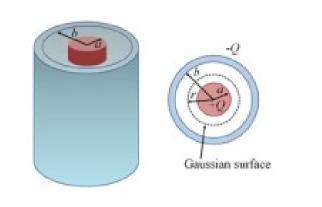
Series 2

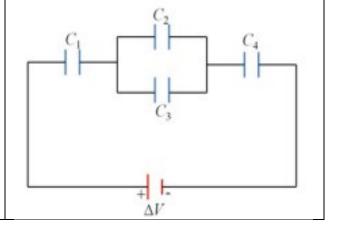

Exercise 1:

A conducting sphere of radius R carries a net positive charge 2Q. A conducting spherical shell of inner radius R_1 ($R_1 > R$) and outer radius R_2 carries a net negative charge -Q. This shell is concentric with the conducting sphere.

- **a-** Determine the distribution of the electric charges on conductors (conducting spherical and conducting spherical shell).
- **b-** Determine the electric field strength and electric potential in all regions.

Exercise 2:

Consider a solid cylindrical shape conductor with radius a and charge Q, which is coaxial with a cylindrical shell of negligible thickness, radius b > a, and opposite charge -Q, as shown in Fig. Find the capacitance of this cylindrical capacitor if its length is ℓ .



Module: Physics 2

Exercise 3:

Consider the electric circuit of four capacitors C_1 = 1.0 pF, C_2 = 0.5 pF, C_3 = 1.5 pF and C_4 = 2.0 pF connected to a battery of ΔV = 2.0 V, as shown in Fig.

 Calculate the charge stored in each capacitor and the voltage across capacitors.

