People's Democratic Republic of Algeria University Med Khider of Biskra Faculty of SNVSTU

Practical Protocol 01

Dr. Ben Gherbal Hanane

Data Analysis in Biosciences — Level: L3 biology Email: hanane.bengherbal@univ-biskra.dz

Objective

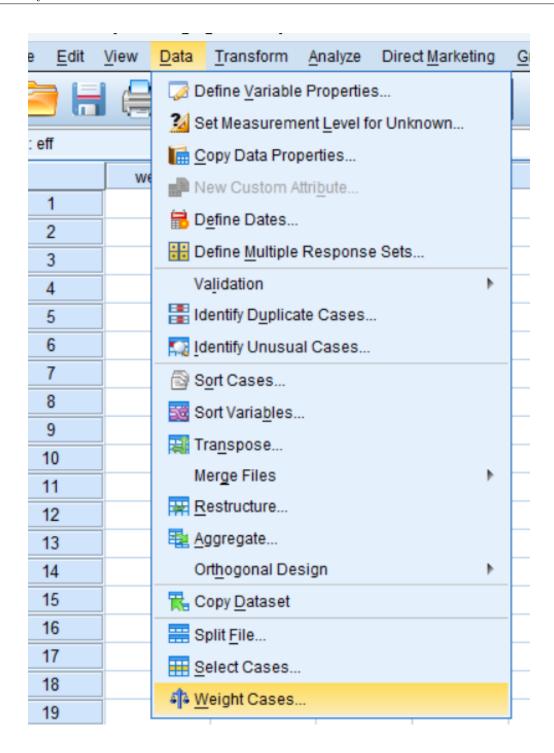
The objective of this protocol is:

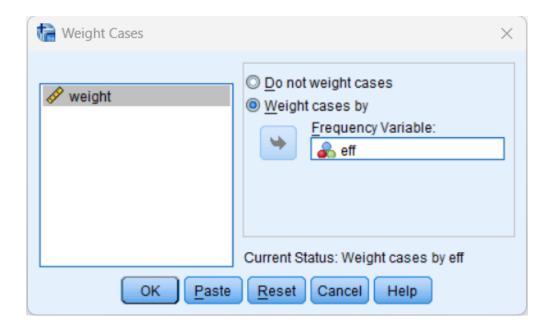
- 1. To guide how to enter data into SPSS and calculate descriptive statistics (central tendency and dispersion).
- 2. To show how to draw a histogram with a superimposed Gaussian (normal) curve.
- 3. To interpret the kurtosis coefficient, which indicates whether the distribution is normal, flat, or peaked.

Example

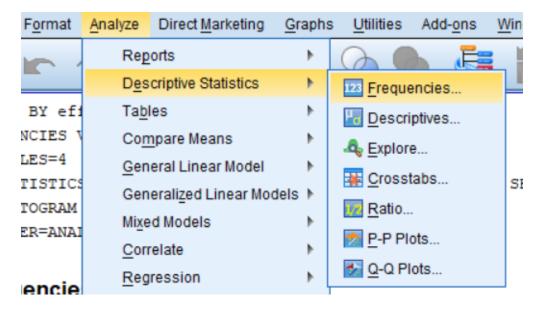
You measure the **weight of 20 lab mice** (in grams):

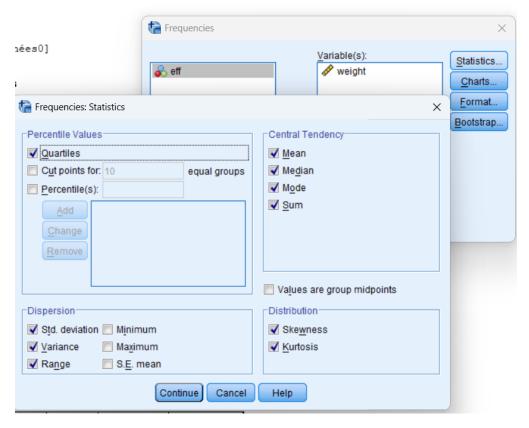
Weight (g)	22.0	22.5	23.0	23.5	24.0	24.5	25.0	26.0	27.0	29.0	30.0	31.0
Frequency	8	6	5	4	3	2	1	2	1	1	1	1

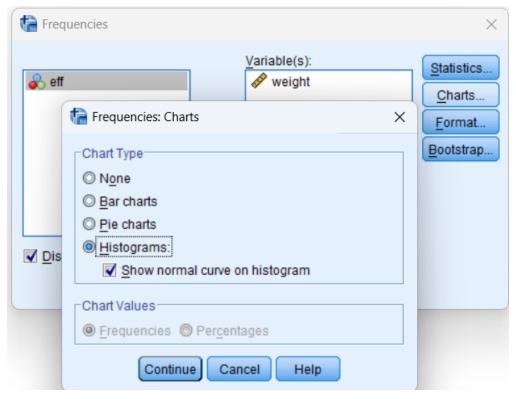

- 1. Calculate the central tendency parameters of this sample.
- 2. Calculate the dispersion parameters of this sample.
- 3. Draw the histogram of this sample and superimpose the Gaussian curve.
- 4. Deduce the shape of the distribution.


Solution

Step 1: Accessing descriptive statistics Launch SPSS and enter the data.


3 : eff			
	weight	eff	٧
1	22,00	8,00	
2	22,50	6,00	
3	23,00	5,00	
4	23,50	4,00	
5	24,00	3,00	
6	24,50	2,00	
7	25,00	1,00	
8	26,00	2,00	
9	27,00	1,00	
10	29,00	1,00	
11	30,00	1,00	
12	31,00	1,00	
13			


In the menu bar, choose Data \rightarrow Weight Cases, then select Weight cases by frequency, and click OK



Choose Analyze o Descriptive Statistics o Frequencies. Select the variable (mice weight) and move it to the variable box. Click on Statistics and check the following: mean, median, mode, standard deviation, variance. Also check Skewness and Kurtosis to obtain information about the distribution shape.

Step 2: Creating a histogram with a Gaussian curve Go to $Analyze \rightarrow Descriptive$ $Statistics \rightarrow Frequencies \rightarrow Charts$. In the dialog box, select Histogram and check Show normal curve on histogram.

Results

 $Descriptive\ Statistics\ Table$

Statistics

weight

N	Valid	35	
	Missing	0	
Mean	23,8571		
Median	23,0000		
Mode	22,00		
Std. Deviation	2,29633		
Variance	5,273		
Skewness	1,843		
Std. Error of S	,398		
Kurtosis	3,010		
Std. Error of K	,778		
Range	9,00		
Sum		835,00	
Percentiles	25	22,5000	
	50	23,0000	
	75 ₆	24,5000	

Gaussian Distribution and Shape Coefficients

The Gaussian curve, or normal distribution, is a symmetric function characterized by two main parameters: the mean and the standard deviation. However, when analyzing distributions that deviate from this ideal shape, two important concepts emerge: the coefficient of kurtosis and the coefficient of skewness.

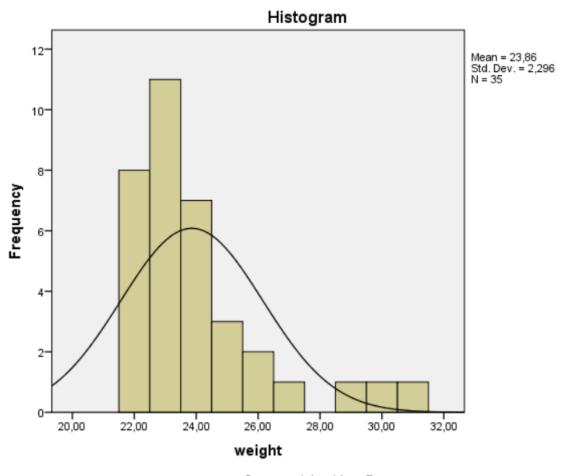
Coefficient of skewness

The skewness coefficient measures the degree of asymmetry of a distribution around its mean. If the distribution is symmetric, like the Gaussian curve, this coefficient is zero.

- 1. **Zero skewness:** The distribution is perfectly symmetric (as in the Gaussian distribution).
- 2. **Positive skewness:** The distribution is skewed to the right.
- 3. **Negative skewness:** The distribution is skewed to the left.

Coefficient of kurtosis

The kurtosis is a parameter that measures the degree of flattening or sharpness of the distribution of a random variable.


- 1. **Zero kurtosis:** This corresponds to the normal or Gaussian distribution.
- 2. **Negative kurtosis:** The distribution is flat (platykurtic).
- 3. **Positive kurtosis:** The distribution is sharply peaked (leptokurtic).

Conclusion

From the results:

- The skewness coefficient is slightly positive (≈ 1.843), so the distribution is slightly skewed to the right.
- The kurtosis coefficient is positive (≈ 3.01), so the distribution is sharply peaked.

Thus, the distribution deviates from normality: it is skewed to the right and more sharply peaked than a Gaussian distribution.

Cases weighted by eff