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Course Program:  Formal Languages

1- Introduction to formal logic

2- Introduction to languages 

3- Typology of grammars 

4- Regular languages (Type 3)

     a- Regular grammars 

     b- Finite state automata 

     c- Regular expressions 

5- Algebraic languages ​​(free context) (Type 2)

    a- Transformation of grammars (empty word, recursion, ..) 

    b- Chomsky's Grammar 

    c- Greibach's Grammar 

    d- pushdown automata 

6- Type 1: Contextual languages ​​and linear terminal automata 

7- Type 0 languages ​​and Turring machines 
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Motivation of the course

The objective of this course is to introduce the theory of formal languages.

Languages ​​allow humans to exchange information and ideas and to

communicate with machines.

The languages ​​used between humans are called 'natural languages', they

are usually informal and ambiguous and require interpretation by a human

brain to be interpreted correctly.

The languages ​​created by humans to communicate with the machine are the

formal languages or artificial languages. They must be formalized and

unambiguous in order to be interpreted by a machine, this is the goal of this

course.
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Chapter 1:

 Introduction to formal logic 
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Chapter  1: Introduction to formal logic 

1. Definition of formal systems

A formal system is a set of data which makes it possible to manipulate a set of 

symbols by considering only their syntax (structure) without taking into account 

their semantics (meaning, interpretation).

A formal system consists of a syntax:

1. A finite alphabet of symbols

2. A formula construction process for describing well-formed formulas of 

this system (language).

Example:     An alphabet V= { a, b, c }

The well-formed formulas: sequence of letters of V containing the letter a only 

one time, and the letter c only one time   and  b is before c
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Chapter  1: Introduction to formal logic 

2- Introduction to the theory of languages (formal languages):

The language theory defines programming languages, but compilation 

transforms programs written in these languages ​​into machine code.

The source program is transformed into:

1.absolute machine language (directly executable)

2.translatable machine language (requires linking)

3.assembly language (requires assembler)

4.high-level language (requires a compiler)

The basic structure for the theory of languages ​​is the monoid (is a structure 

equipped with an operation)
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Chapter  1: Introduction to formal logic 

A language is defined on a set called vocabulary (characters or symbols)  is a 

subset of finite strings of characters.

A language is defined by a grammar.

Automata are symbolic machines validating the membership of a given 

string in the language it describes (all these notions will be studied in the 

following chapters.

1.finite state automata  ( type 3)

2.Pushdown  automata (type 2)

3.linear terminal automata (type 1)

4.Turing's machines (type 0)
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Chapter  1: Introduction to formal logic 

3- Monoid structure:

A monoid is a structure with the  composition law is associative. 

Associativity: The operation must be associative, meaning that for any elements 

a, b, and c in the set, (a * b) * c = a * (b * c).

We call free monoid any monoid having an identity element.

Identity element: There must exist an element in the set, called the identity 

element, such that for any element a in the set, a * identity = identity * a = a.

The example that interests us in our course ​​is the set of finite character strings on 

a finite vocabulary, this set is provided with the operation of concatenation

which is associative and which has an identity element, the empty string
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Chapter  1: Introduction to formal logic 

3.1 Vocabulary

A vocabulary V or alphabet is a finite set of letters or symbols called letters 

(letters, numbers or other symbols )

Examples:

1) V = { a1, a2,…,an) V: the alphabet ai: the letters

2) V= { 1 } one-letter alphabet

3) V= { 0, 1} binary alphabet

4) V ={ ., - , / } Morse code for transmission

5) V = { 0,1,…9,a,b,…z } any alphabet
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Chapter  1: Introduction to formal logic 

3.2  Monoide  V+

 We call monoid V+ the set of all the strings of non-empty finite lengths defined on 

V. These strings  are called words and the set V+ is infinite.

In other words V+ is the set of words of length greater than or equal to 1 that can be 

constructed from the alphabet V

Exemple:

V= { a, b }

V+ = { a,b,aa,bb,ab,ba,bb,aaa,…     }
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Chapter  1: Introduction to formal logic 

3.3 Concatenation operation

The concatenation operation consists in juxtaposing two words in order to obtain a 

new word. It is  associative but not commutative operation. 

x, y   Є   V+      x and  y are two words

x= x1.x2…xk         /    xi Є V 

y = y1.y2….yp      /     yi Є V

x.y = x1.x2…xk y1.y2….yp

(x.y).z = x.(y.z)               .  Is  associative

x.y ≠ y.x                          . is not commutative
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Chapter  1: Introduction to formal logic 

3.4 Free Monoïde V*

The concatenation operation admits an identity element which is the empty string(  

length equal  to zero ) and denoted by ε,          x.ε = ε.x = x

We can define   V* = V+ U {ε}

3.5 Word length  

The length of a word x which is generally noted |x| matches each word with the 

number of symbols it contains.

We define a particular word called empty word, this word is not composed of any 

character, its length is therefore zero ( | ε | = 0 ).



28/04/2025 07:21 Formal languages 14

Chapter  1: Introduction to formal logic 

3.5 Subword 

We say that y Є V* is a subword (or factor) of x Є V* if there exist finite 

words u, v Є V* such that x = u y v and |y| ≤ |x|

If x = y v we say that y is left factor or prefix of x

If x= v y we say that y is right factor or suffix of x

Example 

V= { a, b }   

x = abbbbaa   and   y = bbb        so   x = abyaa           subword

x = bbbaa       and   y = bbb        so   x = yaa               left factor



Chapter 2: 

Introduction to  

languages
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Chapter 2: Introduction to languages

1. Définition 

A language on a vocabulary V is a subset of the words defined over V, in 

other words a language is a part of the free monoid V* .

L ⊂ V* 

We can differentiate between the empty language ( L = Ø ) and the language 

containing the only empty word ( L = {ε } )

Example : 

V= { a, b }

V* = { ε ,a,b,aa,bb,ab,ba,bb,aaa,…     }

L = { aa, bb, ab, ba }     the set of words on V* of length equal to 2
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Chapter 2: Introduction to languages

2. Syntax of a language 

A sentence is  well-formed if and only if it belongs to the language. 

The syntax of a language is the set of constraints( rules ) which make it possible to 

define the sentences of this language.

Example: A simple measurement language can be defined by the following 

constraints:

• measure followed by an operator and a measure

• a measure is  the number 1 followed by a unit

• Units are : cm , liter, km

• The opérateur is  +
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Chapter 2: Introduction to languages

2. Syntax of a language 

• measure followed by an operator and a measure

• a measure is  the number 1 followed by a unit

• Units are : cm , litre, km

• The operator is  +

The well-formed sentences are:

1cm + 1cm            1cm + 1liter                    1cm + 1km

1liter + 1cm          1liter + 1liter                   1liter +  1km

1km + 1cm            1km + 1liter                  1km + 1km
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Chapter 2: Introduction to languages

3. Sémantic of a language

The semantics of a language is a set of constraints on this language.

Among the well-formed sentences in the measurement example, only a few are 

semantically correct, those whose units are of the same type (measure or weight). 

These sentences are:

1cm + 1cm  1cm + 1km  1liter  + 1liter 

1km + 1cm  1km + 1km
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Chapter 2: Introduction to languages

4. Opérations on languages

As we have seen, languages ​​are sets of words. The usual operations concerning sets 

such as union, intersection and complementation are applicable to languages.

Consider two languages ​​L1 and L2 respectively defined on the two alphabets V1 and 

V2.

a) Union

The union of L1 and L2 is the language defined on V1 ∪ V2 containing all the words 

which are either contained on L1 or contained on L2:

L1 ∪ L2 = { x / x Є L1  or   x Є L2  } 

b) Intersection 

The intersection  of L1 and L2 is the language defined on V1 ∩ V2 containing all the 

words which contained on L1 and on L2:

L1 ∩ L2 = { x / x Є L1  and   x Є L2  }



28/04/2025 07:21 Formal languages 21

Chapter 2: Introduction to languages

4. Opérations on languages

c) Complementation

The complement of L1 is the language defined on V1 containing all the words which 

are not in L1.

C(L1) = { x / x ∉ L1  }

d) Difference

The difference of L1 and L2 is the language defined on L1 containing all the words of 

L1 which are not in L2.

L1 - L2 = { x / x Є L1  and   x ∉ L2  }
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Chapter 2: Introduction to languages

4. Opérations on languages

e) Concatenation 

The concatenation of L1 and L2 is the language defined on V1 ∪ V2 containing all the 

words made up of a word from L1 followed by a word from L2.

L1 L2 = { xy / x Є L1  and   y Є L2  }

The concatenation operation is not commutative    L1 L2 ≠    L2 L1

f) Power

The power of a language is defined by: 

L0= {ε}            Ln+1 = Ln L
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Chapter 2: Introduction to languages

4. Opérations on languages

g) Kleen closure 

The iterative closure of L or Kleen closure (iterate of L,  or Kleen star ) is the set 

of words formed by a finite concatenation of words of L.

L*={x / ∃ k ≥ 0   and   x1, x2,…,xk Є L  such as    x= x1x2…xk  }

L* = { ε } ∪ L ∪ L2 ∪ L3 … ∪ Ln ∪ …

We can similarly define the positive Kleene closure of L by:

L+=⋃i≥1L
i =   L ∪ L2 ∪ L3 … ∪ Ln ∪ …
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Chapter 2: Introduction to languages

4. Opérations on languages

h) Reversal (  R  or ~ )

The reversal of a string w = x1x2…xk the string with the symbols written in 

reverse order, wR= xkxk-1….x2x1   

Formally,  

LR = { xR /  x Є L  }

a)  if w=ε   , then εR=ε  and

b) if w= ax for a symbol a ∈V and a string x∈V∗ , then (ax)R=xRa 

If w = wR   , we say w is a palindrome



28/04/2025 07:21 Formal languages 25

Chapter 2: Introduction to languages

4. Opérations on languages

i) Remarks: 

L+ = L L*

L*L* = L*

(LR  )R= L

(L* )R= L*

( L1 L2 )
R = L2

R L1
R   
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Chapter 2: Introduction to languages
Examples : 

Let  L1, L2 and L3 be three languages ​​defined by:

L1 = {ε, aa},    L2 = {ai bj  /i, j ≥ 0}     and       L3 = {ab, b}. 

Calcule : 

L1.L2,     L1.L3,      L1 ∪ L2,    L2 ∩ L3,   L1
10 ,   L1

∗  ,    L2
R  

Solutions : 

• L1.L2 = L2 ; 

• L1.L3 = {ab, b, aaab, aab} ; 

• L1 ∪ L2 = L2 ; 

• L2 ∩ L3 = L3 ;

• L1
10= {a 2n   /   10 ≥ n ≥ 0} ; 

•  L2 
R  = {b i a j/i, j ≥ 0}.

Find:

L1 = {w ∈ {a,b}*    /   |w|a= |w|b  }



Chapter 3:

 Typology of grammars 
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Chapter 3: Typology of  grammars

1- Definition of a grammar

With a grammar,  we describe in a generic and productive way the well-formed 

expressions of a language.

A grammar is a formal system defined by an axiom and rules called production 

rules.

The sentences are derived from the axiom and by successive application of the 

rules. 

The rules of the grammar are constructed with effective symbols called terminal 

symbols and tool symbols called non-terminal symbols, which denote pieces of 

correct strings during language construction.

Axiom ,  rules,    terminal symbols,   non-terminal-symbols
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Chapter 3: Typology of  grammars

Example1:  Consider the following sentence:    - 19.5 10-3

L: set of numbers of this form (decimal numbers)

ND: A decimal number

We can form a grammar that generates the set L of decimal numbers as follows:

ND → S E P E F 

E → C E 

E → C

C → 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

P → .

F → 10 S E

S → + / - 
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Chapter 3: Typology of  grammars

Example 2:  English grammar :

sentence → <subject> <verb-phrase> <object>

subject → This /  Computers /  I

verb-phrase → <adverb> <verb>  / <verb>

adverb → never

verb → is /  run /  am  / eat  / tell

object → the <noun>  / a <noun>  / <noun>

noun → university  / world  / cheese  / mouse /  lies

Using these rules, we  can derive simple sentences like:

This is the university

Computers run the world

the cheese eat the mouse

I never tell lies.
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Chapter 3: Typology of  grammars

Example 2:  English grammar :

Derivation of the first sentence :

<sentence> → <subject> <verb-phrase> <object>

→ This <verb-phrase> <object>

→ This <verb> <object>

→ This is <object>

→ This is the <noun>

→ This is the university



28/04/2025 07:21
Formal languages

32

Chapter 3: Typology of  grammars

A decimal number is defined by a derivation tree
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Chapter 3: Typology of  grammars

Concepts to be defined:

1.Decimal number: ND is the root of the derivation tree

2.Syntactic elements: (ND, S, E, P, F, C) Non-terminal 

vocabulary

3.Initial alphabet: (0,1,2,3,4,5,6,7,8,9,+,-,.,10) Terminal 

vocabulary

4.Set of rules: It is the articulation of the different elements 

between them.
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Chapter 3: Typology of  grammars

2- Formal definition of a grammar

A grammar is a quadruple G = ( Vt, Vn, S, R ) where

• Vt: is the terminal vocabulary.   Is a non-empty finite set.

• Vn: is the non-terminal vocabulary, the set of symbols which do not appear in the 

generated words, but which are used during the generation. Is a non-empty finite 

set.

• S: is an element of Vn, is the starting symbol or axiom. It is from this symbol that 

we will begin the generation of words using the rules of the grammar.
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Chapter 3: Typology of  grammars

2- Formal definition of a grammar

A grammar is a quadruple G = ( Vt, Vn, S, R ) where

• R: is a set of so-called rewriting or production rules of the form:

• u  →  v      such as    u Є ( Vt ∪ Vn)
+   and  v Є ( Vt ∪ Vn)

*

• and    Vt ∩Vn  =  Ø 

Terminology :   

• A sequence of terminal and non-terminal symbols ( an element of ( Vt ∪ Vn)* is 

called a form.

• A rule u → v such that    v Є Vt*    is called a terminal rule.
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Chapter 3: Typology of  grammars

3- Grammar derivation 

• Direct derivation :    "====> "   

Let a rule of  R   u → v   and let  x, y two words of  ( Vt ∪ Vn)*  

we say that y derives directly from x in G ( x ===> y ) if and only if

x = α u β     and        y = α v β    α, β  Є ( Vt ∪ Vn)* 

• Indirect derivation:    "==*==> " 

 We say that y derives indirectly from  x in  G ( x ==*=> y ) if and only if 

it exists  a finite sequence  W0,W1, …, Wn  such as  W0 = x     Wn = y   

and  Wi ====> Wi+1      0 ≤ i  ≤ n 

x ===> W1 ….      Wn-1 ====> y
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Chapter 3: Typology of  grammars

• example: 

4- Language generated by a grammar

The language defined, or generated, by a grammar is the set of words that can be  

obtained from the starting symbol( axiom )  by applying the rules of the grammar. 

More formally is the set of terminal derivations of the  axiom.

G = ( Vt, Vn, S, R )    L(G) = { x /  x Є Vt*    and    S ==*==> x  }



28/04/2025 07:21 Formal languages 38

Chapter 3: Typology of  grammars

Important remark:

A grammar defines a single language. On the other hand, a 

language can be generated by several different grammars. 

These two grammars are equivalent.

We say that G1 and G2 are equivalent if and only if L(G1) = L(G2)
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Chapter 3: Typology of  grammars

Important remark: equivalent grammars

Let the grammar  G1 = (  {a,b}, {S,X} , S , {S→aXa , X→bX| є}  ) 

➔  L(G1) ={ a𝑏∗a }.  Unique language

But the  language L ={ a𝑏∗a } can be generated by these 3 different 

grammars:

G1 = ({a,b}, {S,X} , S , {S→aXa , X→bX| є }) ;

G2 = ({a,b}, {S,X ,Y} , S , {S→aY , Y→Xa , X→bX| V}) ;

G3 = ({a,b}, {S,X} , S , {S→aX , X→bX|a }) ;

L(G1)=L(G2)=L(G3)    ➔  G1 , G2, G3    are equivalent,



28/04/2025 07:21 Formal languages 40

Chapter 3: Typology of  grammars
Examples: languages construction

Find the languages ​​generated by these grammars:

1.  G1=( {a,b}, {S}, S, R) 

       R =  (    S → a S b    ,        S → ab    )

2.  G2=( {_/ , \_}, {S, A, U, V}, S, R ) 

R = (  S → U A V          S → U V               A → V S U 

A → V U              U → _/                  V → \_   )
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Chapter 3: Typology of  grammars

3. G3=( {a,b}, {S, A, B}, S, R) 

R = ( S →AS         S →Ab            A →A B               B→ a A )

4. G4=( {a}, {S}, S, R) 

R= (   S →A S A         S → є A → S A        A → A S a      ) 

Examples of  languages :

• L1 = {ab, a, ba, bb} ;

• L2 = {ω ∈ {a, b}∗ / |ω| > 3} ;

• L3 = {ω ∈ {a, b}∗ / |ω| ≡ 0 [5] } ; 
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Chapter 3: Typology of  grammars

L1 = {ab, a, ba, bb} 

 G=( {a,b}, {S, A, B}, S, R) 

R = ( S →aA S → b B A → b        A → є B → a    B → b  )

L2 = {ω ∈ {a, b}* /    |ω| > 3} 

G4=( {a,b}, {S,A,B}, S, R) 

R= (   S →A AAAB           A →  a / b               B →AB            B  → є ) 

L3 = {  ω ∈ {a, b}* / |ω| ≡ 0 [5] } or L3 = {  ω ∈ {a, b}* /  |ω| ≡ 0   mod 5    } 

R= (   S →A AAAAS           A →  a / b               S → є ) 
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Chapter 3: Typology of  grammars

5- Types of grammars 

By introducing more or less restrictive criteria on the production rules, we obtain 

hierarchical classes of grammars, ordered by inclusion. The classification of 

grammars, defined in 1957 by Noam CHOMSKY, distinguishes the following 

four classes:

5.1- Grammar type 0 

Grammars without restriction on rules, 

so all grammars are type 0.

u → v         u Є ( Vn ∪ Vt )+ and v Є ( Vn ∪ Vt )*

Chomsky in 2017

Born in  1928 (age 97)

Philadelphia, Pennsylvania, U.S.
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Chapter 3: Typology of  grammars

5.2 Grammar type 1: 

a) context sensitive grammars

Type 1 grammars are also called context sensitive or context sensitive grammars. 

The grammar rules are of the form:

u A v → u W v

A Є Vn ,   W Є ( Vn ∪ Vt )+ and u,v Є ( Vn ∪ Vt )*

In other words, the non-terminal symbol A is replaced by the form W but if we 

have the contexts u on the left and v on the right. 

We restrict the rules by forcing the right side  to be at least as long as the left side.  

| u A v| ≤ |u W v |
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Chapter 3: Typology of  grammars

5.2 Grammar type 1: 

a) context sensitive grammars

This forces the empty word to be excluded from the grammar.

But we accept    the rule   S → є   with this  condition : « the non terminal S does not 

exist in the right of each rule of the grammar

b) Monotone grammar ( not-decreasing grammar )

     α→β           where                ∣α∣  ≤   ∣β∣

Remark: All context sensitive grammars are monotones but  monotone grammars 

are not necessary context sensitive grammars
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Chapter 3: Typology of  grammars

5.2 Grammar type 1: 

Grammar 1:  Monotone  and not context sensitive 

S → aSBc   

S → abc

cB → Bc     this rule not context sensitive 

bB → bb

Grammar 2:  Monotone  and context sensitive 

S → aSBC S → aBC CB → HB        HB→ HC         HC→ BC

aB→ ab       bB → bb         bC→ bc cC→ cc

Grammar 1 and grammar 2 are equivalent  have le same language 
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Chapter 3: Typology of  grammars
5.3- Grammar type 2: 

Type 2 grammars are also called context-free, algebraic or Chomsky 

grammars. It is the most widely used grammar in language theory and 

compilation.

The grammar rules are of the form:

A →W      

A Є Vn ,   W Є ( Vn ∪ Vt )*

In other words, the left member consists of a single non-terminal symbol.
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Chapter 3: Typology of  grammars

5.4- Grammar type 3:

Type 3 grammars are also called regular grammars on the right (respectively on 

the left), linear grammars.

The grammar rules are of one of these  02 forms:      A, B Є Vn    and   a Є Vt

Form1:            A → a B             Form2:     A → B a   

      or               A → a                or               A → a 

      or               A → є    or               A → є

The left member of each rule consists of a single non terminal symbol, and the right 

member consists of a terminal symbol possibly followed (respectively preceded) by 

a single non terminal.
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Chapter 3: Typology of  grammars

Examples:

G=( {a,b,c}, {S, A, B, C,D}, S, R) 

R1=  (S → ACaB        AB → AbBc       A → bcA     B → b    )

R2= (   S → ACaB       Bc → acB      CB → DB    aD → Db   )

R3= ( S → aAB    B → aAB     aA → aaA     bbAa → bbBa      A → bcA     B → є  )
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Chapter 3: Typology of  grammars

6- Language type:

Each type of grammar is associated with a type of language: 

Type 3 grammars generate regular languages, 

type 2 grammars generate context-free languages ​​

type 1 grammars generate contextual languages ​​

and type 0 grammars generate all "decidable" languages, in other words, 

all languages ​​that can be recognized in finite time by a machine.

Languages ​​that cannot be generated by a type 0 grammar are called 

"undecidable".
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Chapter 3: Typology of  grammars

Language type: 

These languages ​​are ordered by inclusion: the set of 

languages ​​generated by type n grammars is strictly included in that of 

type n-1 grammars (for n = 1,2,3).

Examples :

• a type 3 grammar is also type 2, 1, 0

• a type 2 grammar is also type 1, 0    but not type 3

• a type 1 grammar is also type 0
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Chapter 3: Typology of  grammars
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Each type of grammar is associated with a type of automata  which 

makes it possible to recognize the languages ​​of its class:

- regular languages ​​are recognized by finite automata

- context-free languages ​​are recognized by push down  automata

- Contextual languages ​​are recognized by linear bounded machines

- and type 0 languages ​​are recognized by Turing machines

The Turing machine is considered the most powerful model, where 

any language that cannot be processed by one Turing machine, 

cannot be processed by another machine.
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4.1 Regular grammar definition:

Type 3 grammars are also called regular grammars on the right 

(respectively on the left), linear grammars.

The grammar rules are of the form: 

            A → a B             (respectivement  A → B a )   

or                 A → a 

or                     A → є  

 A, B Є Vn    et  a Є Vt
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Regular languages ​​are languages ​​generated by regular grammars.

Regular grammars are used in the lexical analysis phase  of compilation.

Example:    

G=( {a,b}, {S,A}, S, R)

R=(      S → a S

             S→ bA

              A → a   )
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4.2 Automata definition      ( automata plural   or  automaton singular )

In formal language, we have two systems:

- The generation systems which are the grammars

- The recognition systems which are the automata

Automata is a virtual machines (programs), which takes  as input a string of 

symbols and performs a string recognition algorithm. 

If the algorithm terminates under certain conditions, the automata  accepts this 

string.

The language recognized by an automata  is the set of strings it accepts.

Fields of application:            compilation   and  real-time applications
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4.2 Automata definition (Fields of application )

Finite automata has several applications in many areas such as:

compiler design, special purpose hardware design, real-time applications 

,protocol specification,…

a) Compiler Design

Lexical analysis is an important phase of a compiler. A program such as a 

C program is scanned and the different tokens (constructs such as 

variables, keywords, numbers) in the program are identified. 
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4.2 Automata definition (Fields of application )

b) Vending Machines:

A vending machine is an automated machine that dispenses  numerous 

items such as cold drinks, snacks, etc. to sale automatically, after a buyer 

inserts currency or credit into the machine. 

Vending  machine  works on finite state automata to control the functions 

process.

c)Text Parsing:

Text parsing is a technique which is used to derive a text string using the

production rules of a grammar to check the acceptability of a string
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4.2 Automata definition (Fields of application )

d)Traffic Lights:

The optimization of traffic light controllers in a city is a  representation of 

handling the instructions of traffic rules. Its process depends on a  set of 

instruction works in a loop with switching among instruction to control 

traffic,

e)Video Games:

Video games levels represent the states of automata. In which a sequence 

of  instructions are followed by the players to accomplish the task
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4.3 Finite State Automata ( FSA)

4.3.1 Definition 

A  FSA is composed of a finite set of states (represented graphically by 

circles), a transition function describing the action that allows to pass 

from one state to another (these are the arrows),  an initial state (the 

state denoted by square) and one or more final states (denoted by 

triangles).
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4.3 Finite State Automata ( FSA)

4.3.1 Definition 

A  FSA is therefore a directed and valued  graph where the nodes correspond to the 

states and the values ​​of the arcs to the terminal symbols,

FSA  does  not use any memory to recognize a string.
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4.3.2 Formal definition 

A finite state automata  is a quintuplet:

A = ( Vt, Q, q0, f, F )  

•Vt : is the terminal vocabulary, non-empty finite set of symbols

•Q : is the state set of the automata, non-empty finite set

•q0 : The set Q contains a particular state q0 called initial state. q0∈Q

•F : The set Q contains a subset of particular states F called final states. F⊂Q

•f : is an application of  Q x Vt U { є } → Q  

The automata  stops on a final state or the complete reading of the input string.
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Representations of  a FSA

There are three main representations for a  FSA:

- The matrix representation,

- A directed and weighted  graph

- Or transition functions (relations)

a) Transition function

f    is the transition function of    A          f(q, a ) = q1

Indicates that if the automata  is in state q and it encounters the symbol a, it goes to 

state q1.   

Moreover for all q of Q    f(q, є) = q



28/04/2025 07:21 Formal languages 65

Chapter 4: Regular languages

Example:

Let  A be   the FSA  defined by the quintuplet  (Vt, Q, q0, f, F) such that:

Vt ={a, b}, 

Q= {q0, q1}, 

q0 : initial state

F= {q1} 

and we define the following transitions:

f(q0, a) = q0,       f(q0, b) = q1,           f(q1, b) = q1 
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b) Directed  Graph :

We represent a finite state automata by a directed and valued graph, whose arcs 

carry symbols of Vt and whose nodes carry the states.

state

initial  state 

final  state

Initial  and final state  
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Example:   From this graph, we can define the automata : (Vt, Q, q0, f, F) 

Vt={0,1}        Q={ S,A,B,C,Z }        q0= S           F= {Z}  

f(S,0)=S      f(S,1)=S       f(S,0) = A    f(S,1)= B   f(A,0)=C    f(B,1)=C   f(C,0)=C

f(C,1)=C     f(C,0)=Z    f(C,1)=Z

 

S 

0 

0 

0 

0 

0,1 
0,1 

0,1 A 

B 

C 

Z 
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c) Table of transitions (matrix):

Let  A be the FSA  defined by the quintuplet  (Vt, Q, q0, f, F) ) such that:

Vt ={a, b},    Q= {q0, q1},   q0 :  initial state    F= {q1} 

and we define the following transitions:       f(q0, a) = q0,         f(q0, b) = q1,               

f(q1, b) = q1 

The transition function can be represented by this matrix:

Vt

Q

a b

q0
q0 q1

q1 q1
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Language recognized by a finite state automata:

The language recognized by a finite state automata is the set of 

strings whose symbols lead from the initial state to one of its final 

states by a succession of transitions using all its symbols in order.
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Definition of a configuration 

The configuration of the FSA    A, at a certain time, is given by the current state of 

the FSA  and of the word which remains to be read:

(    current state,     word which remains to be read     ).

The initial configuration is (q0, ω) where q0 is the initial state of the FSA  and ω 

the word submitted to A (to be recognized).

The final configuration is given by (qf , ε) where qf is a final state and the empty 

word indicates that there is nothing left to read.

➔ (the word belongs to the language).



28/04/2025 07:21 Formal languages 71

Chapter 4: Regular languages

Definition of a direct derivation:

We say that a configuration (q1, aω) directly derives the configuration (q2, ω) 

if and only if f(q1, a) = q2 where f is the transition function, a∈ Vt and ω ∈ Vt*. 

We denote      (q1, aω) |= (q2, ω). 

Definition of an indirect derivation:

We say that a configuration (q, ω1) indirectly derives another configuration (p,ω2), 

if and only if there exist 0, 1 or several direct derivations which, from (q, ω1), lead 

to the configuration (p, ω2). 

We denote    (p, ω1) |=* (q, ω2).
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Definition of the language recognized by a FSA :

The language recognized by the FSA   A denoted L(A) is defined by:

L(A) = {   ω ∈ Vt* / (q0, ω) |=*   (qf , ε)    }    with    qf ∈ F 
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b

a

b

Simple example : 

The minimal string is  :   b

The language recognized by this   FSA   is:

L(A)= { an b bm /  n ≥ 0 ;  m ≥ 0  }
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Example 2:  Find the language recognized by this Automata

q1

q2

q3

q5

q4

a

a

a

bb

b

b

Note:  the state 4 is a final state and at the same time is an internal 

state
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The possible paths:  

- q1 q2  q5  q4

- q1 q2  q3  q4

- q1 q2  q3  q2  q5 q4

- q1 q2  q3  q4  q5 q4

The minimum strings: 

- aab      et  abb 

The recognized strings: 

-   a ( aa )* b  b ( bb )*       -             a a ( aa )* b ( bb )*

L( A ) = { a ( aa )* b  b ( bb )* } U { a a ( aa )* b ( bb )* }
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Remarks:

1- A finite state automata  recognizes a single language, but the same language 

can be recognized by several automata,

2- We say that two finite state automata A1 and A2 are equivalent if and only if 

these two automata recognize the same language. L(A1)= L(A2)

Example of automata construction: 

L1= { w/ w ∈  {a,b}*   et   |w|  ≡ 0  [2] } 

q0
q1

a, b

a, b
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L2= { w/ w ∈  N   and    w ≡ 0  [2] }  

 

q0

q1

q2

1,2,3,4,5,6,7,8,9

0,2,4,6,8

0,2,4,6,8

0,1,2,3,4,5,6,7,8,9
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L3= { ai bj ck  /  i ≥ 1 ,   k ≥ 1  and   j > 1 }

  

     L4= { ε }

a

a

b b

c

b

c
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L5= { ai b2 ck  /  i ≥ 0  and  k > 0 }

  
a

b

b c

c
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4.4 Variants of finite state automata

a) Deterministic Finite State Automata (DFSA)

A deterministic finite state automata is an automata such that its transition function 

is a function.  For any state and for any symbol, there exists at most one state in 

which the automata can pass.

b) Nondeterministic finite state automata (NDFSA)

A nondeterministic finite state automata is an automata such that there exists at least 

one pair formed by a state and a symbol, which admits more than one image by the 

transition function. The automata must make choices to progress.
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Example:

This automata  is non-deterministic: for the same state and the same symbol we 

have two states, we find more than one value in a cell of the transition table 

f(q0,b) = q0     et   f(q0,b) = q1

f(q4,b) = q0     et   f(q4,b) = q1

q0 q1

q2

q4

a,b

b

b

b

b

a
b

a b

q0 q0 q0, q1

q1 q2 q1

q2 q4

q4 q0, q1
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The problem of  the NDFSA :

These automata analyze the strings  more slowly than deterministic automata, we 

must make choices to progress and make feedback afterwards in the case  of failure

c) Generalized finite state automata GFSA)

- Transitions can be generated by words instead of symbols.

- The transitions caused by the empty word ( ε ) are called spontaneous or empty 

transitions (ε-transition). It is a change of state without reading.

abb
a ba
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d) Complete state machine(CSM)

An automata is called complete if it is deterministic and for each state and for each 

symbol there is exactly one transition..

q0 q1

q2

q4

a

b

b

a

a,b

a
b

a b

q0 q0 q1

q1 q2 q1

q2 q4 q4

q4 q1 q0
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4.5 Transformation of a generalized automata  into a simple automata

Any generalized finite state automata admits an equivalent simple automata by adding 

additional transitions.

A B
C

a ab

A
B C

a a b

X
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4.6 Transformation from a non-deterministic FSA  to a deterministic 

automata

To any non-deterministic finite state automata  corresponds an equivalent 

deterministic finite state automata and vice versa.

The transition from a non-deterministic automata to a deterministic automata is 

done according to the following algorithm:

The goal  is to find the elements of the deterministic automata.

A=(Vt, Q, q0, f, F )      non-déterministic automata   given   

A’=( V’t, Q’, q’0, f’, F’)     déterministic automata accepting the same language
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1)V’t = Vt

2)q’0 = {q0 }

3) Q' is included in the set of combinations of Q,   P( Q) 

4) F’ = B Є Q’    si  B ∩ F  ≠  θ    ==>  B  Є F’

5) f’ :       f’(B, x) =  M 

            let    B= { q1, q2, …, qi, …,qk}

 f(q1, x) = M1  …..      f(qi, x) = Mi , ...., f(qk, x) = Mk

Mi  Є Q’     Mi  included in  P( Q)

 M =  U Mi       1≤ i ≤ k

 6) Remove empty transitions.
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Example: find the deterministic automata 

The construction of the new transitions table  is done as follows :
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0 1

{S } =  q0 {S,B} q1 {S,A}    q2

{S,B} = q1 {S,B,C} q3 {S,A}    q2

{S,A} = q2 {S,B} q1 {S,A,C}    q4   

{S,B,C} = q3 {S,B,C,Z} q5 {S,A,C,Z}    q6

{S,A,C}= q4 {S,B,C,Z} q5 {S,A,C,Z}    q6

{S,B,C,Z} = q5 {S,B,C,Z} q5 {S,A,C,Z}    q6

{S,A,C,Z} = q6 {S,B,C,Z} q5 {S,A,C,Z}    q6  

New transition table of the deterministic automata

Initial state : q0

F= { q5, q6 }               Z  Є q5        and   Z Є  q6
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q0

q1 q3

q2 q4

q5

q6

0

The FSA   deterministic equivalent

1

1

0
0

0
0

0

1
1

11

0

1
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4.6  Elimination of empty transitions

Removing these transitions gives us a simple FSA , to do this we must first remove the 

transitions by ε:

                                          if   qj ∈ F        then        qi ∈ F

    δ(qi, ε) = qj {                     and 

                                      ∀a ∈ Vt  : if  δ(qj, a) = qk      then     δ(qi, a) = qk

An example of this transformation is shown on the following FSA:
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q0
q3

q5

q2

q4

q1

a

a

a

a

b

bb

ε

b

We have a single ε transition f(q2, ε) = q4 , q4 final state so q2 becomes final state and 

we have 3 transitions f(q4,a) = q0 , f(q4,b)= q1 and f(q4,b) = q4, so we add 3 

transitions replacing q4 by q2
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q0
q3

q5

q2

q4

q1

a

a

a

a

b

bb

b

b

We remove the empty transition and replace it with these transitions: f(q2,a) = q0 

,    f(q2,b)= q1    and      f(q2,b) = q4

b

a
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4.7 Transition from regular grammar to FSA

For any regular grammar G = (Vt, Vn, S, R), there exists a FSA 

A = ​​(Vt, Q, q0,f, F) such that    L(G)=L(A). 

The passage is done by associating a transition to each rule of the grammar. 

The built automata  is not automatically deterministic.

Let G = (Vt, Vn, S, R), a regular grammar,   the  question is how to find  a FSA

A = (Vt', Q, q0,f, F) such that L(G)=L(A)



28/04/2025 07:21 Formal languages 94

Chapter 4: Regular languages

4.7 Transition from regular grammar to FSA

A = (Vt', Q, q0,f, F) such that       L(G)=L(A)

1) Vt’ = Vt 

2) Q = Vn∪ qf       such that        qf ∈ F 

3)  q0 = S   

4)  F = {qf}. 

5) For each rule: A → a B,       we associate the transition       f(A, a) = B.  

For each rule of the form   A → a,     we associate the transition  f(A, a) = qf.

6) If the grammar has the rule S → ε   then S   becomes a final state F= { qf, S}
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4.7 Example

Let’s find the FSA  equivalent to the following grammar:

G=( {a,b,c}, {S,A,B},  S,  R )

R = ( S → aS | bA        

A → bA | cB | c

B → cB | c   )

Q= { S,A,B, qf}

F={qf}

initial state :  S

S

A

B

qf
a

c

c

b

b c
c
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4.8 Transition from FSA to regular grammar: 

For any FSA  A = ​​(Vt, Q, q0,f, F) there exists an equivalent regular grammar 

G = (Vt', Vn, S, R) such that L(G)=L(A).

The transition is done as follows:

1) Vt’ = Vt                2)    Vn =  Q                3)    q0 =  S

               if    f(q, a ) = p  ∈ A           then      q → a p      ∈ R 

4)           If    f(q, a ) =  qf ∈A         then     q → a          ∈ R 

if    q0 ∈ F                      then      q0 →   ε ∈ R 
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4.8 Example : Find the grammar equivalent to this automata: 

G=( {a,b},{S,A,B, C,D}, S, R )

R =   f(S,a) =  A    become     S → a A                    f(A,a) =  B    become     A → a B

f(A,b) =  C        become A → b C                    f(S,a) =  A    become     S → a A 

  f(B,a) =  A     become     B → a A                       f(B,b) =  D  (D internal) become     B → b D

  f(B,b) =  D  (D final ) become     B → b               f(D,b) =  C     become     D → b C 

  f(C,b) = D (D internal  become   C → b D     f(C,b) = D (D final) become   C → b  

The State S is an initial 

and final state at the same 

time, so we add the rule:

S → ε S

A
B

D

b

b

a

b
a

C

S

a

b
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4.9 Regular expressions

a) Definition : 

Regular expressions (RE) provide another method of defining regular languages. 

They are more practical than the other two systems (regular grammars and 

automata).

Each regular expression describes a set of terminal strings. 

The regular expression formalism uses 03 operations:

1. Concatenation

2. Closing noted * ( power )

3. The alternative noted + or / (choice between two expressions)
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4.9 Regular expressions

b) Formal definition: 

• ϕ is a regular expression which denotes (represents) the empty language 

• ε is a regular expression which denotes the language {ε}

• a (where a∈ Vt) is a regular expression which denotes the language {a}. 

Induction:

ε and a are regular expressions;

If e, e' are regular expressions then      e+e' ,    e.e',    e*     are regular expressions.

Remarks :

- The exponent has a higher priority than the concatenation which has a higher priority than 

the sum.

- Two regular expressions are  ε-equivalent if and only  they denote the same language.
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4.9 Regular expressions 

c) Examples : 

( a + b )*  =  { ε, a, b, aa, bb, ab, ba, aaa, bbb, aab, aba, …….. }  infinite language 

a*b + b*a = { b, ab, aab, aaab, aa….ab, a, ba, bba, bbba, bb…ba, …. }

ab*(c+ a) = ab*c + ab*a = { ac, abc, abbc, abbbc, ….., aa, aba, abba, abbba, ….}
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Regular 

Expressions

Regular Set

(0 + 10*) L = { 0, 1, 10, 100, 1000, 10000, … }

(0*10*) L = {1, 01, 10, 010, 0010, …}

(0 + ε)(1 + ε) L = {ε, 0, 1, 01}

(a+b)* Set of strings of a’s and b’s of any length including the null string. So L 

= { ε, a, b, aa , ab , bb , ba, aaa…….}

(a+b)*abb Set of strings of a’s and b’s ending with the string abb. So L = {abb, 

aabb, babb, aaabb, ababb, …………..}

(11)* Set consisting of even number of 1’s including empty string, So L= {ε, 

11, 1111, 111111, ……….}

(aa)*(bb)*b Set of strings consisting of even number of a’s followed by odd number 

of b’s , so L = {b, aab, aabbb, aabbbbb, aaaab, aaaabbb, …………..}

(aa + ab + ba + 

bb)*

String of a’s and b’s of even length can be obtained by concatenating any 

combination of the strings aa, ab, ba and bb including null, so L = {aa, 

ab, ba, bb, aaab, aaba, …………..}
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4.10 Transition from regular expression to regular grammar

0 ( 0 + 1)* 0

G=( {0 ,1},{S,A}, S, R )

R = (  S → 0 A        A → 0 A          A → 1 A            A → 0        )

( 0 + 1)* 0 (0 + 1) ( 0 + 1 )

G=( {a,b},{S,A, B }, S, R )

R = (  S → 0S / 1S         S → 0 A          A → 0 B / 1B            B → 0 / 1       )
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4.11  Transition from a regular expression to a FSA

There are automatas for each regular expression

Construction example:         ( 0 + 1)* 0 1 0

0               :                                                         1  :                   

( 0 + 1 )    :                                                        (0 + 1 )*  :   

( 0 + 1)* 0 1 0 :       

 

0
1

0,1

0,1

0,1

10
0
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4.11  Methods to show that a language is regular

 We can show the regularity of a language L, by one of the following methods: 

• All finite languages ​​are regular

• If we find a FSA  which recognizes a language L, then L is regular

• If we find a regular grammar generating L, then this language is regular

• We can exploit closure properties to show that a language is regular. ( properties 

of regular expressions )
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4.13  Properties of regular languages

- The union of two regular languages ​​is a regular language.

- The concatenation of two regular languages ​​is a regular language

- The iteration of a regular language is a regular language
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4.14  Arden's Theorem

In order to find out a regular expression of a FSA , we use Arden’s Theorem along 

with the properties of regular expressions.

Statement 

Let P and Q be two regular expressions.

If P does not contain null string, then   R = Q + RP      has a unique solution that is 

R = QP*

Proof 

R = Q + (Q + RP)P  [After putting the value R = Q + RP]

   = Q + QP + RPP
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4.14  Arden's Theorem

Proof 

R = Q + (Q + RP)P  [After putting the value R = Q + RP]

   = Q + QP + RPP

When we put the value of R recursively again and again, we get the following 

equation:

R = Q + QP + QP2 + QP3…..             R = Q (ε + P + P2 + P3 + …. )

R = QP*           [As P* represents (ε + P + P2 + P3 + ….) ]

Assumptions for Applying Arden’s Theorem

- The transition diagram must not have NULL transitions

- It must have only one initial state
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4.14  Arden's Theorem

Method

Step 1 − Create equations as the following form for all the states of the FSA having

n states with initial state q1.

q1 = q1R11 + q2R21 + … + qnRn1 + ε
q2 = q1R12 + q2R22 + … + qnRn2

…………………………

…………………………

…………………………

qn = q1R1n + q2R2n + … + qnRnn

Rij represents the set of labels of edges from qi to qj, if no such edge exists,

then Rij = ∅

Step 2 − Solve these equations to get the equation for the final state in terms of Rij
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4.14  Arden's Theorem

Problem:  Construct a regular expression corresponding to the automata given 

below: 

Solution:
Here the initial state and final state is q1.

The equations for the three states q1, q2, and q3 are as follows:

q1 = q1a + q3a + ε (ε move is because q1 is the initial state )

q2 = q1b + q2b + q3b

q3 = q2a



28/04/2025 07:21 Formal languages 110

Chapter 4: Regular languages

4.14  Arden's Theorem

Now, we will solve these three equations:

q2 = q1b + q2b + q3b

     = q1b + q2b + (q2a)b (Substituting value of q3)

    = q1b + q2(b + ab)

    = q1b (b + ab)* (Applying Arden’s Theorem)

q1 = q1a + q3a + ε

    = q1a + q2aa + ε (Substituting value of q3)

     = q1a + q1b(b + ab*)aa + ε (Substituting value of q2)

     = q1(a + b(b + ab)*aa) + ε

     = ε (a+ b(b + ab)*aa)*

     = (a + b(b + ab)*aa)*

Hence, the regular expression is       (a + b(b + ab)*aa)*.
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4.14  Arden's Theorem

Problem

Construct a regular expression

corresponding to this automata:

Solution:

Here the initial state is q1 and

the final state is q2

Now we write down the equations:

q1 = q10 + ε

q2 = q11 + q20

q3 = q21 + q30 + q31

Now, we will solve these three equations;

q1 = ε0* [R = Q + RP ] So, q1 = 0*

q2 = 0*1 + q20 So, q2 = 0*1(0)* [By Arden’s theorem]

Hence, the regular expression is 0*10*.
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4.14 important Example

- Build a FSA  equivalent to this RE :

- ( a* a b ( a + b )* )*

Remark : Avoid the loop  in the initial state.

a

a

a

a,b

a

b a,b

a
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4.15 Minimization of DFSA

DFSA minimization stands for converting a given DFSA to its equivalent DFSA 

with minimum number of states.

There are many methods to minimize DFSA.  The most used is equivalence 

method.

Step-01:

• Eliminate all the dead states and inaccessible states from the given DFSA (if 

any).

Step-02:

• Draw a state transition table for the given DFSA.

• Transition table shows the transition of all states on all input symbols
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Step-03:

Now, start applying equivalence theorem.

• Take a counter variable k and initialize it with value 0.  k ← 0

• Divide Q (set of states) into two sets such that one set contains all the non-

final states and other set contains all the final states.

• This partition is called P0.      0 equivalence

Step-04:

Increment k by 1.

• Find Pk by partitioning the different sets of Pk-1 .

• In each set of Pk-1 , consider all the possible pair of states within each set and if 

the two states are distinguishable, partition the set into different sets in Pk.

Two states q1 and q2 are distinguishable in partition Pk for any input symbol ‘a’,

if f (q1, a) and f (q2, a) are in different sets in partition Pk-1.
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Step-05:

• Repeat step-04 until no change in partition occurs.

• In other words, when you find Pk = Pk-1, stop.

Step-06:

• All those states which belong to the same set are equivalent.

• The equivalent states are merged to form a single state in the minimal DFSA.
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4.15 Minimization of DFSA :  Example

Minimize this automata:

Step-01:

The given DFSA contains no dead states 

and inaccessible states.

Step-02:

Draw a state transition table-

a b

→  q0 q1 q2

q1 q1 q3

q2 q1 q2

q3 q1 q4

  q4 q1 q2
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4.15 Minimization of DFSA :  Example

Step-03:

Now using Equivalence Theorem, we have:

P0 = { q0 , q1 , q2 , q3 } { q4 }

P1 = { q0 , q1 , q2 } { q3 } { q4 }

P2 = { q0 , q2 } { q1 } { q3 } { q4 }

P3 = { q0 , q2 } { q1 } { q3 } { q4 }

Since P3 = P2, so we stop.

From P3, we infer that states q0 and q2 are 

equivalent and can be merged together.

So, Our minimal DFSA is:
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DFSA non minimal
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Chapter 5: Algebraic languages

5.1 Introduction

Type 2 languages, also called algebraic languages ​​or context-free languages.

These languages are accepted by abstract machines similar to FSA called push-down 

automata.

This machine uses a memory called a stack.

- Grammar transformation

- FNC  form

- FNG form

- Push-down automata  

- Grammar ---- automata
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5.2 Review of Algebraic Grammars and Languages

Definition of a Type 2 Grammar:

A grammar G=(Vt, Vn, S, R) is said to be context-free (algebraic or Type 2) if and 

only if all of its production rules are in the form:

A → W      with    A ∈ Vn and          W ∈ (Vt ∪ Vn)*.

Definition of Type 2 Languages (context-free or algebraic):

These are the languages generated by Type 2 grammars.

Note:

The set of regular languages is included in the set of algebraic languages.
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5.2 Review of Algebraic Grammars and Languages

Converse:

Every regular language is also context-free, but the converse is false.

Notes:

The set of regular languages is included in the set of algebraic languages.

A context-free language:

• is not recognized by a finite state automata

• is not described by a regular expression

• there is no regular grammar to generate it.
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5.2 Review of Algebraic Grammars and Languages

Syntax Tree:

Given the use of only one nonterminal symbol on the left-hand side of the production 

rules in context-free grammars, it is always possible to construct a derivation tree for 

any generated word. Let G=(Vt, Vn, S, R) be a grammar and let ω ∈ L(G). 

A syntax tree associated with ω is constructed as follows:

• The root of the tree is labeled with the axiom

• Intermediate (internal) nodes contain nonterminals

• Leaves are terminals

• Reading from left to right the leaves of the tree reconstructs the word to which the 

tree is associated.



28/04/2025 07:21 Formal languages 125

Chapter 5: Algebraic languages

Syntax Tree:

Let the grammar  G=(Vt,Vn, ND,R)

Vt={0,1,2,3,4,5,6,7,8,9,+,-,.,10}

Vn={ ND, S, E,P,F,C}

Axiom = ND

R= ( ND → S E P E F 

E → C E / C

C → 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

P → .

F → 10 S E

S → + / -  )

Exemple:  Build the syntax tree for the word.: ω =  - 19.5 10-3

,
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A decimal number is defined by a derivation tree
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5.2 Review of Algebraic Grammars and Languages

Definition of an ambiguous word:

A word ω is said to be ambiguous if and only if there exist two different derivation 

trees associated with it, using the leftmost derivation.

Definition of an ambiguous grammar:

A grammar G is said to be ambiguous if and only if there exists at least one 

ambiguous word belonging to L(G).

Notes:

1- Some languages can be generated by both ambiguous and unambiguous grammars.

2- There is no algorithm that can find an unambiguous grammar (if it exists) that 

generates a language.
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5.2 Review of Algebraic Grammars and Languages

Example: Let G be the grammar that has the following production rules:

R=(  S→S∧ S      (1)

S→ S∨ S      (2)

S→ S⇒ S     (3)

S→ S⇔ S    (4)

S→ ¬S        (5)

S→ q           (6)

S→ p          (7)      )

Question: Show that G is ambiguous.



28/04/2025 07:21 Formal languages 129

Chapter 5: Algebraic languages

5.2 Review of Algebraic Grammars and Languages

The word   p∧ q ⇔ p     is ambiguous, because there exist two different 

derivations that allow us to generate it. 

S ➔ (4) S ⇔ S ➔(1) S ∧ S ⇔ S ➔(7) p ∧ S ⇔ S ➔(6) p ∧ q ⇔ S ➔(7) p ∧ q 

⇔ p 

4 ➔ 1 ➔ 7 ➔ 6 ➔ 7

S ➔(1) S ∧ S ➔(6) p ∧ S ➔(4) p ∧ S ⇔ S ➔(6) p ∧ q ⇔ S ➔(7) p ∧ q ⇔ p 

1 ➔ 6 ➔ 4 ➔ 6 ➔ 7

We have two different paths, and therefore the grammar G is ambiguous.
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5.3 Reduced Grammar

Let G=(Vt, Vn, S, R) be a context-free grammar.

Productive (useful) and unproductive (useless) symbols:

A non-terminal A ∈ Vn is said to be useful if and only if there exists ω ∈ Vt* such 

that A ⇒* ω

A non-terminal A ∈ Vn is said to be useless if and only if ∀ ω ∈ Vt*, there is no 

indirect derivation such that A ⇒* ω
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5.3 Reduced Grammar

Let G(Vt, Vn, S, R) be a context-free grammar.

Accessible and inaccessible symbols:

A non-terminal A ∈ Vn is said to be accessible if and only if there exists 

α ∈ (Vt ∪ Vn)* such that S ⇒* α and A appears in α

A non-terminal A ∈ Vn is said to be inaccessible if and only if ∀ α ∈ (Vt ∪ Vn)*, 

if S ⇒ α then A does not appear in α.
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5.3 Reduced Grammar

Remark:

Production rules (derivations) that contain useless and inaccessible non-terminals 

can be removed without any impact on the language generated by the grammar.

Unit production (A → B)

A production rule of the form A → B where A, B ∈ Vn is called a unit production.

Remark: 

To remove the unit production A → B, we simply add all the productions of B to 

the production rules of A. This removal may result in the appearance of other unit 

productions, so a recursive algorithm should be applied.
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5.3 Reduced Grammar

A grammar is said to be reduced if and only if all the non-terminals in its 

production rules are accessible and productive (useful).

5.4 Clean grammar

A grammar is said to be clean if and only if:

1. It is reduced

2. It does not contain unit productions

3. Only the axiom can generate ε, with the condition that it does not appear in 

any right-hand side of the rules.
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5.4 Clean grammar

To eliminate ε-productions (empty word),:

• We must first determine the set of non-terminals that can derive to ε (directly 

or indirectly);

• then, we modify the productions containing these non-terminals, in such a way 

as to replace in all the left-hand sides of the productions the nullable symbols 

by the empty word, in all possible ways.
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5.4 Clean grammar

Exercise 1: Let G be the context-free grammar G(Vt, Vn, S, R).

R= (    S→AB | EaE

           A→Aa | aB

           B→bB | aA

           C→AB | aS 

           E→D

           D→dD | ε )

1. Find the language generated by G.

2. Transform G into a reduced grammar.

3. Transform G into a proper grammar.

4. Verify the language found in question 1.



28/04/2025 07:21 Formal languages 136

Chapter 5: Algebraic languages

Solution:

1- L(G)= {dnadm/ n, m ≥ 0} we use only the symbol E

2- The non-terminal C is not reachable, A and B are not productive, so we 

remove the rules containing A, B or C and we get the following reduced 

grammar:

S→EaE

E→D

D→dD |ε
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3- The grammar has a unit production E→D, we remove it and replace all the E's

with D's and we get the following grammar:

S→EaE         E → dD |ε           D→dD |ε

The grammar is still not proper due to the rules D → ε,   E → ε. Therefore, we 

eliminate them and for each D that appears on the right-hand side of a rule, we 

create another rule. 

We obtain the following proper grammar:

 G’=({a,d}, {S, D,E } , S, R’)

R’=   ( S→EaE |aE | Ea |a         E → dD |d         D→dD | d      )  

4- The language found is the same, but it is easier to find using the proper 

grammar.
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Exercise 2:

Reduce the following grammar : G=({a,b}, {S, A,B,C,D } , S, R)

R=(   S → aAB  | bC  | aab         A →aA  | aB  | a         C →bb         D →b   )

Solution:  All non-terminals are useful, derive towards terminal strings except for 

the symbol B. We remove all rules containing B.

G’=({a,b}, {S, A,C,D } , S, R’)  

R’=(   S → bC  | aab        A →aA  |  a            C →bb             D →b   )

It can be noticed that the symbol D and A are  unreachable from the axiom S.

G’’=({a,b}, {S, A,C } , S, R’’)   reduced grammar

R’’=(   S → bC  | aab        C →bb      )
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Exercise 3 :

Reduce the following grammar : G=({a,b}, {S, A,B,C } , S, R)

R=(   S → aaAb           A →bA  | a         B →bB | b         C →a   )

Solution:  

All non-terminals are useful, they derive towards terminal strings except for symbol B, 

however symbols B and C are inaccessible from the axiom S. 

We remove all rules containing B and C.

G’=({a,b}, {S, A } , S, R’)    reduced grammar.

R’=(   S → aaAb        A →bA  |  a  )

Note: If the axiom is useless, the language generated by this grammar is empty
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Exercise 4 : Find a clean grammar for the following grammar:

G=({a,b,c}, {S, A,B,C,D } , S, R)

R=(   S → aSA |  aS  | ab  | aSb  | BC           A →SS | S  | c         B → D          C → b

 D → a   | C )

Solution:  

• All non-terminals are useful, they derive towards terminal strings.

• All symbols are reachable from the axiom S.

• No rule contains the empty word.

• We have 3 rules of the form       (A → B, A, B ∈ Vn)

 A  → S       B → D   et   D  → C 
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We replace the rule   A → S   par :         A → aSA |  aS  | ab  | aSb  | BC

We replace the rule   D → C   par :        D → b 

 We replace the rule   B → D   par :       B → a  |  b 

G’=({a,b,c}, {S, A,B,C,D } , S, R’)

R’=(   S → aSA |  aS  | ab  | aSb  | BC          

          A →SS |  c |  aSA |  aS  | ab  | aSb  | BC   

           B → a  |  b 

            C → b

            D → b  )

We notice that the symbol D becomes unreachable, so we remove the last rule.
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G’’=({a,b,c}, {S, A,B,C } , S, R’’)

R’’=(   S → aSA |  aS  | ab  | aSb  | BC          

          A →SS |  c |  aSA |  aS  | ab  | aSb  | BC   

           B → a  |  b 

            C → b  )

The grammar G’’ is  clean.
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Exercise 5: Remove the empty word from the following grammar and reduce it: 

G=({a,b,c}, {S, A,B,D,E } , S, R)

R=(   S → BE |  AaBD   |  BS             A → cB | ε         B → bc   | AA         D → cc

E→ b   | ε       )

Solution:  The symbols A, E, B, S derive directly or indirectly to the empty word (ε), 

so we remove these rules and add other rules:

R’=(  S → BE |  AaBD   |  BS      A → cB      B → bc   | AA         D → cc   E→ b 

                     plus these rules

         S → B   |  E |  aBD   |  AaD  | aD  | B  |  S   

          A → c               B →   A   )
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R’=(  S → BE |  AaBD   |  BS    |  B   |  E |  aBD   |  AaD  | aD  

A → cB | c           B → bc   | AA   | A            D → cc                E→ b   )

The grammar is reduced (without useless and unreachable symbols), but contains 

rules of the form (A → B)

R’’=(   S → BE |  AaBD   |  BS    |  bc  | AA  | cB   | c  |  b |  aBD   |  AaD  | aD 

            A →    cB | c      

           B → bc   | AA |  cB | c 

          D → cc   

          E→ b     ) 

Remark: compare the two grammars (  initial and the clean )
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5.3 Chomsky Normal Form FNC (Noam Chomsky)

A grammar G=(Vt, Vn, S, R) is said to be in Chomsky Normal Form (FNC) if and 

only if all its derivation rules are in the form:

A → BC   or    A → a with A, B, C ∈ Vn and     a ∈ Vt

For any algebraic (context-free) grammar, there exists an equivalent grammar in 

Chomsky Normal Form.

The practical advantage of FNC  is that derivation trees are 

binary trees, which facilitates the application of tree

exploration algorithms.
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5.3 Transformation of a grammar into Chomsky normal form. 

To obtain a Chomsky normal form grammar equivalent to an algebraic grammar G, the 

following steps are required:

1. Transform the grammar into a clean grammar

2. For each terminal a, introduce the non-terminal Ca, then add the rule Ca → a

3. For each rule A → α, with |α| ≤ 2, replace each terminal with the non-terminal 

associated with it;

4. For each rule A → β, with |β| ≥ 3, (β = β1β2...βn), create the non-terminals Di, then 

replace the rule with the following rules: A → β1D1, D1 → β2D2, ..., Dn−2 → 

Bn−1Bn, where Di = Bi+1Bi+2...Bn, with i varying from 1 to n − 2.
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5.3 Example of  transformation into FNC

G=({a,b,c}, {S, A,B,D} , S, R)    

R=(   S → aSB   (1)       S →  DcBb     (2)       A → bc       (3)  B → aAb     (4)         

D → b (5)   )

G  :  is clean 

(1)  S → aSB    :   R’=  (     S → X1X2         X1 → a           X2 → SB    

(2) S →  DcBb  :    S → X3X4         X3 → DX5      X5 → c       X4 → BX6  X6 →b 

(3) A → bc         :    A → X6X5

(4) B → aAb     :    B →  X1X7       X7 → AX6

(5) D → b          :    D → b )

G’=({a,b,c},{S,A,B,D, X1,X2 ,X3,X4 ,X5,X6, X7 }, S, R’)
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5.4 Left recursion:

A grammar is left-recursive if it contains a production of the form:

B → B w   with B ∈ Vn   and   w ∈ (Vn∪Vt)*

•  Left recursion causes infinite loops...

By eliminating it, we can transform it into right-recursion, which is not problematic.

•  Let's consider a subset of productions:

B → B α        B → β with        B ∈ Vn,          α, β ∈ (Vn ∪ Vt)*

and β doesn't start with    B →  It   generates the language: β α *

• This language is also generated by:

B → β | β Z

Z→ α | α Z

where Z ∉ (Vn ∪ Vt)*.
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5.4 Left recursion (example)

G=({a,b,c}, {S, A,B,D} , S, R)    

R=(   S → aS  (1)       S →  BA   (2)       A → AbD    (3)      A → b  (4)       B → bc    

(5)     D → BA   (6)   D → Da   (7)     D → b    (8)       )

We have two left-recursive rules.     A → AbD    (3)  et      D → DA   (7) 

The A-rules will be replaced by the 4 rules:

A → AbD    (3)      A → b  (4)   :       A → b       A → bZ      Z → bD    Z → bDZ

The D-rules will be replaced by the 6 rules:

D → BA   (6)   D → DA   (7)     D → b    (8)  :  D → BA    D → b   D → BAZ1

D → bZ1 Z1 → a     Z1 → aZ1
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5.4 Left recursion (example continuation)

The grammar without left recursion.    G’=({a,b,c}, {S, A,B,D, Z1, Z2} , S, R’)    

R’ =(        S → aS        S →  BA        

                A → b       A → bZ      Z → bD    Z → bDZ

                 B → bc       

                 D → BA        D → b    D → BAZ1    D → bZ1     Z1 → a     Z1 → aZ1 

)
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5.5 Greibach normal form (FNG)

An algebraic grammar is in Greibach normal form (FNG) if and only if all its 

production rules are in the form:   

 A → xα       or     S → ε,  with    x ∈ Vt, α ∈ Vn*  

   and     S is the  axiom.

Sheila Adele Greibach  born in 1939 

New York
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5.5 Greibach normal form (FNG) 

Proposition :

For any algebraic grammar G1, there exists an equivalent grammar G2 in Greibach 

normal form such that L(G1) = L(G2).

The practical interest of FNG is that at each derivation, we can determine a longer 

and longer prefix consisting only of terminal symbols. This makes it easier to 

construct stack automata from the grammars, and therefore, syntax analyzers can be 

easily implemented.
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5.5 Greibach normal form (FNG) 

Let G be a type 2 grammar.

Step1:  Transform the grammar into Chomsky Normal Form (FNC) and 

eliminate left-recursive rules.

 A → BC    or     A → a           with      A, B, C ∈ Vn     and        a ∈ Vt

With an (arbitrary) order on the non-terminals:  Vn= { A1, A2, A3, …, Am}   

|Vn| = m

Step2:  Modify the rules so that they satisfy the following condition (C):

 Ai → Aj ω     with    j> i  and     ω ∈ Vn+ (C)          

Step3: Transform the rules into FNG  starting with the non-terminal that has 

the highest order..                 
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5.5 Greibach normal form (FNG) ( example )

Transform the following algebraic grammar into FNG: G=({a,b,c,d}, {S, A,B} , 

S, R)    

R=(   S → cABdc      (1)       A →  Bb   (2)       A →  aA  (3)         B → Bd     (4)                 

B→ a  (5)     )

1- Eliminate the left-recursion: 

B → Bd     (4)     B→ a  (5)  :     B→ a        B→ a Z          Z→ d          Z→ dZ 

Vn’={A,B,C,D,Z}

R’= (S → cABdc             A →  Bb         A →  aA   B→ a        B→ aZ          Z→ d          

Z→ dZ )
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5.5 Greibach normal form (FNG) ( example )

2- Transform into Chomsky Normal Form (FNC)

R’’=(   S → X1X2 X7 → b

X1 → c                                               B  → a   

X2→ AX3 B → X6Z

X3→ BX4 Z → d

X4→ X5X1 Z → X5Z    )

X5→ d                                                 

A → X6A                                             

X6 → a                                                                                                  

A → BX7                                                                      



28/04/2025 07:21 Formal languages 156

Chapter 5: Algebraic languages

5.5 Greibach normal form (FNG) ( example )

3- Scheduling. 

R’’=(   S → X1X2 (C) X7 → b              (FNG)

X1 → c           (FNG) B  → a              (FNG)

X2→ AX3 (non C) B → X6Z           (C)

X3→ BX4 (non C) Z → d                (FNG)

X4→ X5X1 (C) Z → X5Z    )      (C)

X5→ d             (FNG)

A → X6A          (C)

X6 → a             (FNG)

A → BX7                 (C)
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5.5 Greibach normal form (FNG) ( example )

3- Scheduling 

X2→ AX3 (non C) replaced by :           X2→ X6A X3 (C)

X2→ BX7 X3 (non C)

X2→ BX7 X3 (non C)      replaced by :          X2→ aX7 X3 (FNG)

X2→ X6ZX7 X3 (C)

X3→ BX4 (non C) replaced by :          X3→ aX4 (FNG)

X3→ X6ZX4 (C)
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5.5 Greibach normal form (FNG) ( example )

4- FNG:  We start with the non-terminals of higher priority. ( 11,10,….,1)

R’’’= (      X7 → b              X6 → a              X5→ d                 X4 → dX1                     

X3 → aX4 

X3 → aZX4           X2→ aA X3 X2→ aX7 X3         X2→ aZX7 X3      

X1→ c Z → d                 Z → dZ             B → a         B → aZ

A → aA             A → aX7                   A → aZX7                    S → cX2 )
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5.5 Greibach normal form (FNG) ( example )

5- Verify the reduction of the new grammar.  

The symbols B and X5 are unreachable

R’’’= (      X7 → b              X6 → a              X4 → dX1                     X3 → aX4 

X3 → aZX4           X2→ aA X3 X2→ aX7 X3         X2→ aZX7 X3      

X1→ c Z → d                 Z → dZ                 A → aA        

A → aX7                   A → aZX7                    S → cX2 )

Vn’’’={ S,A,Z,X1,X2,X3,X4,X6,X7}
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5.6  Other normal forms

Quadratic normal form:

A grammar is in Greibach's quadratic normal form if all its rules are of the form

A → aV where V is composed of at most two non-terminals,  

S → aSS   |  b 

Backus-Naur Form (BNF) 

is a notation used to describe the syntax rules of programming languages. It was 

designed by John Backus and Peter Naur when creating the grammar for the Algol 

60 language.
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5.6  Autres  Formes normales 

Backus-Naur Form (BNF) :

Let's take an example that defines the structure of the "if" statement in the C programming language:

<structure_if> ::= if "(" <condition> ")" "{" <instructions> "}"

<structure_if>,  <condition>    and   <instructions>  :  are non-terminals.. 

::= is a meta-symbol meaning "is defined by".  if, "(", ")", "{" and  "}" are terminals.
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context-free 

languages

(algebraic 

languages)

Context-free grammars 

generate…

which are recognized by pushdown 

automata.

Like FSAs, pushdown automata 

(PDA) are abstract machines that 

determine whether a word 

belongs to a language or not. The 

languages recognized by PDAs 

are the context-free languages 

(Type 2).
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5.7 Pushdown automata 

The pushdown automaton PDA will attempt to read the word. aaabbb : 
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Chapitre 5: Les langages algébriques 

5.7 Pushdown automata :      

Why a stack?

• Finite automata (FSA) have no memory other than their states

• They cannot "count" beyond their number of states

• A stack provides additional unbounded memory

• The stack is accessed only from its top

• The number of symbols used in the stack is finite

• An empty stack can be a criterion for accepting words.
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5.7 Pshdown automata :      

Preliminary example:

The steps for recognizing the language {anbn, n ≥ 1} by a PDA could be the following:

Read the a's, push them onto the stack and stay in the same state.

Upon encountering the first b, pop an a from the stack and change state.

For each subsequent b encountered, pop an a from the stack.

If the a's in the stack are exhausted at the same time as all the b's have been read, then 

the word belongs to the language.



28/04/2025 07:21
Formal languages

166

Chapitre 5: Les langages algébriques 

5.7 pushdown automata :      

Preliminary example:

The steps for recognizing the language {anbn, n ≥ 1} by a PDA could be the following:

1. Read the a's, push them onto the stack and remain in the same state.

2. Upon encountering the first b, pop an a from the stack and change state.

3. For each subsequent b encountered, pop an a from the stack.

4. If the a's in the stack are exhausted at the same time as all the b's have been read, 

then the word belongs to the language.
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5.7 Pushdown automata :     

 Formal definition: 

A PDA is formally defined by a septuple  (Vt, W, Q, q0, Z0,f,  F ) where :

• Vt is the input alphabet, finite and non-empty

• W is the stack vocabulary, finite and non-empty

• Q is the set of states, finite and non-empty

• q0 is the initial state that belongs to Q

• Z0 is the initial symbol of the stack (bottom of the stack), Z0 ∈ W

• F is the set of final (acceptance) states, F ⊂ Q

• f is the transition function.
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5.7 Pushdown automata :     

 Formal definition:  

f is defined  as  :            Q x (Vt U {ε} ) x (W U {ε})  → Q x W*

Operation:

A transition rule f(q, a, p) = (q', χ) considers:

• the current state q of the automata

• the character read a on the tape (or maybe not: ε)

• the symbol p on the top of the stack (or maybe not: ε)

A rule indicates:

• the next state q' of the automata

• the sequence of symbols χ to be pushed on top of the stack in place of the top symbol.
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5.7 Pushdown automata :     

       f(q, a, p) =  (q’, χ ) 

1- if  |χ| =1                    ⇒   f(q, a, A) =  (q’, B)            :     replace A  by  B  

2- if  |χ| =2 ⇒ f(q, a, A) =  (q’, BA)          :     push on  B 

3- if  |χ| =0                    ⇒   f(q, a, A) =  (q’, ε)              :     pop  A 

4- if  a= ε ⇒ f(q, ε , A) =  (q’, χ)              :     we do not change the input symbol.

5- if  a= ε  and   χ=  ε       ⇒   f(q, ε , A) =  (q’, ε )         :     Emptying the contents of the stack.

6- A word belongs to the language if it is fully read and the automata is in a final state or the 

stack is empty.
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5.7 Les automates à pile :     Recognition modes:

There are 2 recognition modes for PDAs depending on whether F equals ∅ or not:

• Final state recognition

• Empty stack recognition

•  Final state recognition:

LF(A) = { w ∈ Vt*,  the stack contains  Z0 Initially, there is a reading of w from q0 to  

qf, qf ∈ F }

•  Empty stack recognition

L∅(A) = { w ∈ Vt*, the stack contains  Z0 Initially, there is a reading of w from q0

which ends with an empty stack}
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5.7 Pushdown automata :     Initial configuration: 

A configuration of the  PDA  at a certain moment, is given by the content of the

stack, the current state of the PDA  and the remaining word to read:

(stack content, current state, word remaining to read).

The initial configuration is (Z0, q0, ω), where q0 is the initial state of the PDA and ω is 

the word submitted to A (to be recognized).
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5.7 Pushdown automata :     Equivalence between  PDAs.

• The final state recognition mode is equivalent to the empty stack recognition mode.

• A PDA  recognizes one and only one language, but the same language can be 

recognized by multiple  PDAs.

• We say that two PDAs  A1 and A2 are equivalent if and only if they recognize the 

same language, L(A1) = L(A2).
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5.7 Pushdown automata :     

Example: Construct the PDA that recognizes the following language.:

 L(A)= { w/ w ∈ Vt*  and   w= x c xR   tel que x ∈ { 0,1}* }      Vt={ 0,1,c}

( xR   means "x reversed" or "x mirrored".)

example of recognized words: 

0110c0110    ,  c,     0c0,    1c1 ,    00c00, 11c11

Solution 1:  Empty stack recognition  F= ϕ 

A= (Vt, W, Q, q0, Z0,f, ϕ ) 

Vt={ 0,1,c}      W={ Z0, A,B}  Q = {q0,q1,q2}

We push an A for the symbol 0 and a B for the symbol 1.
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5.7 Pushdown automata :     

f(q0,c, Z0) =  (q0, ε)             : Pop Z0, stop  with an empty stack

f(q0,0, Z0) =  (q1, AZ0) :  push  A     and modify the state 

f(q0,1, Z0) =  (q1, BZ0) :  push  B     and modify the state 

-----------------------------

f(q1,0, A) =  (q1, AA) :  push  A      Push loop 

f(q1,1, A) =  (q1, BA) :  push  B      Push loop

f(q1,1, B) =  (q1, BB) :  push  B       Push loop

f(q1,0, B) =  (q1, AB) :  push  A       Push loop

------------------------------
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5.7 Pushdown automata :     

f(q1,c, A) =  (q2, A) :  Replace A with A, move to c, and change the state.

f(q1,c, B) =  (q2, B) : Replace B with B, move to c, and change the state.

------------------------------

f(q2,0, A) =  (q2, ε) :  Pop A in case of symbol match.

f(q2,1, B) =  (q2, ε) :  Pop B  in case of symbol match.

-------------------------------

f(q2, ε) , Z0) =  (q2, ε) :  pop  Z0  empty stack    stop the automata 
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5.7 Pushdown automata :     

Example: Construct the PDA that recognizes the following language:

 L(A)= { w/ w ∈ Vt*  and   w= x c xR   such as  x ∈ { 0,1}* }      Vt={ 0,1,c}

( xR   x mirrored)

example of recognized words: 

0110c0110    ,  c,     0c0,    1c1 ,    00c00, 11c11

Solution 2:  Final state recognition  F≠ ϕ 

A= (Vt, W, Q, q0, Z0,f, F ) 

Vt={ 0,1,c}      W={ Z0, A,B}  Q = {q0,q1,q2,q3},  F={q3 }

We push an A for the symbol 0 and a B for the symbol 1.
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5.7 Pushdown automata :     

f(q0,c, Z0) =  (q3, ε)             :  Pop  Z0     stop with q3  final state 

f(q0,0, Z0) =  (q1, AZ0) :  push  A     and modify the state

f(q0,1, Z0) =  (q1, BZ0) :  push  B     and modify the state 

-----------------------------

f(q1,0, A) =  (q1, AA) : push A         Push loop

f(q1,1, A) =  (q1, BA) : push  B       Push loop

f(q1,1, B) =  (q1, BB) : push B       Push loop 

f(q1,0, B) =  (q1, AB) : push  A      Push loop

------------------------------
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5.7 pushdown automata :     

f(q1,c, A) =  (q2, A) :  Replace A with A, move to c, and change the state

f(q1,c, B) =  (q2, B) : Replace B with B, move to c, and change the state

------------------------------

f(q2,0, A) =  (q2, ε) :  Pop  A    in case of symbol match

f(q2,1, B) =  (q2, ε) :  Pop  B    in case of symbol match

-------------------------------

f(q2, ε) , Z0) =  (q3, ε) :  Pop Z0  , q3    final state     stop the automata
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5.7 Pushdown automata :      Deterministic and non-deterministic PDA

There are two cases of non-determinism for Pushdown Automata (PDA):

1- For the same stack state, same state, and the same input symbol, there exist at least 

two transitions: 

f(q1,a, A) =  (q1, χ1)

f(q1,a, A) =  (q2, χ2)

2. For the same stack state and same state, we have the choice to read or not to read 

from the tape.

 f(q1,a, A) =  (q1, χ1)

f(q1,ε, A) =  (q1, χ1)
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5.7 Pushdown automata :      Remarks

• There exist algebraic languages for which there is no deterministic pushdown 

automaton (DPDA) that recognizes them.

• If a language L is recognized by a DPDA, then there exists an unambiguous 

algebraic grammar that generates L.

• For each algebraic language L, there exists a pushdown automaton (PDA) A such 

that L(A)=L.

• The languages recognized by PDAs are algebraic languages.
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5.7 Pushdown automata :     

Example: Construct the PDA that recognizes the following language:

 L(A)= { w/ w ∈ Vt*  et  w= x xR   such as x ∈ { 0,1}* }      Vt={ 0,1}

example of recognized words: 

01100110    ,     00,    11 ,    0000, 1111

Solution 1:  Finite-state pushdown automaton F≠ ϕ 

A= (Vt, W, Q, q0, Z0,f, F ) 

Vt={ 0,1}      W={ Z0, A,B}  Q = {q0,q1,q2,q3},  F={,q0, q2 }

We push an A onto the stack for the symbol 0 and a B for the symbol 1.
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5.7 Pushdown automata :     

f(q0,0, Z0) =  (q0, AZ0) :  push  A

f(q0,1, Z0) =  (q0, BZ0) :  push  B

-----------------------------

f(q0,0, A) =  (q0, AA) :  push B      Stacking loop of symbols from x.

                =    (q1, ε)          :   pop  A      and change the state, the first symbol of xR, 

f(q0,1, A) =  (q0, BA) :  push B      Push loop

f(q0,0, B) =  (q0, AB) :  push B       Push loop

f(q0,1, B) =  (q0, BB) :  push A       Push loop 

                =    (q1, ε)          :   pop  A     and change the state, the first symbol of xR,

------------------------------
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5.7 Pushdown automata :     

f(q1,0, A) =  (q1, ε) :  pop  A    in case of symbol match

f(q1,1, B) =  (q1, ε) :  pop  B    in case of symbol match

-------------------------------

f(q1, ε) , Z0) =  (q2, ε) :  pop  Z0  , q2 final state   stop the automata 

Note: This is a non-deterministic automata, we cannot know the first symbol of xR. 

When we have two consecutive equal symbols (00 or 11), we have to do two 

operations, either push or pop.
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5.7 Pushdown automata :    Grammar   and  PDA

- For each algebraic language L, there exists a pushdown automata (PDA) A such 

that L(A)=L. 

- The languages recognized by PDAs are algebraic languages.

Method:  grammar     PDA

For any algebraic grammar G = (Vt, Vn, S, R), there exists a pushdown automata 

(PDA) that recognizes the language generated by G.

A= (Vt, W, Q, q0, Z0,f, F ) such as  L(G)=L(A)

Given an algebraic grammar G, the goal is to find a pushdown automaton (PDA) A that 

recognizes the language L(G) with an empty stack.( F= ϕ )
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5.7 Pushdown automata :    Grammar   PDA 

1. First, we transform G into Greibach normal form.

2. Then, we define the parameters of the PDA as follows:

G = (Vt, Vn, S, R)     ➔ A= (Vt’, W, Q, q0, Z0,f, F )

Vt’= Vt 

W = Vn

Q = {q0} ;

Z0 = S;

B → aA1A2…An     ➔    f(q0,a,B) = (q0,An..A2A1)
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5.7 Pushdown automata :    Example   grammar    PDA 

G = (Vt, Vn, S, R)     ➔ Vt={ a,b,c}       Vn={ S,A,B}

R=(  S → aSA          S → bSB       S → c           A → a         B →  b    )

We want to construct the equivalent pushdown automaton with an empty stack.

A= (Vt’, W, Q, q0, Z0,f, F )      

Vt’= Vt          W = Vn           Q = {q0}    Z0 = S          F= ϕ 

S → aSA       ➔        f(q0, a, S) = (q0, AS)

S → bSB      ➔        f(q0, b, S) = (q0, BS)

S → c           ➔        f(q0, c, S) = (q0, ε)

 A → a          ➔        f(q0, a, A) = (q0, ε)

 B →  b         ➔        f(q0, b, B) = (q0, ε)
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5.7 Pushdown automata :    Grammar   PDA 

Method:  from PDA  to grammar

Foe every  PDA  A= (Vt, W, Q, q0, Z0,f, F ) There exists an algebraic grammar                          

G = (Vt, Vn, S, R) such as  L(G)=L(A)

Let the pushdown automata   (PDA)   A= (Vt, W, Q, q0, Z0,f, ϕ )  given:

We construct the grammar G = (Vt’, Vn, S, R) as follows

1- Vt’ = Vt

2- Vn={ [q, A, p]  / ∀ q ∈ Q    and     ∀ p ∈ Q   and     ∀ A ∈ W ∪ {S}  }

3-  R =      3  types of rules 
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5.7 Pushdown automata le :    Grammar   PDA 

3-  R =      3  types of rules:

 a)  S  → [q0, Z0, q]   ∀ q ∈ Q   as many arrows as there are states in A

 b)  if f(q, a, A ) =  ( q1, B1B2…Bm)   is a transition      then 

                   construct the rule:

                   [q, A, p]  → a [q1, B1, q2] [q2, B2, q3] … [qm, Bm, qm+1] 

                    p= qm+1 ,       q1, q2, …,qm+1 ∈ Q

         c) if f(q, a, A ) =  ( p, ε )   is a transition  then construct 

                 [q, A, p]  → a
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5.7 Pushdown automata :    Example Grammar  PDA 

Consider the pushdown automata accepting the following language:

L={ w/ w ∈ {0, 1}*, w contains an equal number of 0's and 1's }

A= (Vt, W, Q, q0, Z0,f, ϕ ) 

Vt={0,1}  W= {Z0 , A, B }    Q={ q0 } , 

Transition fuctions  f:

1) f(q0, 0, Z0 ) =  ( q0, AZ0 )               2)    f(q0, 1, Z0 ) =  ( q0, BZ0 )  

3) f(q0, 0, A ) =  ( q0, AA )                 4)     f(q0, 1, B ) =  ( q0, BB )   

5) f(q0, 1, A ) =  ( q0, ε )                      6)  f(q0, 0, B ) =  ( q0, ε )    

7) f(q0, ε , Z0 ) =  ( q0, ε )    
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5.7 Pushdown automata :    Example Grammar   PDA 

The equivalent grammar is as follows: G = (Vt, Vn, S, R) 

Vn={S} ∪ {[q0, Z0, q0] , [q0, A, q0] , [q0, B, q0] } 

|Q| = 1  one arrow                        ➔   S → [q0, Z0, q0] 

1) f(q0, 0, Z0 ) =  ( q0, AZ0 )       ➔ [q0, Z0, q0] → 0 [q0, A, q0] [q0, Z0, q0] 

2)  f(q0, 1, Z0 ) =  ( q0, BZ0 )        ➔ [q0, Z0, q0] → 1 [q0, B, q0] [q0, Z0, q0] 

3) f(q0, 0, A ) =  ( q0, AA )           ➔ [q0, A, q0] → 0 [q0, A, q0] [q0, A, q0] 

4)     f(q0, 1, B ) =  ( q0, BB )       ➔ [q0, B, q0] → 1 [q0, B, q0] [q0, B, q0] 

5) f(q0, 1, A ) =  ( q0, ε )               ➔ [q0, A, q0] → 1

6)  f(q0, 0, B ) =  ( q0, ε )             ➔ [q0, B, q0] → 0 

7) f(q0, ε , Z0 ) =  ( q0, ε )           ➔  [q0, Z0, q0]  → ε
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5.7 Pushdown automata :    Example  Grammar    PDA 

The equivalent grammar is as follows: G = (Vt, Vn, S, R) 

Vn= {S} ∪ {[q0, Z0, q0] , [q0, A, q0] , [q0, B, q0] } ={S,X, Y, Z}

|Vt={0,1}

R=(   S → X

         X → ε  /  0YX   /  1ZX

        Y → 1 / 1YY

        Z → 0 / 1ZZ  )
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