

University of Biskra 2024-2025 Building Physics LEVEL: 1 YEAR BACHELOR SPECIALTY: COP

> COURS 06 ELECTRICITY

University of Biskra

2024-2025

Ohm's law:

U = R. I is an equation that relates voltage (U), resistance (R), and current (I).

Kirchhoff's laws :

Kirchhoff's laws refer to two fundamental laws in electrical circuit analysis:

Kirchhoff's current law (KCL) states that the total current entering a **junction** in an electrical circuit **must be equal** to the total current leaving the junction.

Kirchhoff's voltage law (KVL) states that the total voltage around any **closed loop** in an electrical circuit must be zero.

UG-UL1-UL2=0

Exercice n°1:

Given that the voltage across lamp L1 is equal to 4V and UG= 10V.

Calculate the voltages across lamps L2 and L3.

Solution :

Exercice n°1:

We apply the conservation of potential (the second Kirchhoff law KVL) to the circuit loop **ABCDEFA**.

For the first loop **ABEF**:

the first **Kirchhoff law** implies that:

*UG-UL1-UL3=*0 So: *UL3=*10-4=6*V*

For the second loop BCDE:

The first Kirchhoff law implies that:

*UL*3-*UL*2=0

This implies that:

UL3=UL2

So: *UL*2=6*V*

1

Exercice n°2:

we have the following circuit:

- From F to A, we have a battery P1 of 10 V, with an internal resistance of 0.5 Ω, in the direction of current i1.
- From A to B, there is a resistance R1 of 2.5 Ω through which current i1 flows.
- From B to C, there is a battery P2 causing a voltage drop of 1 V, with an internal resistance of 0.5 Ω, in the direction of current i2.
- From C to D, there is a resistance R2 of 1.5Ω .
- From B to E, there is a battery P3 of 3 V with an internal resistance of 0.5 Ω.
 Additionally, there is a resistance R3 of 1.5 Ω through which current i3 flows.

Find the values of the two currents i1 and i2, knowing that the current intensity i3 is equal to 0.5 A.

Solution :

Exercice n°2:

According to the first Kirchhoff law (node law), we have: $\sum Is = \sum Ie$ Where:

- *Is*: currents leaving the node in amperes (A)
- *Ie*: currents entering the node in amperes (A)

This law implies: i1=i2+i3

According to **Ohm's law**, we also have: *U*=*R*·*I* Where:

- *U*: voltage or potential in volts (V)
- *R*: resistance in ohms (Ω)
- *I*: current intensity in amperes (A)

Then, we apply the conservation of potential in the circuit loop ABCDA according to the second Kirchhoff law (loop law),

In this example, we observe two loops: ABEFA and BCDEB.

From reading the data of the first loop **ABEF**, we have:

UG-0.5*i*1-2.5*i*1-0.5*i*3-3-1.5*i*3=0 *UG*-(3*i*1)-(2*i*3)-3=0 Substituting *UG* with 10V and *i*3 *with*

0.5A, we obtain:

-3i1 = -6 So: i1 = 2A

From reading the data of the second loop **BCDE**, we can deduce that: 1.5*i*3+3+0.5*i*3-1-0.5*i*2-1.5*i*2=0 Thus: 2*i*3-2*i*2+2=0 Substituting *i*3 with 0.5A, we get: *i*2=1.5*A*

University of Biskra 2024-2025

Building Physics LEVEL: 1 YEAR BACHELOR

SPECIALTY: COP

Merci pour

votre Attention

