Introduction to Cloud Computing

- Cloud computing is the delivery of computing services—servers, storage, databases, networking, software—over the internet ("the cloud")
- to offer faster innovation, flexible resources, and economies of scale.

- History and Evolution:
- 1960s: Mainframe time-sharing
- 2006: AWS launched true beginning of modern cloud
- Now: Multi-cloud, Al-powered platforms

- Benefits:
- Cost reduction
- Scalability
- Global access
- High availability
- Maintenance-free (for users)

- Cloud Service Models: IaaS, PaaS, SaaS Cloud computing provides services in **three major layers**:
- 1. IaaS:Infrastructure (VMs, Storage), Who Uses It (SysAdmins, DevOps)
- 2. PaaS: Platform (runtime, DBs, tools), Who Uses It (Developers)
- 3. SaaS: Software, Who Uses It (End Users, Businesses)

- Infrastructure as a Service (laaS)
- laaS provides virtualized hardware resources over the internet: servers, storage, networks.
- Components:
- Virtual Machines (VMs)
- Storage (block, object)
- Firewalls, Load balancers
- Networking (IP, VPN)

Infrastructure as a Service (laaS)

Examples:

- 1. Amazon EC2 (AWS)
- 2. Google Compute Engine (GCP)
- 3. Microsoft Azure Virtual Machines

Infrastructure as a Service (laaS)

Use Cases:

- 1. Hosting websites
- 2. Backup and recovery
- 3. Building your own cloud platform
- 4. Scalable testing environments

- Platform as a Service (PaaS)
- PaaS offers tools and frameworks for developers to build, test, and deploy applications without managing the underlying infrastructure.

> Services Included:

- Operating system
- Middleware
- Databases
- Development tools

Platform as a Service (PaaS)

Examples:

- 1. Google App Engine
- 2. Heroku
- 3. Microsoft Azure App Services

Platform as a Service (PaaS)

Use Cases:

- 1. Rapid application development
- 2. Web and mobile app deployment
- 3. Microservices architecture

Software as a Service (SaaS)

SaaS provides **ready-to-use software** over the internet — no installation required.

Includes:

- 1. Application
- 2. Data storage
- 3. Maintenance
- 4. Security

Software as a Service (SaaS)

Examples:

- 1. Google Workspace (Docs, Gmail)
- 2. Microsoft 365
- 3. Dropbox, Salesforce, Zoom

Software as a Service (SaaS)

Use Cases:

- 1. Email and communication tools
- 2. Office productivity

- laaS PRACTICE (Infrastructure as a Service)
 - Launch a Virtual Machine (Linux or Windows)
 - 1. AWS Platform:
 - 1. Go to <u>EC2</u>
 - 2. Launch instance (e.g., Ubuntu)
 - 3. Choose t2.micro (free tier)
 - 4. Configure SSH key, network
 - 5. Connect via SSH

- laaS PRACTICE (Infrastructure as a Service)
 - Launch a Virtual Machine (Linux or Windows)
 - 1. Azure Platform:
 - 1. Go to Azure Portal
 - 2. Create a Virtual Machine
 - 3. Select Ubuntu or Windows
 - 4. Choose B1s (free tier)

- laaS PRACTICE (Infrastructure as a Service)
 - Launch a Virtual Machine (Linux or Windows)
 - 1. GCP Platform:
 - 1. Go to Google Cloud Console
 - 2. Compute Engine > VM instances
 - 3. Create Instance
 - 4. Choose OS, region, machine type
 - 5. SSH via browser

- PaaS PRACTICE (Platform as a Service)
 - Deploy a simple Python or Node.js web app
 - 1. AWS Platform:
 - 1. Go to Elastic Beanstalk
 - 2. Create new application
 - 3. Upload a .zip with your app (Flask, Node.js)
 - 4. Let AWS auto-deploy

- PaaS PRACTICE (Platform as a Service)
 - Deploy a simple Python or Node.js web app
 - 1. Azure Platform:
 - 1. Azure Portal > App Services
 - 2. Create Web App
 - 3. Choose Node.js, Python, .NET
 - 4. Use GitHub Actions or local deployment

- PaaS PRACTICE (Platform as a Service)
 - Deploy a simple Python or Node.js web app
 - 1. GCP Platform:
 - 1. Install Cloud SDK
 - 2. Create app.yaml file
 - 3. Deploy with gcloud app deploy
 - 4. App runs on Google App Engine

SaaS PRACTICE (Software as a Service)

Use existing cloud SaaS tools for business

AWS Platform:

- 1. Amazon WorkMail (business email)
- 2. AWS Honeycode (no-code apps)
- 3. Amazon QuickSight (BI dashboards)

SaaS PRACTICE (Software as a Service)

Use existing cloud SaaS tools for business

Azure Platform:

- 1. Microsoft 365 (Excel, Word, Teams)
- 2. Power BI
- 3. Dynamics 365 (CRM/ERP)

SaaS PRACTICE (Software as a Service)

Use existing cloud SaaS tools for business

GCP Platform:

- 1. Google Workspace (Docs, Sheets, Gmail)
- 2. Looker Studio (BI tool)

Deployment Model

- A deployment model defines how and where the cloud infrastructure is hosted and who has access to it.
- There are four common types:
 - 1. Public Cloud
 - 2. Private Cloud
 - 3. Hybrid Cloud
 - 4. Community Cloud

Deployment Model

1. Public Cloud

A public cloud is owned and operated by third-party providers like AWS, Azure, or Google Cloud. Resources are shared among multiple customers.

Examples:

- Google Cloud Platform (GCP)
- Amazon Web Services (AWS)
- Microsoft Azure

Deployment Model

2. Private Cloud

A private cloud is used exclusively by one organization.
It can be hosted on-premises or by a third-party
provider.

• Examples:

- VMware vCloud
- OpenStack
- Azure Stack (for hybrid)

Deployment Model

3. Hybrid Cloud

A **hybrid cloud** combines public and private clouds, allowing **data and applications to move between them**.

- Examples:
- Azure + Azure Stack
- AWS + On-premises VMware
- Google Anthos

Deployment Model

4. Community Cloud

A **community cloud** is shared by **organizations with similar goals**, such as security, compliance, or performance..

- Examples:
- Cloud for healthcare institutions
- Government agencies sharing infrastructure

Real-World Scenario Summary

Organization	Best Model	Reason
Startup	Public Cloud	Low cost and fast deployment
Government Agency	Private Cloud	High security, compliance needs
E-commerce Company	Hybrid Cloud	Customer data in private, website public
Medical Research	Community Cloud	Shared tools and data, compliance

- 1. Public Cloud: Shared, scalable, less secure
- **2. Private Cloud**: Secure, expensive, customizable
- 3. Hybrid Cloud: Best of both, complex
- 4. Community Cloud: Shared with similar users