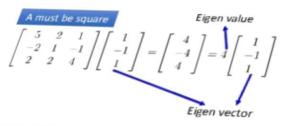


المحور الثالث: القيم والمتجهات الذاتية

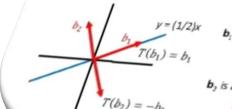
Eigenvalues and Eigenvectors

- If $Av = \lambda v$ (v is a vector, λ is a scalar)
- v is an eigenvector of A excluding zero vector
- λ is an eigenvalue of A that corresponds to v



• Example: Reflection

reflection operator T about the line y = (1/2)x

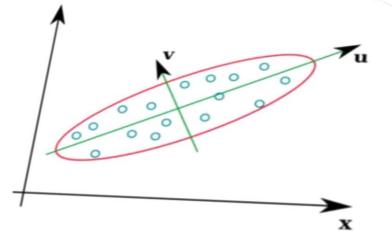


 \boldsymbol{b}_{i} is an eigenvector of T

Its eigenvalue is 1.

 b_j is an eigenvector of T

Its eigenvalue is -1.



Eigenvectors (blue arrows): These special arrows remain aligned with their original direction after the transformation. They only get stretched or squished by a factor, represented by the eigenvalue

Eigenvalues (numbers): These numbers indicate the amount of stretching or squishing. An eigenvalue of 1 means no change, greater than 1 indicates stretching, and less than 1 indicates squishing (including flipping if negative).

الهدف من المحور:

- التعرف على المتجهات وفضاء المتجهات
 - ✓ التعرف على الأساس والبعد
 - ✓ القيم الذاتية والمتجهات الذاتية
 - ✓ حساب القيم والمتجهات الذاتية

1- المتجهات Vectors

✓ المتجه هو كمية رياضية لها مقدار (طول) و اتجاه.

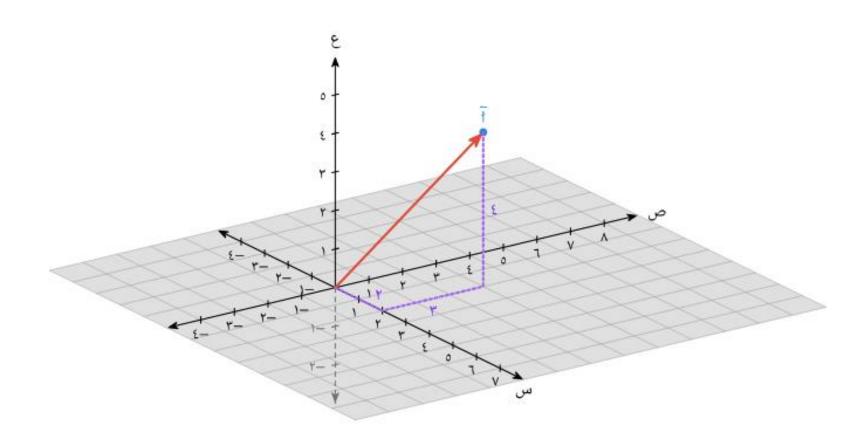
يُعبّر عن المتجه في فضاء المتجهات بالإحداثيات (تسمى بمركبات المتجه)

$$v=inom{\chi_1}{\chi_2}$$
:مثلا: متجه $ec{v}$ في فضاء ثنائي البعد $ec{v}$

$$u=egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}$$
: R^3 مثلا: متجه \overrightarrow{u} في فضاء ثلاثي الأبعاد

$$v=egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$
:*; R^n بعد n في فضاء ذو n بعد u

1- المتجهات Vectors



2- فضاء المتجهات Vectors

فضاء المتجهات هو مجموعة من الكيانات الرياضية (المتجهات) التي يمكن جمعها وكذلك ضربها بعدد ثابت (عدد حقيقي) وتستوفي خصائص معينة. يُرمز لفضاء المتجهات عادةً ب٧

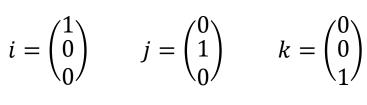
مكونات فضاء المتجهات:

- ✓ المتجهات: عناصر تنتمي إلى الفضاء ٧
- ✓ الأعداد الثابتة تُسمى أيضًا الأعداد القياسية (Scalars)
 - ✓ العمليات الأساسية:
 - If u,v ∈ V then u+v ∈ V: \blacksquare
- If $u \in V$ and $c \in R$ then $ext{cxu} \in V$ المتجه بعدد ثابت:

3- الأساس (Basis) والبُعد (Dimension)

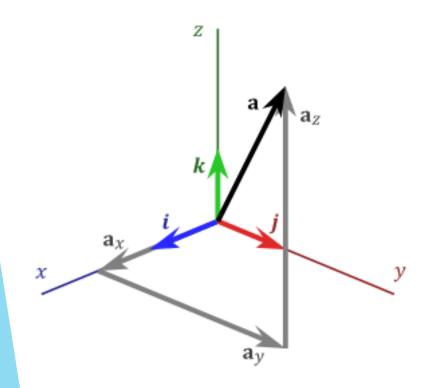
الأساس: مجموعة من المتجهات المستقلة خطيًا التي يمكن من خلالها توليد كل متجه في الفضاء.

البُعد:عدد المتجهات في الأساس.



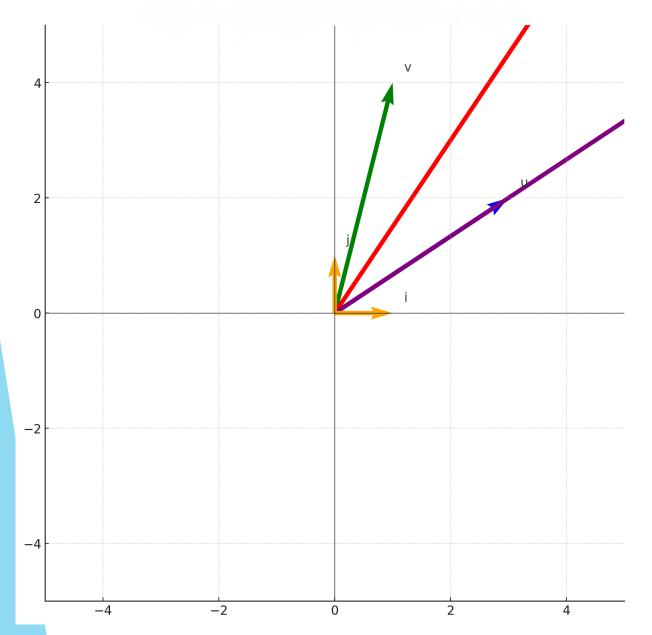
وفق هذا الاصطلاح، يكتب أي متجه في الفضاء الاتجاهي ثلاثي الأبعاد

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = ai + bj + ck$$



2u

مثال:



$$v = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 اللون الأخضر

$$u = {3 \choose 2}$$
 اللون الأزرق

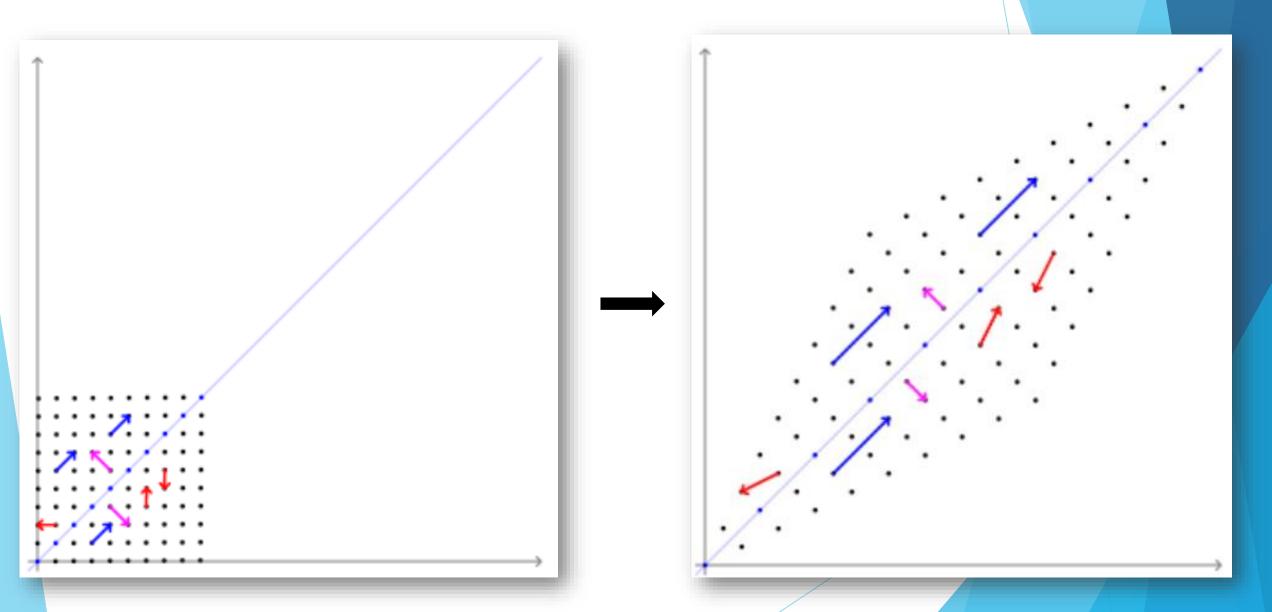
$$v + u = {1 \choose 4} + {3 \choose 2} = {4 \choose 6}$$
 اللون الأحمر

$$2u = 2\binom{3}{2} = \binom{6}{4}$$
 اللون البنفسجي

4- القيم الذاتية (Eigenvalues) والمتجهات الذاتية (Eigenvectors)

- ✔ يهتم الجبر الخطي بدراسة التحويلات الخطية، والتي تمثلها مصفوفات مؤثرة على متجهات
 - ✓ تعد القيم الذاتية والمتجهات الذاتية خواص المصفوفة
 - ✓ تؤثر مصفوفة على متجه بتغيير كلاً من قيمته واتجاهه. لكن يمكن أن تؤثر المصفوفة
 على بعض المتجهات بتغيير قيمها مع الإبقاء على اتجاهاتها دون تغيير
 - ✓ تمثل هذه المتجهات متجهات ذاتية للمصفوفة
 - ✓ تؤثر مصفوفة على متجه ذاتي بضرب قيمته بعامل معين، يمثل هذا العامل القيمة
 الذاتية المصاحبة لذلك المتجه الذاتي

4- القيم الذاتية (Eigenvalues) والمتجهات الذاتية (Eigenvectors)



المتجه الداتي: هو متجه لا يتغير اتجاهه عند تطبيق مصفوفة خطية عليه، بل يتغير حجمه فقط.

القيمة الذاتية: هي العدد λ الذي يُشير إلى مقدار التمدد أو الانكماش الذي يحدث للمتجه الذاتي عند تطبيق المصفوفة عليه.

5- حساب القيم الذاتية (Eigenvalues)

القيم الذاتية: إذا كانت A مصفوفة من النوع α . فإن المتجه الغير صفري U يكون متجها ذاتيا لا A إذا وجد عدد λ حيث:

$$AU = \lambda U$$

حيث:

- الشعاع الذاتي U
- U القيمة الذاتية للمصفوفة A والمرتبطة بالشعاع λ

 $\det(A-\lambda I)=0$ إلايجاد القيمة الذاتية للمصفوفة A نستخدم العلاقة التالية: θ

$$|A - \lambda I| = 0$$

5- حساب القيم الذاتية (Eigenvalues)

$$A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} \qquad \det(A - \lambda I) = 0$$

$$\det(A - \lambda I) = 0$$

$$(A - \lambda I) = \begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 2 \\ -1 & -\lambda \end{pmatrix}$$

$$\det(A - \lambda I) = 0 \Rightarrow \begin{vmatrix} 3 - \lambda & 2 \\ -1 & -\lambda \end{vmatrix} = 0 \Rightarrow \lambda^2 - 3\lambda + 2 = 0$$

$$\Delta = b^2 - 4ac$$

$$\Delta = (3)^2 - 4(1)(2) = 1$$

$$\lambda = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\lambda_1 = \frac{3 - \sqrt{1}}{2(1)} = 1$$

$$\lambda_1 = \frac{3 - \sqrt{1}}{2(1)} = 1$$
 $\lambda_2 = \frac{3 + \sqrt{1}}{2(1)} = 2$

6- حساب المتجهات الذاتية (Eigenvectors)

المتجهات (الأشعة) الذاتية: إن الأشعة الذاتية للمصفوفة Aالمناظرة للقيم الذاتية هي الأشعة الذاتية الذاتية الذاتية الذاتية الذاتية التي تحقق:

$$(A - \lambda I)U = 0$$

بالاستعانة بالمثال السابق ولايجاد الاشعة الذاتية نأخذ كل قيمة ذاتية على حدة

 $\lambda=2$ عندما نأخذ •

$$(A - \lambda I)U = 0 \Rightarrow \begin{pmatrix} 3 - \lambda & 2 \\ -1 & 0 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

6- حساب المتجهات الذاتية (Eigenvectors)

$$(A - \lambda I)U = 0 \Rightarrow \begin{pmatrix} 3 - 2 & 2 \\ -1 & 0 - 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x_1 + 2x_2 \\ -x_1 - 2x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} x_1 + 2x_2 = 0 \\ -x_1 - 2x_2 = 0 \end{cases}$$

6- حساب المتجهات الذاتية (Eigenvectors)

وهما عبارة عن معادلة واحدة نأخذ أحدهما نجد:

$$x_1 + 2x_2 = 0 \Longrightarrow x_1 = -2x_2$$

وبإعطاء \mathcal{X}_2 أية قيمة كيفية . يمكننا أن نحصل من المعادلة الأخيرة على مالانهاية من المحلول المقبولة (الشعة الذاتية) ويكون لها نفس الاتجاه

$$U = \begin{pmatrix} -2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix}, x_2 \in \mathbb{R}^*$$

وحتى نحدد أحد الحلول الخاصة نضع كيفيا $x_2=1$ فنحصل على:

$$U = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$