People's Democratic Republic of Algeria University Med Khider of Biskra Faculty of SNVSTU

Protocol 02- Estimation

Dr. Ben Gherbal Hanane

Data Analysis in Biosciences — Level: L3 biology Email: hanane.bengherbal@univ-biskra.dz

We aim to estimate an unknown parameter related to a random phenomenon, usually the mean μ , the variance σ^2 , or the standard deviation σ of the distribution.

To do this, we consider independent observations X_1, \ldots, X_n (identically distributed). This forms a sample. From this sample, we define a new variable X whose value is close to the unknown parameter.

The objective is to list the steps in SPSS to construct a confidence interval (CI) for the mean. Consider the following example:

Example 1. A sugar test in a solution was conducted on 8 samples from the same population. The results in g/L are:

19.5	19.7	19.8	20.1	20.2	20.3	20.4	20.8

- (1) Determine point estimates of the mean and standard deviation.
- (2) What is the 95% confidence interval for the mean?
- (3) What is the 99% confidence interval for the mean?

Solution with SPSS

- Launch SPSS and open the data editor.
- Switch to "Variable View" to define the variable (name, type, etc.).
- Switch to "Data View" and enter the 8 values above.

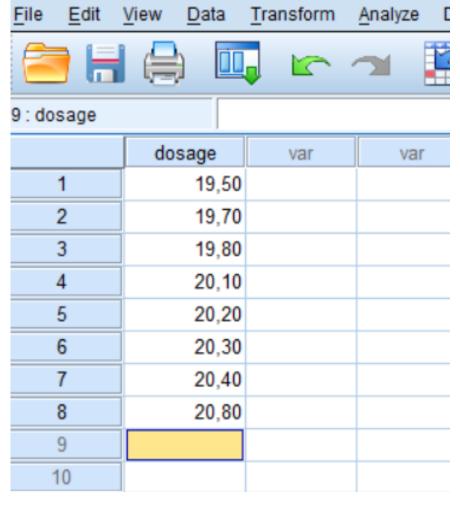


Figure 1: Data Input in SPSS

Steps to calculate confidence interval:

ullet Go to: Analyze o Compare Means o One-Sample T Test

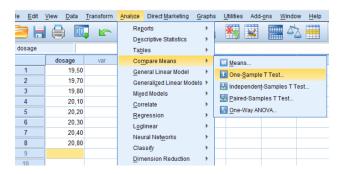


Figure 2: Selection of the Estimation Method Using Confidence Intervals

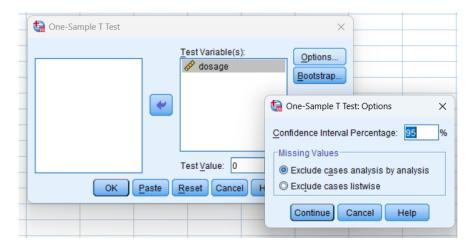


Figure 3: Choosing the Target Variable and Setting the Confidence Level

- Move the variable (e.g., dosage) to the test field.
- Set the test value to 0.
- Click on "Options" and set the confidence level (e.g., 95% or 99%).
- Click OK.

Interpretation of the results:

The first table presents the answer to Question 1, which consists of a point estimate for the mean:

$$\bar{X} = 20.1$$

and a point estimate of the standard deviation which is:

$$S = \sqrt{\frac{1}{n-1} \sum (X_i - \bar{X})^2} = 0.42088$$

Statistiques sur échantillon unique

	N	Moyenne	Moyenne Ecart-type	
dosage	8	20,1000	,42088	,14880

Figure 4: SPSS Output Window Showing Estimation Results: Table 1

The key information in the second table, for the purpose of our example, is the column titled 95% Confidence Interval of the Difference, which represents the 95% confidence interval for the mean (i.e., the lower and upper bounds of this interval). Therefore, at 95%, we have:

$$\mu \in [19.7481\,;\,20.4519]$$

Test sur échantillon unique

			Sig.	Différence	Intervalle de confiance 95% la différence	
	t ddl	ddl	(bilatérale)	moyenne	Inférieure	Supérieure
dosage	135,076	7	,000	20,10000	19,7481	20,4519

Figure 5: SPSS Output Window Showing Estimation Results: Table 2

For question 3, it is sufficient to follow the same steps as before, with the only change being at Step 3, where the confidence level is adjusted to 99%. The confidence interval for the mean is now given as follows:

 $\mu \in [19.5793; 20.6207]$ at 99% confidence level.

Test sur échantillon unique

	Valeur du test = 0							
			Sig.	Différence	Intervalle de confiance 99% de la différence			
	t	ddl	(bilatérale)	moyenne	Inférieure	Supérieure		
dosage	135,076	7	,000	20,10000	19,5793	20,6207		

Figure 6: SPSS output window showing estimation results for $\alpha=1\%$ (i.e., a 99% confidence level)

Example 2. Verify that the following results are correct using SPSS: a probability exam is conducted for a very large class. A sample of 4 grades is selected.

Given n = 4 < 30 and σ unknown, we use the Student's t-distribution:

$$\mu \in \left[\bar{X} - t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}, \ \bar{X} + t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}} \right]$$

With $\alpha = 0.05$, n - 1 = 3, t = 3.182 from the t-table:

$$\bar{X} = 12.75, \quad S^2 = 4.08 \Rightarrow \mu \in [9.535; 15.964]$$

Example 3. A biologist wants to estimate the mean infection rate after inoculation. He measured the percentage of infected cells in 15 cultures:

							09	13	08
Γ.	10	14	07	09	11	08			

- (1) Compute the point estimates of the mean and standard deviation.
- (2) Compute the 99% confidence interval for the mean.