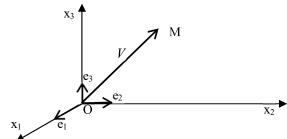
Chapter I

Introduction, Essential Mathematics

I-1 Space and coordinate system

In this course, we always place ourselves in the Euclidean physical space equipped with a direct reference point and the orthonormal basis (e_1, e_2, e_3) . A vector V is represented by its components in the following form:

$$\vec{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = (v_1, v_2, v_3)^T$$
$$= v_1 e_1 + v_2 e_2 + v_3 e_3$$



I-2 Indicial notation

I-2-1 Partial derivative

$$u_{,i} = \frac{\partial u}{\partial x_i} \qquad ; \qquad v_{,ij} = \frac{\partial^2 v}{\partial x_i \partial x_j} \qquad ; \qquad w_{,iij} = \frac{\partial^3 w}{\partial x_i^2 \partial x_j}$$
Example :
$$u_{,1} = \frac{\partial u}{\partial x_1} \qquad v_{,23} = \frac{\partial^2 v}{\partial x_2 \partial x_3} \qquad w_{,112} = \frac{\partial^3 w}{\partial x_1^2 \partial x_2}$$

I-2-2 Summation Convention

$$a_ib_i=\sum_{i=1}^na_ib_i=a_1b_1+a_2b_2+\cdots+a_nb_n$$

$$S_j=a_j^ix_i=a_j^kx_k=a_j^ex_e \qquad \qquad i,k,e \ ; \ summed \ (or \ dummy) \ index$$

$$j: free \ index$$

Attention:
$$a_i + b_i \neq (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n)$$

Example: the scalar product of two vectors: $\vec{U} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ and $\vec{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
 $\vec{U} \cdot \vec{V} = u_i v_i = u_1 v_1 + u_2 v_2 + u_3 v_3$

I-2-3 Kronecker Symbol (Delta)

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Example: The scalar product of the orthonormal basis vectors:

$$\overrightarrow{e_i} \cdot \overrightarrow{e_j} = \delta_{ij}$$
 $i=1,2,3$ $j=1,2,3$

I-2-4 Permutation Symbol

$$\varepsilon_{ijk} = \begin{cases} 0 & \text{if } i = j, i = k \text{ or } j = k \\ +1 & \text{if } (i,j,k) \text{ are in this order (1,2,3), (3,1,2) or (2,3,1) (called even permutation)} \\ -1 & \text{if } (i,j,k) \text{ are in this order (2,1,3), (1,3,2) or (3,2,1) (called odd permutation)} \end{cases}$$

Example: the vectorial product of two vectors:
$$\overrightarrow{U} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 and $\overrightarrow{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

$$\overrightarrow{W} = \overrightarrow{U} \wedge \overrightarrow{V} \quad \text{with} \quad w_i = \varepsilon_{ijk} \cdot u_j \cdot v_k \qquad i=1,2,3 \qquad j=1,2,3 \qquad k=1,2,3$$

$$\overrightarrow{W} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

I-3- Second order tensors:

Let two vectors \vec{X} and \vec{Y} be defined in the vector space R^3 equipped with the basis $\{e_1,e_2,e_3\}$

$$\vec{X} = x^i e_i$$
 et $\vec{Y} = y^i e_i$

We define the tensor product of two vectors \vec{X} and \vec{Y} by:

$$U = \vec{X} \otimes \vec{Y} = (x^1 y^1, x^1 y^2, x^1 y^3, x^2 y^1, x^2 y^2, x^2 y^3, x^3 y^1, x^3 y^2, x^3 y^3)$$

= $x^i y^j e_i \otimes e_i$

<u>Definition</u>: A tensor A is a linear operator (application) on R³ whose components are defined with respect to a basis.

$$\forall X,Y \in \mathbb{R}^3$$
 $A(X+Y) = A(X) + A(Y)$
 $\forall \lambda \in \mathbb{R}; X \in \mathbb{R}^3$ $A(\lambda X) = \lambda A(X)$

The relation Y=A(X) can be written:

$$\begin{pmatrix} y^1 \\ y^2 \\ y^3 \end{pmatrix} = \begin{pmatrix} A_1^1 & A_2^1 & A_3^1 \\ A_1^2 & A_2^2 & A_3^2 \\ A_1^3 & A_2^3 & A_3^3 \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \text{ ou } y^j = A_i^j x^i$$

(A) is the matrix associated with the tensor A

 A_i^j is the elements (or components) of matrix

Remarks:

Tensor of order zero: Scalar

Tensor of order one: Vector

Hight orderTensor: (tensor of order two, tensor of order tree, ...)

Transpose of tensor

The Transpose of tensor is a tensor noted ${}^{t}A$ or A^{t} such that :

$$\forall \vec{X}. \vec{X'} \qquad \vec{X'} A \vec{X} = \vec{X} A^t \vec{X'} = \vec{X} \ ^t A \vec{X'}$$

so $A_{ij} = A_{ji}^t$ (permutation of lines and columns).

Example:
$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
 $A^t = {}^tA = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

if $A = {}^{t}A$ then A is symmetric

if $A = -t^{t}A$ then A is antisymmetric (or skew-symmetric)

Properties:

$$A = {}^{t}({}^{t}A)$$

$${}^{t}[A_1 + A_2 + \dots + A_n] = {}^{t}[A_1] = {}^{t}A_1 + {}^{t}A_2 + \dots + {}^{t}A_n$$

$${}^{t}[A_1 \cdot A_2 \cdot \dots \cdot A_n] = {}^{t}A_n \cdot \dots \cdot {}^{t}A_2 \cdot {}^{t}A_1$$

Particular matrix:

Identity matrix I such as $I_{ij} = \delta_{ij}$ Matrix inverse $(A)^{-1}$ such as $(A) \cdot (A)^{-1} = I$

A is orthogonal matrix if $(A)^t = (A)^{-1}$

Trace of the matrix $tr(A) = A_{ii}$

Theorem: Every tensor can be decomposed, and in a unique way, into the sum of a symmetric tensor and an antisymmetric tensor.

$$A = \frac{A + {}^t A}{2} + \frac{A - {}^t A}{2} = A^s + A^a = \begin{cases} A^s = \frac{A + {}^t A}{2} & \text{symmetric tensor} \\ A^a = \frac{A - {}^t A}{2} & \text{antisymmetric tensor} \end{cases}$$

I-4 Coordinate Transformations (change of basis)

Let $\{e_j\}$ be the initial basis and $\{f_j\}$ a new basis such that: $:f_j=P_i^i\,e_i$

P: Transformation matrix

If $\{f_i\}$ is an orthonormal basis then $P^{-1} = {}^tP$

a) Vector

$$\vec{X} = x^i e_i = \bar{x}^j f_i \qquad \Rightarrow \qquad {}^t P \bar{\mathbf{x}} = \mathbf{x}$$

- $\vec{X} = x^i e_i = \bar{x}^j f_j$ \Rightarrow ${}^t P \bar{x} = x$ $\{f_j\}$ is an orthonormal basis \Rightarrow $\bar{x} = ({}^t P)^{-1} x = (P^{-1})^{-1} x = P x$
 - b) Tensor

in the initial basis Y=A(X)

 $\bar{Y} = \bar{A}(\bar{X})$ tel que $\bar{A} = (P)A(P^{-1})$ in the new basis

Example:

Let X be the vector which decomposes in the orthonormal basis $\{e_i\}$ by $X = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

- 1) Perform the tensor product $T = X \otimes X$ and write the components t_{ij} of T in matrix form.
- 2) Let $\{f_i\}$ j=1,2,3 be an orthonormal basis linked to the basis $\{e_i\}$ i=1,2,3 by the orthogonal transformation matrix [P] by $\{f_i\} = [P]\{e_i\}$ such that:

$$(P) = \begin{pmatrix} 1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- a) Calculate the components t_{ij}^* of the tensor T in the basis $\{f_i\}$.
- b) Calculate the components of the vector X in the basis $\{f_i\}$ and calculate the tensor product X
- \otimes X in the basis $\{f_i\}$. What do you observe?

Solution:

1°)
$$t_{11} = x_1 x_1 = 1$$
 $t_{12} = x_1 x_2 = 3$ $t_{13} = x_1 x_3 = -2$ $t_{21} = x_2 x_1 = 3$ $t_{22} = x_2 x_2 = 9$ $t_{23} = x_2 x_3 = --6$ $t_{31} = x_3 x_1 = -2$ $t_{32} = x_3 x_2 = -6$ $t_{33} = x_3 x_3 = -4$

$$T = X \otimes X = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ -2 & -6 & 4 \end{pmatrix}$$

2°) a the basis $\{f_j\}$ is orthonormal $(|f_i|=1 \text{ et } f_i \perp f_j \text{ if } i \neq j)$

$$T^* = (P)(T)(P^{-1}) = \frac{1}{4} \begin{pmatrix} 28 + 6\sqrt{3} & -6 + 8\sqrt{3} & -4 - 12\sqrt{3} \\ -6 + 8\sqrt{3} & 12 - 6\sqrt{3} & -3 + \sqrt{3} \end{pmatrix}$$

$$-4 - 12\sqrt{3} & -3 + \sqrt{3} & +16 \end{pmatrix}$$
b)
$$X^* = (P)(X) \Rightarrow \begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \begin{pmatrix} 1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + 3\sqrt{3} \\ 3 - \sqrt{3} \\ -4 \end{pmatrix}$$

$$t_{11}^* = x_1^* x_1^* = \frac{1}{4}(28 + 6\sqrt{3}) \qquad t_{12}^* = x_1^* x_2^* = \frac{1}{4}(-6 + 8\sqrt{3})$$

$$t_{13}^* = x_1^* x_3^* = \frac{1}{4}(-4 - 12\sqrt{3}) \qquad t_{21}^* = x_2^* x_1^* = \frac{1}{4}(-6 + 8\sqrt{3})$$

$$t_{22}^* = x_2^* x_2^* = \frac{1}{4}(12 - 6\sqrt{3}) \qquad t_{23}^* = x_2^* x_3^* = \frac{1}{4}(-12 + 4\sqrt{3})$$

$$t_{31}^* = x_3^* x_1^* = \frac{1}{4}(-4 - 12\sqrt{3}) \qquad t_{32}^* = x_3^* x_2^* = \frac{1}{4}(-12 + 4\sqrt{3})$$

$$t_{33}^* = x_3^* x_3^* = \frac{1}{4}(16)$$

We observe the compnents of T^* are equal to t^*_{ij} \Rightarrow $T^* = X^* \otimes X^*$

I-5 Vector product operator

Let two vectors be: $\vec{n} = n_i e_i$ et $\vec{u} = u_i e_i$

The vector product on \vec{n} . By \vec{u} . Is as follows:

$$\vec{n} \wedge \vec{u} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \wedge \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} n_2 u_3 - n_3 u_2 \\ n_3 u_1 - n_1 u_3 \\ n_1 u_2 - n_2 u_1 \end{pmatrix} = (*n)\vec{u} \quad \text{with} \quad (*n) = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$

(*n) is the matrix of the tensor vector product on the left by \vec{n} .

I-6 Projection operators

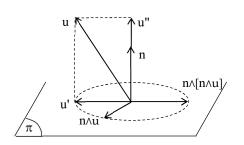
 \vec{n} vector normal to the plane π

$$\vec{u} = \overrightarrow{u'} + \overrightarrow{u''}$$

The projection of the vector \vec{u} onto the plane π is:

$$\overrightarrow{u'} = -(*n)^2 \overrightarrow{u}$$

-(*n) is the matrix of the orthogonal projection operator on the plane π



Orthogonal projection of the vector \vec{u} onto the axis axis whose unit vector is \vec{n}

$$\overrightarrow{u^{\prime\prime}} = [I + (*n)^2] \overrightarrow{u}$$

 $I + (*n)^2$ is the matrix of the orthogonal projection operator onto the axis whose unit vector is \vec{n} .

<u>Remark</u>: if the vector \vec{n} is unitary $(|\vec{n}| = 1)$ then: $I + (*n)^2 = (\vec{n})(\vec{n})^t$

Example:

Consider an orthonormal basis of R³ defined by the following vectors:

$$f_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^t$$
 $f_2 = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})^t$ $f_3 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^t$

Given the following vector: $A = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$

- a) Determine the projection of this vector on the axes whose unit vectors are f₁, f₂ and f₃.
- b) Determine the projection of this vector onto the plane formed by the vectors f_1 and f_2 .

Solution

a) Let \bar{A}_1 , \bar{A}_2 , \bar{A}_3 be the projections of vector A respectively on axes f_1 , f_2 and f_3 .

$$\{f_i\}$$
 is orthonormal basis $\Rightarrow \bar{A}_i = [I + (*f_i)^2]A = [(\vec{f}_i) \cdot (\vec{f}_i)^t]A$

$$\bar{A}_{1} = [(\vec{f}_{1}) \cdot (\vec{f}_{1})^{t}]A = \begin{bmatrix} \binom{1}{\sqrt{3}} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \binom{1}{\sqrt{3}} \quad 1/\sqrt{3} \quad 1/\sqrt{3} \end{bmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \begin{bmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 7 \\ 7 \\ 7 \end{pmatrix}$$

$$\bar{A}_2 = \left[(\vec{f_2}) \cdot (\vec{f_2})^t \right] A = \begin{bmatrix} \begin{pmatrix} -2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} -2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 4 & -2 & -2 \\ -2 & 1 & 1 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 10 \\ -5 \\ -5 \end{pmatrix}$$

$$\bar{A}_{3} = \left[(\vec{f}_{3}) \cdot (\vec{f}_{3})^{t} \right] A = \left[\begin{pmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \left(-2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \right) \right] \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \\
= \frac{1}{2} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

c) Let \bar{A}_{12} be the projection of vector A onto the plane formed by the vectors f_1 and f_2 .

$$\bar{A}_{12} = [-(*f_3)^2]A$$

$$\bar{A}_{12} = \left[-(*f_3)^2 \right] A = \begin{bmatrix} 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix}^2 \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 3/2 \\ 3/2 \end{pmatrix}$$

I-7 Eigenvalues and Eigenvectors of Symmetric Second-Order Tensors

<u>Definition</u>: An eigenvector \vec{X} of the tensor A is a non-zero vector that, when a linear transformation represented by the matrix (A) is applied to it, results in a vector that is parallel to the original vector.

This translates to the following mathematical equation : $A(\vec{X}) = \lambda(\vec{X})$

 $\lambda \in \mathbb{R}$: eigenvalue associated with the eigenvector \vec{X}

This relation can be rewritten as : $[A - \lambda I](\vec{X}) = \vec{0}$

For symmetric second-order tensors, this expression is simply a homogeneous system of three linear algebraic equations in the unknowns $\vec{X}_1, \vec{X}_2, \vec{X}_3$.

The system possesses a nontrivial solution if and only if the determinant of its coefficient matrix vanishes, that is : $det(A-\lambda I)=0$

Expanding the determinant produces a cubic equation in terms of λ (called characteristic equation):

$$det[A - \lambda I] = -\lambda^3 + I_a \lambda^2 - I_b \lambda + I_c = 0$$

Where:

$$I_a = tr(A) = A_{ii} = A_{11} + A_{22} + A_{33}$$

$$I_b = \frac{1}{2} (A_{ii} A_{jj} - A_{ij} A_{ij}) = \begin{vmatrix} A_{11} & A_{12} \\ A_{12} & A_{22} \end{vmatrix} + \begin{vmatrix} A_{22} & A_{23} \\ A_{23} & A_{33} \end{vmatrix} + \begin{vmatrix} A_{11} & A_{13} \\ A_{13} & A_{33} \end{vmatrix}$$

$$I_c = \det(A) = \det[A_{ij}]$$

The scalars I_a , I_b , and I_c are called the *fundamental invariants of the tensor* A.

The roots of the characteristic equation determine the allowable values for λ (λ_1 , λ_2 , λ_3), and each of these may be back-substituted into the relation ($[A - \lambda I](\vec{X}) = \vec{0}$) to solve for the associated principal direction \vec{X} (\vec{X}_1 , \vec{X}_2 , \vec{X}_3).

Remarks:

- a) if the tensor A is summetric in R^3 , then all three roots λ_1 , λ_2 , λ_3 of the cubic equation must be real
- b) All three principal values $(\lambda_1, \lambda_2, \lambda_3)$ distinct; thus, the three corresponding principal directions $(\vec{X}_1, \vec{X}_2, \vec{X}_3)$ are unique and orthogonal. In this case, these vectors $(\vec{X}_1, \vec{X}_2, \vec{X}_3)$ form an orthogonal basis in which the tensor A is diagonal. In this basis the elements of the tensor A are the eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$. Thus, in this new basis, the tensor A is written in the following form:

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Note that the fundamental invariants of the tensor A can be expressed in terms of the principal values as :

$$\begin{split} I_a &= tr(A) = A_{ii} = A_{11} + A_{22} + A_{33} = \lambda_1 + \lambda_2 + \lambda_3 \\ I_b &= \frac{1}{2} (A_{ii} A_{jj} - A_{ij} A_{ij}) = \begin{vmatrix} A_{11} & A_{12} \\ A_{12} & A_{22} \end{vmatrix} + \begin{vmatrix} A_{22} & A_{23} \\ A_{23} & A_{33} \end{vmatrix} + \begin{vmatrix} A_{11} & A_{13} \\ A_{13} & A_{33} \end{vmatrix} = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \\ I_c &= \det(A) = \det[A_{ij}] = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 \end{split}$$

Example:

Consider the tensor A defined in the basis (e_1, e_2, e_3) :

$$A = \begin{pmatrix} 57 & 0 & 24 \\ 0 & 50 & 0 \\ 24 & 0 & 43 \end{pmatrix}$$

Determine the eigenvalues and eigenvectors of the tensor A

Solution:

Eigenvalues

Let λ_1 , λ_2 et λ_3 the eigenvalues of the tensor A and X_1 , X_2 et X_3 the eigenvectors corresponding.

$$det(A - \lambda I) = 0 \quad \Rightarrow \qquad \begin{vmatrix} 57 & 0 & 24 \\ 0 & 50 & 0 \\ 24 & 0 & 43 \end{vmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 57 - \lambda & 0 & 24 \\ 0 & 50 - \lambda & 0 \\ 24 & 0 & 43 - \lambda \end{vmatrix} = 0$$

$$det(A - \lambda I) = (50 - \lambda)[(57 - \lambda)(43 - \lambda) - 576] = (50 - \lambda)(\lambda^2 - 100\lambda + 1875) = 0$$

$$\Rightarrow \begin{cases} \lambda_1 = 50 \\ \lambda_2 = 75 \text{ et and } \lambda_3 = 25 \end{cases}$$

Eigenvectors:

For $\lambda_1 = 50$

$$(A - \lambda_1 I) X_1 = 0 \qquad \Rightarrow \begin{pmatrix} 75 - 50 & 0 & 24 \\ 0 & 50 - 50 & 0 \\ 24 & 0 & 43 - 50 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 7a_1 + 24c_1 = 0 \\ 0 b_1 = 0 \\ 24a_1 - 7c_1 = 0 \end{cases} \Rightarrow X_1 = \begin{pmatrix} 0 \\ b_1 \\ 0 \end{pmatrix} \text{ the value of } b_1 \text{ is arbitrary}$$

 X_1 unit vector $\Rightarrow a_1^2 + b_1^2 + c_1^2 = 1$ $b_1^2 = 1$

we take $b_1 = +1$ \Rightarrow $X_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

For $\lambda_2 = 75$

$$(A - \lambda_2 I) X_1 = 0 \qquad \Rightarrow \begin{pmatrix} 75 - 75 & 0 & 24 \\ 0 & 50 - 75 & 0 \\ 24 & 0 & 43 - 75 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases}
-18a_2 + 24 c_2 = 0 \\
-25 b_2 = 0 \\
24 a_2 - 32 c_2 = 0
\end{cases} \Rightarrow \begin{cases}
b_2 = 0 \\
c_2 = \frac{3}{4} a_2
\end{cases}$$

 X_2 vecteur unitaire \Rightarrow $a_2^2 + b_2^2 + c_2^2 = 1$ \Rightarrow $a_2^2 + \left(\frac{3}{4}\right)^2 a_2^2 = 1$ $a_2^2 = \frac{16}{25}$

we take $a_2 = \frac{4}{5} = 0.8$ $\Rightarrow c_2 = \frac{3}{5}$ $\Rightarrow X_2 = \begin{pmatrix} 0.8 \\ 0 \\ 0.6 \end{pmatrix}$

For $\lambda_3 = 25$

Same as X_2 we find X_3 .

$$(A - \lambda_3 I) X_{III} = 0 \qquad \Rightarrow \qquad X_3 = \begin{pmatrix} 0.6 \\ 0 \\ -0.8 \end{pmatrix}$$

 X_3 can be found by the following relation: $X_3 = X_1 \wedge X_2$

$$X_3 = X_1 \wedge X_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0.8 \\ 0 \\ 0.6 \end{pmatrix} = \begin{pmatrix} 0.6 \\ 0 \\ -0.8 \end{pmatrix}$$

I-8- Differential operators

Let a point P with coordinates
$$x_1, x_2, x_3$$
. $P\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$; $dP\begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \end{pmatrix}$

 $\phi(x_1, x_2, x_3)$: scalar function of the point P coordinates.

$$\vec{u}(x_1, x_2, x_3)$$
: vectorial function of the point P coordinates.
$$\vec{u}\begin{pmatrix} u_1(x_1, x_2, x_3) \\ u_2(x_1, x_2, x_3) \\ u_3(x_1, x_2, x_3) \end{pmatrix}$$

 $A(x_1, x_2, x_3)$: tensorial function of the point P coordinates.

$$A(x_1, x_2, x_3) = \begin{pmatrix} A_1^1(x_1, x_2, x_3) & A_2^1(x_1, x_2, x_3) & A_3^1(x_1, x_2, x_3) \\ A_1^2(x_1, x_2, x_3) & A_2^2(x_1, x_2, x_3) & A_3^2(x_1, x_2, x_3) \\ A_1^3(x_1, x_2, x_3) & A_2^3(x_1, x_2, x_3) & A_3^3(x_1, x_2, x_3) \end{pmatrix}$$

I-8-1 Gradient of a scalar function

The derivative operation of the scalar function ϕ :

$$d\phi = \frac{\partial \phi}{\partial x_1} dx_1 + \frac{\partial \phi}{\partial x_2} dx_2 + \frac{\partial \phi}{\partial x_3} dx_3$$

$$d\phi = grad\phi$$
. dp $\Rightarrow \overrightarrow{grad} \phi = \begin{pmatrix} \partial \phi /_{\partial x_1} \\ \partial \phi /_{\partial x_2} \\ \partial \phi /_{\partial x_3} \end{pmatrix}$ it is a vector

I-8-2 Gradient of a vectorial function

The derivative operation of the vectorial function \vec{u} :

$$\begin{split} d\vec{u} &= \begin{pmatrix} du_1 \\ du_2 \\ du_3 \end{pmatrix} = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} dx_1 + \frac{\partial u_1}{\partial x_2} dx_2 + \frac{\partial u_1}{\partial x_3} dx_3 \\ \frac{\partial u_2}{\partial x_1} dx_1 + \frac{\partial u_2}{\partial x_2} dx_2 + \frac{\partial u_2}{\partial x_3} dx_3 \\ \frac{\partial u_3}{\partial x_1} dx_1 + \frac{\partial u_3}{\partial x_2} dx_2 + \frac{\partial u_3}{\partial x_3} dx_3 \end{pmatrix} \\ d\vec{u} &= \operatorname{grad} \vec{u} \cdot \operatorname{dp} \quad \Rightarrow \quad \operatorname{grad} \vec{u} = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{bmatrix} \quad \text{it is a tensor} \end{split}$$

I-8-3 Divergence of a vectorial function

$$div(\vec{u}) = tr(grad\vec{u}) = \frac{\partial u_p}{\partial x_p} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3}$$
 it is a scalar

I-8-4 Divergence of tensorial function

$$div(A) = \begin{pmatrix} \frac{\partial A_i^1}{\partial x_i} \\ \frac{\partial A_i^2}{\partial x_i} \\ \frac{\partial A_i^3}{\partial x_i} \end{pmatrix} \quad \text{it is a vector}$$

I-8-5 Laplacian of a scalar function

$$\Delta \phi = div(grad\phi) = \frac{\partial}{\partial x_p} \left(\frac{\partial \phi}{\partial x_p} \right) = \frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2} + \frac{\partial^2 \phi}{\partial x_3^2}$$
 it is a scalar

I-8-6 Laplacaen of a vectorial function

I-8-7 Rotationnel of a vectorial function

$$rot(\vec{u}) = \begin{pmatrix} \frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \\ \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \end{pmatrix}$$
 it is a vector
$$* rot(\vec{u}) = 2 \text{ antisym}(\text{grad}(\vec{u}))$$

I-8-8 Cylindrical coordinates with axis Ox₃

The cylindrical coordinate system with axis Ox₃ is (r, θ, x_3)

The relations between cylindrical coordinates and Cartesian coordinates are given by:

$$x_1 = r \cos(\theta)$$

$$x_2 = r \sin(\theta)$$

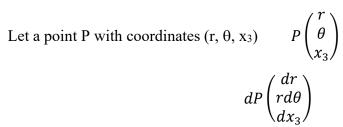
$$x_3 = x_3$$

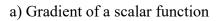
The basis in cylindrical coordinates is given by:

$$e_r = \cos(\theta) e_1 + \sin(\theta) e_2$$

$$e_{\theta} = -\sin(\theta) e_1 + \cos(\theta) e_2$$

$$e_3 = e_3$$





$$d\phi = \operatorname{grad}\phi \cdot \operatorname{dp} \qquad \Rightarrow \qquad \overrightarrow{\operatorname{grad}}\phi = \begin{pmatrix} \frac{\partial \phi}{\partial r} \\ \frac{1}{r}\frac{\partial \phi}{\partial \phi} \\ \frac{\partial \phi}{\partial x_3} \end{pmatrix}$$

b) Gradient of a vectorial function

$$d\vec{u} = grad\vec{u} \cdot dp \qquad \Rightarrow \qquad grad\vec{u} = \begin{bmatrix} \frac{\partial u_1}{\partial r} & \frac{1}{r} \left(\frac{\partial u_1}{\partial \theta} - u_2 \right) & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial r} & \frac{1}{r} \left(\frac{\partial u_2}{\partial \theta} + u_1 \right) & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial r} & \frac{1}{r} \left(\frac{\partial u_3}{\partial \theta} \right) & \frac{\partial u_3}{\partial x_3} \end{bmatrix}$$

c) Divergence of a vectorial function

$$div(\vec{u}) = tr(grad\vec{u}) = \frac{\partial u_1}{\partial r} + \frac{1}{r} \left(\frac{\partial u_2}{\partial \theta} + u_1 \right) + \frac{\partial u_3}{\partial x_3}$$

d) Laplacian of a scalar function

$$\Delta \phi = div(grad\phi) = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial x_2^2}$$

