Ԧ𝐹 = 𝑚
𝑑𝑉

𝑑𝑡

The elementary work of Ԧ𝐹 is given by:

𝑑𝑊 Ԧ𝐹 = Ԧ𝐹. 𝑑𝑙 car 𝑉 =
𝑑𝑙

𝑑𝑡
 ⟹ 𝑑𝑙 = 𝑉𝑑𝑡

➢ According to the fundamental principle of dynamics, we have:

𝑚
𝑑𝑉

𝑑𝑡
𝑉𝑑𝑡

= 𝑚
𝑑𝑉

𝑑𝑡
. 𝑉𝑑𝑡



⟹ 𝑑𝑊 Ԧ𝐹 = 𝑚
𝑑𝑉

𝑑𝑡
. 𝑉𝑑𝑡 = 𝑚𝑉𝑑𝑉 = 𝑑

1

2
𝑚𝑉2

So the work done between A and B is given by:

𝑊 Ԧ𝐹 = න
𝐴

𝐵

Ԧ𝐹. 𝑑𝑙 = න
𝐴

𝐵

𝑑𝐸𝐶 = 𝐸𝐶 𝐵 − 𝐸𝐶 𝐴

= 𝑑𝐸𝐶

Kinetic energy theorem:

In a Galilean frame of reference, the change in kinetic energy of a material point

subjected to a set of external forces between a position A and another position B is

equal to the sum of the works of these forces between these two points:

∆𝑬𝑪 = 𝑬𝑪 𝑩 − 𝑬𝑪 𝑨 = σ 𝑾𝑨→𝑩 𝑭𝒆𝒙𝒕  



III.3.2. Conservative and non-conservative forces:

𝐴

𝐵

𝑊1
𝑊2

𝑊3

1- Their work does not depend on the path followed but only on the point of departure

and the point of arrival.

For example:

2- The total work on a closed path (i.e. a round trip) is zero.

𝑊 𝐴 → 𝐴 = 𝑊1 𝐴 → 𝐵 + 𝑊3 𝐵 → 𝐴 = 0

Examples of conservative forces:

Gravitational forces, elastic forces, gravitational forces......

❑ Forces are said to be conservative when:

❑ Forces are said to be non-conservative when their work depends on the path taken.

Example of non-conservative forces: Frictional forces.

according to the figure on the right:

𝑊1 𝐴 → 𝐵 = 𝑊2 𝐴 → 𝐵 = 𝑊3 𝐴 → 𝐵



III. 3.1. Potential Energy:

The potential energy of a body or physical system is the energy that is present in it 

and has the potential to transform into kinetic energy.

➢ Consider an object near the earth's surface as a system with 
initially upward velocity. 

➢ Once the object is released, the gravitational force, acting as
an external force, does a negative amount of work on the
object, and the kinetic energy decreases until the object
reaches its highest point, at which its kinetic energy is zero.

➢ The gravitational force then does a positive job until the
object returns to its original starting point with a downward
velocity.

➢ All kinetic energy has been completely recovered

Negative work 
done by the 
gravitational 
force

Positive work 
done by the 
gravitational 
force

➢ If we ignore the effects of air resistance, then the descending
object will have the same kinetic energy as when it was
launched.

𝑣 = 0



⟹ We define the potential energy 𝐸𝑃 as the quantity of energy that must be 

added to the kinetic energy 𝐸𝐶 so that their sum is constant:

𝐸𝐶 + 𝐸𝑃 = 𝐶𝑡𝑒

➢ For a displacement producing a change in kinetic energy ∆𝐸𝐶 , the corresponding 

change in potential energy ∆𝐸𝑃 can be given by:

∆𝐸𝑃 = 𝐸𝑃 𝐵 − 𝐸𝑃 𝐴

⟹ ∆𝐸𝑃 = − න
𝐴

𝐵

Ԧ𝐹𝐶 . 𝑑𝑙

With Ԧ𝐹𝐶 is a conservative force

= −∆𝐸𝐶 = −𝑊 Ԧ𝐹𝐶
𝐴 → 𝐵



Using the notion of elementary work 𝑑𝑊 of a conservative force Ԧ𝐹𝐶:

𝑑𝑊 = Ԧ𝐹𝐶 . 𝑑𝑙 ⟹ 𝑑𝐸𝑃 = − Ԧ𝐹𝐶 . 𝑑𝑙

1-  ቐ
Ԧ𝐹𝐶 = 𝐹𝑥Ԧ𝑖 + 𝐹𝑦 Ԧ𝑗 + 𝐹𝑧𝑘

𝑑𝑙 = 𝑑𝑥Ԧ𝑖 + 𝑑𝑦Ԧ𝑗 + 𝑑𝑧𝑘

𝑑𝐸𝑃 = − Ԧ𝐹𝐶 . 𝑑𝑙  ⟹
𝜕𝐸𝑃

𝜕𝑥
𝑑𝑥 +

𝜕𝐸𝑃

𝜕𝑦
𝑑𝑦 +

𝜕𝐸𝑃

𝜕𝑧
𝑑𝑧 = −𝐹𝑥𝑑𝑥 − 𝐹𝑦𝑑𝑦 − 𝐹𝑧𝑑𝑧

⟹

𝐹𝑥 = −
𝜕𝐸𝑃

𝜕𝑥

𝐹𝑦 = −
𝜕𝐸𝑃

𝜕𝑦

𝐹𝑧 = −
𝜕𝐸𝑃

𝜕𝑧 ⟹ 𝑭𝑪 = −𝒈𝒓𝒂𝒅𝑬𝑷

We have: 

2 −  𝑑𝐸𝑃 =
𝜕𝐸𝑃

𝜕𝑥
𝑑𝑥 +

𝜕𝐸𝑃

𝜕𝑦
𝑑𝑦 +

𝜕𝐸𝑃

𝜕𝑧
𝑑𝑧 (Total differential of a function)

⟹ Ԧ𝐹𝐶 . 𝑑𝑙 = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧

⟹ 𝐹𝑥Ԧ𝑖 + 𝐹𝑦 Ԧ𝑗 + 𝐹𝑧𝑘 = −
𝜕𝐸𝑃

𝜕𝑥
Ԧ𝑖 −

𝜕𝐸𝑃

𝜕𝑦
Ԧ𝑗 −

𝜕𝐸𝑃

𝜕𝑧
𝑘 = −𝜵𝑬𝑷



III. 3.1.1. Potential Energy of the Force of Gravity:

∆𝐸𝑃 = 𝐸𝑃 𝐵 − 𝐸𝑃 𝐴 = − න
𝐴

𝐵

Ԧ𝐹𝑔. 𝑑𝑙

Ԧ𝐹𝑔 = 𝑊 = −𝑚𝑔𝑘 ; 𝑑𝑙 = 𝑑𝑥Ԧ𝑖 + 𝑑𝑦Ԧ𝑗 + 𝑑𝑧𝑘

∆𝐸𝑃 = න
𝐴

𝐵

𝑚𝑔𝑑𝑧 = 𝑚𝑔 𝑍𝐵 − 𝑍𝐴 = 𝑚𝑔ℎ

III. 3.1.2. Potential Energy of an Elastic Force:

Ԧ𝐹 = −𝑘𝑥Ԧ𝑖

Ԧ𝐹 = −𝑔𝑟𝑎𝑑𝐸𝑃 = −
𝜕𝐸𝑃

𝜕𝑥
Ԧ𝑖 ⟹

𝑑𝐸𝑃

𝑑𝑥
= 𝑘𝑥

𝐸𝑃 = න 𝑘𝑥𝑑𝑥 =
1

2
𝑘𝑥2 + 𝐶𝑡𝑒

𝐵(𝑡′)

𝒙

𝒚

𝒛

Ԧ𝒊
Ԧ𝒋

𝒌

𝑍𝐵

𝑍𝐴 𝐴(𝑡)

Ԧ𝐹𝑔 = 𝑊



III. 3.1.3. Potential Energy of a Gravitational Force:

Ԧ𝐹 𝑟 = −
𝐺𝑀𝑚

𝑟2
𝑢 = −

𝐺𝑀𝑚

𝑟3
Ԧ𝑟 𝒖 =

𝒓

𝒓

Ԧ𝐹 𝑟 = −𝑔𝑟𝑎𝑑𝐸𝑃 𝑟 = −
𝑑𝐸𝑃 𝑟

𝑑𝑟
𝑢 ⟹

𝑑𝐸𝑃 𝑟

𝑑𝑟
=

𝐺𝑀𝑚

𝑟2

⟹ 𝑑𝐸𝑃 𝑟 =
𝐺𝑀𝑚

𝑟2
𝑑𝑟 ⟹ 𝑬𝑷 𝒓 = න

𝑮𝑴𝒎

𝒓𝟐
𝒅𝒓 = −

𝑮𝑴𝒎

𝒓
+ 𝑪𝒕𝒆

𝑶

𝑀

𝒎

𝒖 𝑟

𝑭



Let be a system moving between points A and B under the effect of conservative and 

non-conservative forces. According to the kinetic energy theorem, we have:

III.3.2. Mechanical energy

𝐸𝐶 𝐵 − 𝐸𝐶 𝐴 = ෍ 𝑊𝐴→𝐵
Ԧ𝐹𝐶 + ෍ 𝑊𝐴→𝐵

Ԧ𝐹𝑁𝐶

With : Ԧ𝐹𝐶: Conservative force and Ԧ𝐹𝑁𝐶: non-conservative force

⟹ 𝐸𝐶 𝐵 − 𝐸𝐶 𝐴 = − 𝐸𝑃 𝐵 − 𝐸𝑃 𝐴 + ෍ 𝑊𝐴→𝐵
Ԧ𝐹𝑁𝐶

෍ 𝑊𝐴→𝐵
Ԧ𝐹𝐶 = − 𝐸𝑃 𝐵 − 𝐸𝑃 𝐴We have:

⟹ 𝐸𝐶 𝐵 + 𝐸𝑃 𝐵 − 𝐸𝐶 𝐴 + 𝐸𝑃 𝐴 = ෍ 𝑊𝐴→𝐵
Ԧ𝐹𝑁𝐶

➢ 𝑬𝑪 + 𝑬𝑷 = 𝑬 ∶ Called « Machanical energy (Totale)

⟹ 𝑬 𝑩 − 𝑬 𝑨 = ෍ 𝑾𝑨→𝑩 𝑭𝑵𝑪



Mechanical Energy Theorem:

The change in the mechanical energy of a system, moving between two points A and B, is 

equal to the sum of the works of the non-conservative external forces applied to that 

system  :   

𝑬 𝑩 − 𝑬 𝑨 = ෍ 𝑾𝑨→𝑩 𝑭𝑵𝑪

However, when the system is isolated (i.e., it is not subject to any non-conservative 

external forces) the mechanical energy is conserved ⟹ ∆𝑬 = 𝟎. 



A small object of mass m modeled by a point is

hung at the end of an inextensible thread of length L.

The other end is attached to a bracket(see figure).

We do the study in the terrestrial frame of reference. 

The initial angle is𝜃 = 20°, Length L = 50 cm.

a. Trace the forces acting on the object.

b. We let go of the object from point A. Using the kinetic energy theorem, express its

velocity 𝑉𝐵 at point B as a function of g, L, and 𝜃 , and then calculate it.

c. What is its velocity at point C? 

d. We now throw the object from point A with speed 𝑉𝐴 tangent to the circle, towards the

left. Express the minimum value of the norm of 𝑉𝐴 for the object to go to point D as a

function of g, L and 𝜃. Calculate it.

Exercise:

𝐷

𝐴𝐵𝐶

𝐿 = 50 𝑐𝑚

𝑂
𝜃

𝑚



Solution:

𝐷 𝑂

𝑾

𝑻

a. the forces acting on the object are:

Object Weight 𝑊 and Thread tension 𝑇 

b. In A, the velocity being zero 𝐸𝐶 𝐴 = 0 𝐽. 

     In B The kinetic energy is 𝐸𝑐 𝐵 =
1

2
𝑚𝑉𝐵

2

Applying the kinetic energy theorem

∆𝑬𝑪 = 𝑬𝑪 𝑩 − 𝑬𝑪 𝑨 = σ 𝑾𝑨→𝑩 𝑭𝒆𝒙𝒕  

➢ The tension of the wire TԦ is perpendicular to the trajectory, its work is always zero.

➢ The weight 𝑊 is a conservative force, its work depends only on the start and end

positions, and therefore on the difference in altitude ℎ between point A and point B.

= 𝑾𝑨→𝑩 𝑻 + 𝑾𝑨→𝑩 𝑾



𝑩

𝐿 = 50 𝑐𝑚

𝑂
𝜽

𝐿

𝐴
𝑨′

ℎ = 𝐴′𝐵 = 𝑂𝐵 − 𝑂𝐴′ = 𝐿 − 𝐿𝑐𝑜𝑠𝜃

⟹ ℎ = 𝐿 1 − 𝑐𝑜𝑠𝜃

∆𝑬𝑪 = 𝑬𝑪 𝑩 − 𝟎 = 𝑾𝑨→𝑩 𝑷

⟹
1

2
𝑚𝑉𝐵

2 = 𝑚𝑔ℎ = 𝑚𝑔𝐿 1 − 𝑐𝑜𝑠𝜃

⟹ 𝑽𝑩 = 𝟐𝒈𝑳 𝟏 − 𝒄𝒐𝒔𝜽 = 𝟐. 𝟗, 𝟖. 𝟎, 𝟓 𝟏 − 𝒄𝒐𝒔𝟐𝟎° = 𝟎, 𝟕𝟕𝒎/𝒔

C. Point C is at the same height as point A, if no energy is lost, the object

is in C with zero velocity, all the mechanical energy is grouped in the potential energy.

D. the object reaches point D with zero velocity

Applying the principle of conservation of mechanical energy between A and D

∆𝐸𝑚= 0 ⟹ 𝐸𝑚 𝐷 − 𝐸𝑚 𝐴 = 0



⟹ 𝐸𝐶 𝐷 + 𝐸𝑃 𝐷 − 𝐸𝐶 𝐴 + 𝐸𝑃 𝐴 = 0

𝐸𝐶 𝐷 = 0 

𝐸𝑃 𝐷 = 𝑚𝑔𝐿 

𝐸𝐶 𝐴 =
1

2
𝑚𝑉𝐴

2 

𝐸𝑃 𝐴 = 𝑚𝑔𝐿 1 − 𝑐𝑜𝑠𝜃

⟹ 𝑚𝑔𝐿 =
1

2
𝑚𝑉𝐴

2 + 𝑚𝑔𝐿 1 − 𝑐𝑜𝑠𝜃 =
1

2
𝑚𝑉𝐴

2 + 𝑚𝑔𝐿 − 𝑚𝑔𝐿𝑐𝑜𝑠𝜃

⟹ 𝑽𝑨 = 𝟐𝒈𝑳𝒄𝒐𝒔𝜽 = 𝟑 𝒎/𝒔
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