Fondamental Electricity

Tutorial N°0

I. **QCM**

Choose the correct answer:

A. A perfect voltage generator E = 10 V supplies a resistor $R = 100 \Omega$. The current I flowing out of the positive terminal of the generator has a value of:

a. I = -100 mA

b. I = -10 A

c. I = 100 mA

d. I = 10 A

- B. When two resistors are connected in parallel, the equivalent resistance of this combination is always:
- a. greater than the higher of the two resistances.
- b. less than the lower of the two resistances.
- c. less than the higher of the two resistances.
- d. greater than the lower of the two resistances.
- C. UA perfect voltage generator E = 10 V supplies an adjustable resistor R. We want the current supplied by the generator to be equal to I = 50 mA. To what value should the resistor be set?

a. $R = 200 \Omega$

b. $R = 20 \Omega$

c. $R = 500 \Omega$

d. $R = 50 \Omega$

D. A perfect voltage generator E = 10 V is connected across a capacitor with capacitance $C = 10 \mu F$. Let U be the voltage across the capacitor and I the current flowing through it. We have:

a. U = 10 V and I = 0 A.

b. U = 0 V and I = 0 A.

c. U = 10 V and I = 0.1 mA.

d. U = 0 V and I = 0,1 mA.

- E. A real voltage generator E = 10 V, $r = 1 \Omega$ is connected across a variable resistor R. Let U be the voltage across the real generator, i.e. the combination (E, r). Which of these statements is true?
- a. The lower the value of R, the higher the value of U.
- b. The lower the value of R, the lower the value of U.
- c. When the value of R is close to that of r, U = 0 V.
- d. When R tends towards infinity, U = 0 V.
- F. A real voltage generator E = 10 V, $r = 1 \Omega$ is placed across a resistor $R = 9 \Omega$. Let U be the voltage across R. We have:

a. U = 1 V. b. U = 8 V. c. U = 9 V.

d. U = 10 V.

A set of resistors $R1 = 5~\Omega$, $R2 = 10~\Omega$ and $R3 = 20~\Omega$ is constructed as follows: R2 and R3 are connected in parallel and R1 is connected in series with this combination. The whole circuit is powered by a perfect voltage generator E = 10~V. What is the value of the current I delivered by the generator?

- a. I = 350 mA
- b. I = 670 mA
- c. I = 860 mA
- d. I = 290 mA

II. True or False

True False

- 1. Electric current flows in the opposite direction to those of electrons.
- 2. The receiver convention applied to the terminals of a dipole requires that voltage and current be represented by arrows pointing in the same direction.
- 3. In steady state, a capacitor always has zero voltage across its terminals.
- 4. A perfect voltage generator has infinite internal resistance.
- 5. A perfect current generator has infinite internal resistance.
- 6. A charged capacitor must have a non-zero voltage across its terminals.
- 7. Two resistors connected in series always carry the same current.
- 8. Two capacitors connected in parallel always carry the same current.
- 9. A charged capacitor can only lose its charge if it is connected to the terminals of a resistive circuit.
- 10. Kirchhoff's node law results from the fact that no electric charge can accumulate at a node in a circuit.
- 11. In a circuit with 2 nodes and 3 loops, applying Kirchhoff's laws yields a system of 5 distinct equations.