Module: Advanced Semiconductor Physics Series TD1 of Chapter I: Fundamentals of Semiconductors

Exercise1: Bloch's Theorem and Crystal Periodicity

1-Given a periodic potential V(x+a)=V(x), show that the electron wavefunction satisfies $\psi_k(x+a)=e^{ika}\psi_k(x)$. 2- For a 1D crystal with lattice constant a=0.5 nm, calculate in (m^{-1}) the wave vector k_{max} at the first Brillouin zone boundary. given by $k_{max}=\frac{\pi}{a}$. 3- If an electron has energy $E=\frac{\hbar^2 k^2}{2m}$, compute its energy in (eV) at $k=k_{max}$, using $m=9.11\times 10^{-31}$ kg and $\hbar=\left(\frac{h}{2\pi}\right)$.

Exercise 2: Band Gap and Optical Transitions

1- Calculate the energy (E_{ph}) (in joules) required to excite an electron across the band gap of GaAs $(E_g = 1.43 \ eV)$. 2- Determine the corresponding photon wavelength (λ) in nm. 3- For GaP $(E_g = 2.25 \ eV)$, calculate the minimum photon frequency $(\nu(Hz))$ required for excitation. We give $h = 6.626 \times 10^{-34} \ (J.s)$.

Exercise 3: Intrinsic Semiconductor Properties at Room Temperature

Consider intrinsic silicon at 300 K, with the following parameters: Band gap energy: $E_g = 1.11 \,\text{eV}$, Intrinsic carrier concentration: $n_i = 1.5 \times 10^{10} \,\text{cm}^{-3}$, Electron mobility: $\mu_n = 1350 \,\text{cm}^2/(V.\,s)$, Hole mobility: $\mu_p = 450 \,\text{cm}^2/(V.\,s)$ and Elementary charge: $q = 1.602 \times 10^{-19} \,\text{C}$. 1- Calculate the electrical conductivity σ_i of intrinsic silicon at 300 K knowing that the general conductivity is given by $\sigma = q(n\mu_n + p\mu_p)$. 2- Estimate the resistivity ρ_i of intrinsic silicon at 300 K. 3- calculate the number of thermally generated electron-hole pairs per (cm^{-3}) .

Exercise 4: Carrier Concentrations in Doped Silicon

A silicon sample is doped with $N_D=10^{17}~{\rm cm}^{-3}$. Assuming full ionization, 1- calculate the electron concentration n. 2- Using $n_i=1.5\times 10^{10}~{\rm cm}^{-3}$, compute the hole concentration p. 3- Calculate the conductivity $\sigma=q(n\mu_n+p\mu_p)$, with $\mu_n=1350$, $\mu_p=450~{\rm cm}^2/(V.s)$. 4- Estimate the resistivity ρ .

Exercise 5: Fermi Level and Impurity States

In n-type silicon ($E_g = 1.11 \text{ eV}$), donor level (E_D) is 0.045 eV below E_C . 1-Estimate the Fermi level (E_f) position assuming it lies halfway between E_C and E_D . 2- Using the Fermi-Dirac distribution at 300 K,

$$f(E) = \left(\frac{1}{1 + exp\left(\frac{E - E_f}{k_B T}\right)}\right)$$
, Calculate the probability of electron occupancy at donor level (E_D) . 3- For

 $N_D = 10^{16} \text{ cm}^{-3}$, estimate the number of ionized donors N_D^+ and calculate the free electron concentration n from ionized donors.

Exercise 6: Hole Dynamics in p-Type Silicon

A p-type sample has $p = 5 \times 10^{17}$ cm⁻³, $\mu_p = 450$ cm²/(V.s), E = 100 V/cm. 1- Calculate the drift current density $J_{pdrift} = qp\mu_p E$. 2- Estimate the hole drift velocity $v_d = \mu_p E$.

Solution TD1 of Chapter I: Fundamentals of Semiconductors

Exercise1: Bloch's Theorem and Crystal Periodicity

1-Bloch's theorem states that in a periodic potential V(x + a) = V(x), the electron wavefunction takes the form: $\psi_k(x) = u_k(x)e^{ikx}$. where $u_k(x)$ is a function with the same periodicity as the potential: $u_k(x+a) = u_k(x)$, Then: $\psi_k(x+a) = u_k(x+a)e^{ik(x+a)} = u_k(x)e^{ika}e^{ikx} = e^{ika}\psi_k(x)$

thus, the wavefunction satisfies: $\psi_k(x+a) = e^{ika}\psi_k(x)$.

2-Calculate $k_{\rm max}=\frac{\pi}{a}$ for a=0.5 nm , Convert lattice constant to meters: a=0.5 nm $=0.5\times 10^{-9}$ m Then: $k_{\text{max}} = \frac{\pi}{a} = \frac{3.1416}{0.5 \times 10^{-9}} = 6.2832 \times 10^9 \text{ m}^{-1}$. So, the wave vector at the Brillouin zone boundary is: $k_{\rm max} \approx 6.28 \times 10^9 \, {\rm m}^{-1}$

3-Compute energy $E = \frac{\hbar^2 k^2}{2m}$ at $k = k_{\text{max}}$, Given: $k = k_{\text{max}} = 6.2832 \times 10^9 \,\text{m}^{-1}$, $m = 9.11 \times 10^{-31} \,\text{kg}$

 $\hbar = \frac{h}{2\pi} = \frac{6.626 \times 10^{-34}}{2\pi} = 1.0546 \times 10^{-34}$ (J. s), replace in the energy formula:

$$E = \frac{(1.0546 \times 10^{-34})^2 \cdot (6.2832 \times 10^9)^2}{2 \cdot 9.11 \times 10^{-31}}$$

Compute: $\hbar^2 = 1.112 \times 10^{-68} \,\text{J}^2 \cdot \text{s}^2$ and $k^2 = 3.947 \times 10^{19}$ and $\hbar^2 k^2 = 4.39 \times 10^{-49}$

Divide by
$$2m$$
: $E = \frac{4.39 \times 10^{-49}}{2.9.11 \times 10^{-31}} = \frac{4.39 \times 10^{-49}}{1.822 \times 10^{-30}} \approx 2.41 \times 10^{-19} \text{ J}$

Convert to eV: $E = \frac{2.41 \times 10^{-19}}{1.602 \times 10^{-19}} \approx 1.50$ eV. So, the electron energy at k_{max} is: $E \approx 1.50$ eV

Exercise 2: Band Gap and Optical Transitions

1- Calculate the photon energy $E_{\rm ph}$ in joules for GaAs, Given: Band gap of GaAs: $E_g=1.43~{\rm eV}$ And Conversion factor: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ Calculation:

$$E_{\rm ph} = E_g \times (1.602 \times 10^{-19}) = 1.43 \times 1.602 \times 10^{-19}$$

 $E_{\rm ph} = 2.29 \times 10^{-19} \,\text{J}$

2-: Determine the corresponding photon wavelength λ in nm

Formula: $E_{\rm ph} = h\nu = \frac{hc}{2}$

$$\lambda = \frac{hc}{E_{\rm ph}}$$

Given: $h = 6.626 \times 10^{-34}$ (J. s), $c = 3.00 \times 10^{8}$ m/s, $E_{\rm ph} = 2.29 \times 10^{-19}$ J Calculation:

$$\lambda = \frac{6.626 \times 10^{-34} \cdot 3.00 \times 10^{8}}{2.29 \times 10^{-19}} = \frac{1.9878 \times 10^{-25}}{2.29 \times 10^{-19}} \approx 8.68 \times 10^{-7} \text{ m}$$

Convert to nanometers: $\lambda = 868 \text{ nm}$.

We have also $hc \cong 1.2424 \ \mu m. \ eV$:so $\lambda \approx \frac{hc(\mu m. eV)}{E_{ph}(eV)} = \frac{1.2424}{1.43} = 0.868 \ \mu m = 868 \ nm$

- 3- Calculate the minimum photon frequency ν for GaP. Given: Band gap of GaP: $E_g = 2.25 \text{ eV}$
 - $h = 6.626 \times 10^{-34}$ J.s, Convert E_g to joules:

$$E = 2.25 \times 1.602 \times 10^{-19} = 3.6045 \times 10^{-19} \,\mathrm{J}$$

$$E = 2.25 \times 1.602 \times 10^{-19} \text{ J}$$

$$E = 2.25 \times 1.602 \times 10^{-19} = 3.6045 \times 10^{-19} \text{ J}$$

$$\text{Use } \nu = \frac{E}{h} \text{ then } \nu = \frac{3.6045 \times 10^{-19}}{6.626 \times 10^{-34}} \approx 5.44 \times 10^{14} \text{ Hz} .$$

Exercise 3: Intrinsic Silicon at 300 K

Given Parameters: Band gap energy: $E_g=1.11\,\mathrm{eV}$, Intrinsic carrier concentration: $n_i=1.5\times10^{10}\,\mathrm{cm^{-3}}$ Electron mobility: $\mu_n = 1350 \text{ cm}^2/(V.s)$, Hole mobility: $\mu_p = 450 \text{ cm}^2/(V.s)$

Elementary charge: $q = 1.602 \times 10^{-19}$ C

1-Calculate the electrical conductivity σ_i

Formula: $\sigma_i = q(n_i\mu_n + n_i\mu_p) = qn_i(\mu_n + \mu_p)$

$$\sigma_i = 1.602 \times 10^{-19} \cdot 1.5 \times 10^{10} \cdot 1800$$

Calculation:
$$\sigma_i = (1.602 \times 10^{-19}) \cdot (1.5 \times 10^{10}) \cdot (1350 + 450)$$

$$\sigma_i = 1.602 \times 10^{-19} \cdot 1.5 \times 10^{10} \cdot 1800$$

$$\sigma_i = 1.602 \cdot 1.5 \cdot 1800 \times 10^{-9} = 4324.86 \times 10^{-9} = 4.32 \times 10^{-6} \, (\Omega \cdot \text{cm})^{-1}$$

Answer: $\sigma_i \approx 4.32 \times 10^{-6} \, (\Omega \cdot \text{cm})^{-1}$

2- Estimate the resistivity $\rho_i: \rho_i = \frac{1}{\sigma_i}$, Calculation: $\rho_i = \frac{1}{4.32 \times 10^{-6}} \approx 2.31 \times 10^5 \ \Omega \cdot \text{cm}$

Answer: $\rho_i \approx 2.31 \times 10^5 \,\Omega \cdot \text{cm}$

3- Calculate the number of thermally generated electron-hole pairs per cm³

In intrinsic silicon, each thermally excited electron leaves behind a hole, so the number of electron-hole pairs is simply: $n = p = n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$

Answer: There are 1.5×10^{10} thermally generated electron-hole pairs per cm³ at 300 K.

Exercise 4: Carrier Concentrations in Doped Silicon

Given Data:

- Donor concentration: $N_D = 10^{17} \text{ cm}^{-3}$
- Intrinsic carrier concentration: $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$
- Electron mobility: $\mu_n = 1350 \text{ cm}^2/(V.s)$
- Hole mobility: $\mu_p = 450 \text{ cm}^2/(V.s)$
- Elementary charge: $q = 1.602 \times 10^{-19}$ C

1-: Calculate the electron concentration *n*

Assumption: Full ionization of donors at room temperature.

$$n \approx N_D = 10^{17} \, \text{cm}^{-3}$$

2- Compute the hole concentration p

Use the mass action law: $np = n_i^2 \Rightarrow p = \frac{n_i^2}{n}$

Calculation:

$$p = \frac{(1.5 \times 10^{10})^2}{1.0 \times 10^{17}} = \frac{2.25 \times 10^{20}}{1.0 \times 10^{17}} = 2.25 \times 10^3 \text{ cm}^{-3}$$
$$p = 2.25 \times 10^3 \text{ cm}^{-3}$$

3-Calculate the conductivity σ

Use: $\sigma = q(n\mu_n + p\mu_p)$

Calculation:

$$\sigma = 1.602 \times 10^{-19} \cdot (10^{17} \cdot 1350 + 2.25 \times 10^3 \cdot 450)$$

We have

- $n\mu_n = 1.35 \times 10^{20}$
- $p\mu_p = 1.0125 \times 10^6 \rightarrow \text{negligible compared to } n\mu_n$

So:

$$\sigma \approx \sigma_n = 1.602 \times 10^{-19} \cdot 1.35 \times 10^{20} = 21.63 \, (\Omega \cdot \text{cm})^{-1}$$

 $\sigma \approx 21.63 \, (\Omega \cdot \text{cm})^{-1}$

4-Estimate the resistivity
$$\rho$$

Use: $\rho = \frac{1}{\sigma} = \frac{1}{21.63} \approx 0.0462 \,\Omega \cdot \text{cm}$

Then $\rho \approx 0.046 \,\Omega \cdot \text{cm}$.

Exercise 5: Fermi Level and Impurity States

Given:

- Band gap energy: $E_g = 1.11 \text{ eV}$
- Donor level: $E_D = E_C 0.045 \text{ eV}$
- Temperature: T = 300 K

- Boltzmann constant: $k_B = 8.617 \times 10^{-5} \text{ eV/K}$ Donor concentration: $N_D = 10^{16} \text{ cm}^{-3}$

1-: Estimate the Fermi level E_F assuming it lies halfway between E_C and E_D

$$E_D = E_C - 0.045 \text{ eV}$$

$$E_F = \frac{E_C + E_D}{2} = \frac{E_C + (E_C - 0.045)}{2} = E_C - \frac{0.045}{2} = E_C - 0.0225 \text{ eV}$$

Answer:

$$E_F = E_C - 0.0225 \text{ eV} = 1.11 \text{ eV} - 0.0225 \text{ eV} = 1.0875 \text{ eV}$$

2-: Calculate the probability of electron occupancy at donor level E_D Use the Fermi-Dirac distribution: at E_D

$$f(E_D) = \frac{1}{1 + \exp\left(\frac{E_D - E_F}{k_B T}\right)}$$

Compute $E_D - E_F$:

$$E_D - E_F = (E_C - 0.045) - (E_C - 0.0225) = -0.0225 \text{ eV}$$

Compute the exponent:

$$\frac{-0.0225}{8.617 \times 10^{-5} \cdot 300} = \frac{-0.0225}{0.02585} \approx -0.87$$

replace into the formula:

$$f(E_D) = \frac{1}{1 + e^{-0.87}} \approx \frac{1}{1 + 0.42} \approx \frac{1}{1.42} \approx 0.704$$

Answer:

$$f(E_D) \approx 0.704$$

So, the probability that the donor level is occupied by an electron is approximately 70.4%.

3-: Estimate the number of ionized donors N_D^+ and the free electron concentration n Ionized donors are those not occupied by electrons:

$$N_D^+ = N_D \cdot (1 - f(E_D)) = 10^{16} \cdot (1 - 0.704) = 10^{16} \cdot 0.296 = 2.96 \times 10^{15} \text{ cm}^{-3}$$

Assuming each ionized donor contributes one free electron:

$$n \approx N_D^+ = 2.96 \times 10^{15} \text{ cm}^{-3}$$

Answer:

- $N_D^+ \approx 2.96 \times 10^{15} \,\mathrm{cm}^{-3}$
- $n \approx 2.96 \times 10^{15} \,\mathrm{cm}^{-3}$

Exercise 6: Hole Dynamics in p-Type Silicon

Given Parameters:

- Hole concentration: $p = 5 \times 10^{17} \text{ cm}^{-3}$
- Hole mobility: $\mu_p = 450 \text{ cm}^2/(V.\text{ s})$, Electric field: E = 100 V/cm
- Elementary charge: $q = 1.602 \times 10^{-19}$ C
- 1- Calculate the drift current density $J_{p,\mathrm{drift}} = qp\mu_p E$

$$J_{p,\text{drift}} = (1.602 \times 10^{-19}) \cdot (5 \times 10^{17}) \cdot 450 \cdot 100$$

We have

- $5 \times 10^{17} \cdot 450 \cdot 100 = 2.25 \times 10^{22}$
- Multiply by *q*:

$$I_{n,\text{drift}} = 1.602 \times 10^{-19} \cdot 2.25 \times 10^{22} = 3.6045 \times 10^{3} \text{ A/cm}^{2}$$

Answer:

$$J_{p,\text{drift}} \approx 3604.5 \text{ A/cm}^2$$

2- Estimate the hole drift velocity $v_d = \mu_p E$ Calculation:

 $v_d = 450 \cdot 100 = 4.5 \times 10^4 \text{ cm/s}$

Answer:

$$v_d = 45\,000\,\text{cm/s}$$