Series 1

Exercise 1:

Consider the three point charges $q_1 = +2 \mu C$, $q_2 = -5 \mu C$, and $q_3 = +8 \mu C$ that are shown in Fig. 1.

- a- Find the resultant force exerted on the charge q_2 by the two charges q_1 and q_3 .
- b- In a different layout (see Fig. 2), q_2 experiences a resultant force of zero. Find the position of q_2 and find the magnitude of each force exerted on q_2 .

Exercise 2:

Consider a configuration in space of three point charges at the corners of a right triangle. Their charges are $q_1=q_3=5.0~\mu\text{C},~q_2=-2.0~\mu\text{C},$ and a=0.10~m, as shown in Fig. 3.

- a- Find the resultant force vector exerted on q₃.
- b- Find the resultant force vector exerted on q_2 .

Module: Physics 2

Fig. 3

Exercise 3:

Four point charges $q_1 = q_2 = Q$ and $q_3 = q_4 = -Q$, where $Q = \sqrt{2} \mu C$, are placed at the four corners of a square of side a = 0.4 m, see Fig. 4.

- a- Find the electric field vector at the center *P* of the square.
- b- What is the total electric potential created by these charges at the point P?

Module: Physics 2

Exercise 4:

A charge q_1 = 7.0 μ C is located at the origin, and a second charge q_2 = -5.0 μ C is located on the x-axis, 0.30 m from the origin .

- a- What is the electric field at the point P with coordinates (0, 0.40) m?
- b- What is the total electric potential created by these charges at the point P?
- c- A charge Q3 of $3.0 \,\mu\text{C}$ is placed at point P, deduce the force vector acting on this charge.
- **d-** What is the potential energy change of a charge Q_3 .

Exercise 5:

A proton and an electron separated by $2 \times 10-10$ m form an electric dipole. calculate the electric field on the x-axis at a distance $20 \times 10-10$ m to the right of the dipole's center.

Exercise 6:

Find the electric flux through a sphere of radius r enclosing at its center: (a) a positive charge q, and (b) a negative charge –q.

Exercise 7:

A solid sphere of radius R has a uniform volume charge density ρ and carries a total positive charge Q. Find and sketch the electric field at any distance r away from the sphere's center.

Module: Physics 2

Exercise 8:

A thin spherical shell of radius R has a total positive charge Q distributed uniformly over its surface. Find the electric field inside and outside the shell.